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Abstract

A non-rigid MR-TRUS image registration framework is proposed for prostate interventions. The 

registration framework consists of a convolutional neural networks (CNN) for MR prostate 

segmentation, a CNN for TRUS prostate segmentation and a point-cloud based network for rapid 

3D point cloud matching. Volumetric prostate point clouds were generated from the segmented 

prostate masks using tetrahedron meshing. The point cloud matching network was trained using 

deformation field that was generated by finite element analysis. Therefore, the network implicitly 

models the underlying biomechanical constraint when performing point cloud matching. A total of 

50 patients’ datasets were used for the network training and testing. Alignment of prostate shapes 

after registration was evaluated using three metrics including Dice similarity coefficient (DSC), 

mean surface distance (MSD) and Hausdorff distance (HD). Internal point-to-point registration 

accuracy was assessed using target registration error (TRE). Jacobian determinant and strain 

tensors of the predicted deformation field were calculated to analyze the physical fidelity of the 
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deformation field. On average, the mean and standard deviation were 0.94±0.02, 0.90±0.23 mm, 

2.96±1.00 mm and 1.57±0.77 mm for DSC, MSD, HD and TRE, respectively. Robustness of our 

method to point cloud noise was evaluated by adding different levels of noise to the query point 

clouds. Our results demonstrated that the proposed method could rapidly perform MR-TRUS 

image registration with good registration accuracy and robustness.
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1. Introduction

Prostate cancer is the second most common malignant disease in men around the world. 

Prostate cancer accounts for about 28% of newly diagnosed cancers among men and is the 

leading cause of death from cancer (Weir et al., 2015). Transrectal ultrasound (TRUS) 

imaging is the standard imaging modality for cancer diagnosis and image-guided 

interventions, such as biopsy (Yacoub et al., 2012; Yang et al., 2011; Yang et al., 2015), 

brachytherapy (Reynier et al., 2004; Yang et al., 2014; Yang et al., 2017) and cryotherapy 

(Bahn et al., 2012) since TRUS is non-ionizing, widely accessible, inexpensive and real-

time. Prostate brachytherapy is regularly used to treat prostate cancer using high-dose-rate 

(HDR), whole prostate gland irradiation (Challapalli et al., 2012). Dose escalation to the 

dominant intraprostatic lesion (DIL) after whole prostate irradiation was often used to 

improve tumor control in the initial site of DIL (Shaaer et al., 2019). However, it is difficult 

to delineate the tumor and DIL accurately on TRUS images due to the lack of soft tissue 

contrast.

Multiparametric MRI (mp-MRI) provides detailed anatomical and functional information 

which is unavailable on TRUS images (Bloom et al., 2018). Due to its superior soft-tissue 

contrast, mp-MRI has higher sensitivity and specificity for prostate cancer detection and 

characterization than TRUS (Shaaer et al., 2019; van de Ven et al., 2013). However, MRI is 

expensive, not as widely accessible as US and, most importantly, impractical to provide real-

time image guidance for prostate interventions. It is beneficial to fuse TRUS and mp-MRI 

images to provide real-time image guidance with improved soft-tissue contrast (Dickinson et 
al., 2013; Zhang et al., 2015). MR-TRUS image registration could enable targeted biopsy 

and brachytherapy, which allow precise perineum biopsy needle insertion and brachytherapy 

catheter placement (Kadoury et al., 2010). In addition, it enables accurate DIL delineation 

which allows local radiation dose boost to DIL, leading to improved tumor control. 

Conventionally, MR-TRUS image registration is done manually by physicians. After rigid 

alignment of MR and US prostates, manual lesion delineation is performed to account for 

the complex prostate deformation (Shaaer et al., 2019). Prostate deformation could be 

induced by bladder and rectum filling, patient setup and TRUS probe. Manual registration 

allows only rigid registration and fails to account for the complex prostate deformation. In 

addition, manual registration process is physician dependent, time-consuming and 

irreproducible.
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Single modality image registration such as CT-CT and MRI-MRI is often performed by 

minimizing image intensity differences between the fixed and moving images since images 

acquired with the same imaging modality have similar image intensities (Fu et al., 2018a). 

For multi-modality image registration such as CT-MRI registration, there is no direct image 

intensity correlation. As a result, statistical image texture similarities such as mutual 

information (MI) are often used in multi-modality image registration (Heinrich et al., 2012; 

Loeckx et al., 2010). For MRI-TRUS registration, it is very difficult to rely solely on image 

intensities due to the distinct image appearance between the two. Hence, the prostate shapes 

segmented from the MR and TRUS images should be utilized to facilitate the registration. 

Challenges are to segment the prostate with high accuracy and to regularize internal prostate 

deformation based on only surface-driven deformations. Spatial smoothing is commonly 

used to regularize the predicted deformation field. However, the over-simplified spatial 

smoothness constraint does not model the complex prostate deformation well. Accurate 

motion modelling is needed to account for the large prostate deformation induced by US 

probe. Therefore, it is important to develop an accurate MR-TRUS image registration 

method which overcomes the above-mentioned challenges simultaneously, including the 

lack of effective MR-TRUS image similarity metric and difficulties in accurate prostate 

segmentations and motion modeling.

2. Related works

Many methods have been proposed for MR-TRUS image registration (Hu et al., 2012; Hu et 
al., 2018b; Khallaghi et al., 2015a; Khallaghi et al., 2015b; Mitra et al., 2012; Sun et al., 
2015; van de Ven et al., 2015; Wang et al., 2016; Wang et al., 2018; Yang et al., 2011; Yang 

et al., 2015). Generally, these methods can be categorized into three different groups, 

including intensity-based methods, surface-based methods and deep learning-based 

methods.

For intensity-based method, MI is often used as the image similarity measure between MR 

and TRUS. A variety of MI variants such as correlation ratio-based MI (Gong et al., 2017), 

contextual conditioned MI (Rivaz et al., 2014) have been proposed. However, MI does not 

model the spatial dependency of local structures well. Later, modality independent 

neighborhood descriptor (MIND) (Heinrich et al., 2012) was proposed by Heinrich et al. to 

calculate structural similarity across modalities. MIND accounts for the spatial structural 

dependency using local self-similarity measures. Sun et al. (Sun et al., 2015) used a multi-

channel MIND as the image similarity measures for MR-TRUS image registration. Wang et 
al. (Wang et al., 2016) proposed to use MIND as a weighting factor for robust prostate 

surface point matching. Gabor wavelet was also used for feature extraction from MRI and 

TRUS images. Ou et al. (Ou et al., 2011) proposed to extract multi-scale and multi-

orientation Gabor attributes which reflect the anatomical and geometric context around each 

voxel. The extracted Gabor attributes from MR and TRUS were then matched using a 

continuously-valued weighting function. Singh et al. (Singh et al., 2008) used manually 

identified landmarks to aid MR-TRUS image registration. Since TRUS provides very limited 

intraprostatic anatomical information other than the sparse calcifications and cysts, it is very 

difficult to achieve high MR-TRUS image registration accuracy based solely on image 

intensity.
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For surface-based methods, prostate shapes on MR and TRUS are usually manually 

segmented in the first step. The shapes of the prostate were then meshed into 3D point cloud 

for surface matching. Commonly used point cloud matching methods include thin-plate 

spline robust point matching (TPS-RPM) (Chui and Rangarajan, 2003), iterative closest 

point (ICP) (Du et al., 2010), coherent point drifting (CPD) (Bernhard et al., 2007) and local 

feature statistics histogram (LFSH) (Yang et al., 2016). To constrain the deformation of 

point matching, Gaussian-mixture model (GMM) was used to compute probabilistic point 

correspondence to avoid binary point correspondence (Jian and Vemuri, 2011). CPD utilized 

a penalty term to constrain nearby points to move coherently as a group. Deformation of the 

point cloud could also be regularized by biomechanical models. For instance, Wang et al. 
developed a personalized statistical deformable model (PSDM) to guide prostate surface 

point matching (Wang et al., 2016). Then, interpolation-based models such as thin-plate 

spline (Bookstein, 1989) and elastic body splines (Kohlrausch et al., 2005) were utilized to 

calculate intraprostatic deformation. Though PSDM used in Wang et al.’s paper is a 

biomechanical model, intraprostatic deformation still needs to be interpolated from surface 

point deformation using thin-plate spline. Hu et al. (Hu et al., 2012; Hu et al., 2008) built a 

patient-specific statistical motion model using principal component analysis (PCA) by 

simulating the prostate-US probe interaction using finite element (FE) method. Different 

from Wang et al.’s model, Hu et al.’s model includes not only prostate surfaces points, but 

also intraprostatic points. Many FE models with various boundary conditions need to be 

performed for the same patient in order to build a specific/personalized motion model, which 

prevents the patient-specific model from being used in large scale. Later, Hu et al. (Hu et al., 
2015) proposed a population-based prediction of patient-specific motion model. The idea 

was to utilize kernel regression analysis to describe a separate patient’s prostate motion 

using a multivariate combination of a pre-built population motion models. Khallaghi et al. 
proposed a biomechanically constrained surface-based MR-TRUS registration method by 

explicitly integrating a FE volumetric strain energy function into the surface point matching 

framework (Khallaghi et al., 2015b).

Deep learning-based methods have achieved the-state-of-art performance in many medical 

image applications, such as segmentation (Dong et al., 2019; Fu et al., 2018b; Fu et al., 

2019) and registration (Fu et al., 2020; Haskins et al., 2019b). One advantage of deep 

learning-based registration is that it enables rapid prediction of the dense deformation vector 

field (DVF) in a single or a few forward predictions. Yan et al. (Yan et al., 2018) used an 

adversarial deep learning framework to predict an image similarity metric in terms of target 

registration error (TRE). In Yan et al.’s work, manually aligned images by experts were 

treated as the ground truth. A discriminator was used to tell whether an image was distorted 

using the ground truth deformation or the estimated deformation. Huskins et al. (Haskins et 
al., 2019a) predicted a deep-learning based MR-TRUS similarity metric, which 

outperformed MIND similarity metric in MR-TRUS image registration. Only rigid image 

registration was considered by both Yan et al. and Huskins et al. Onofrey et al. (Onofrey et 
al., 2016) proposed to synthesize TRUS images from MR images so that the MR-TRUS 

registration could be cast into TRUS-TRUS single modality registration. Hu et al. (Hu et al., 
2018b) trained a weakly supervised network for MR-TRUS image registration using label 

correspondences. Only MR-TRUS image pairs were required in the inference stage since 

Fu et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



labels were used in the training stage for loss calculation. Deep learning network learns 

through gradient back propagation of the loss with respect to the network learnable weights. 

The label correspondence loss represents only a portion of the true loss that should be 

defined on the whole prostate. As a result, the network needs to infer the whole prostate 

deformation based on an under-constrained loss definition. Hu et al. (Hu et al., 2018a) 

recently proposed an adversarial network to distinguish between the network-predicted DVF 

and the FE-generated DVF. Their results showed that the adversarial network was able to 

generate physically plausible deformation with only prostate gland segmentations and 

without any other deformation smoothness regularization.

Due to the unique challenges of MR-TRUS registrations, it is not optimal to directly apply 

the commonly used convolutional neural networks (CNN) to MR-TRUS image registration. 

The TRUS images provide very sparse reliable anatomical markers such as urethra, seminal 

vesicles, cysts and calcifications. It is very challenging to automatically detect and segment 

these markers on both MRI and US to establish correspondences. In addition, some cases 

may not show these anatomical markers due to image noise and artifacts. Therefore, it is not 

effective to train a CNN to directly predict the dense DVF from the MR-TRUS image 

intensities. In this study, we proposed a shape-based registration where prostate shapes are 

represented by 3D point clouds. Traditional CNN can only take regular voxel grids dataset 

such as images as input and cannot directly consume irregular data structures such as 3D 

point cloud. Fortunately, Qi et al. (Qi et al., 2016; Qi et al., 2017) proposed a deep learning 

framework, PointNet, for classification and segmentation of 3D point cloud. The PointNet 

was designed to directly consume irregular geometric dataset such as 3D point clouds. Based 

on PointNet, Liu et al. (Liu et al., 2018) proposed a network called FlowNet3D to predict 3D 

scene flow from 3D points that were generated from stereo and RGB-D images. Meanwhile, 

Aoki et al. (Aoki et al., 2019) proposed a network called PointNetLK to combine PointNet 

and Lucas & Kanade (LK) algorithm for 3D point cloud rigid registration. Rigid 

transformations were calculated iteratively in PointNetLK. Inspired by these methods, we 

proposed a new point cloud matching method for MR-TRUS prostate image registration. 

Different from FlowNet3D, the proposed ProRegNet utilized a weighted surface and volume 

point cloud loss to balance surface and intraprostatic point cloud matching. For the ease of 

description, the proposed MR-TRUS prostate registration network is referred to 

‘ProRegNet’. Prostate shapes from both MR and TRUS were first automatically segmented 

using our previously developed deep learning-based segmentation networks. The segmented 

prostate volumes were then meshed into 3D tetrahedron elements to generate volumetric 

point clouds. Surface point correspondences were established using non-rigid ICP. FE 

analysis was performed for every case in our datasets using surface nodal correspondence as 

FE boundary condition. Dense DVFs were generated based on the results of the FE 

simulation. The dense DVFs were considered as the ground truth deformation for MR-TRUS 

prostate registration. Volumetric point cloud correspondences were then established based 

on the dense DVFs. ProRegNet was trained using the prostate volumetric point clouds and 

their correspondences, which implicitly encoded biomechanical constraints. Compared to 

previous studies, the contributions of our study include
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1. A novel MR-TRUS image registration network, ProRegNet, was proposed to 

directly predict volumetric point cloud motion that deforms the MR prostate 

shape to the TRUS prostate shape.

2. Trained with FE-simulated point correspondences, ProRegNet was able to 

predict volumetric prostate point cloud motion with implicit biomechanical 

constraints.

3. Deep learning-based MR and TRUS prostate segmentations were adopted to 

enable fully automatic MR-TRUS image registration.

3. Materials and Methods

The proposed registration framework consists of 1) volumetric point cloud generation, 2) 

FE-based training datasets preparation, and 3) ProRegNet training and testing. Detailed 

workflow of the proposed method is shown in Figure 1. In the first step, volumetric point 

cloud was generated from automatically segmented MR and TRUS prostate masks using 

tetrahedron meshing. In the second step, FE models were created to simulate the prostate 

deformation. Ground truth (GT) volumetric point cloud correspondence was established 

using the deformation field calculated by the FE models. In the last step, the proposed 

ProRegNet was trained to perform point cloud matching by directly taking the two prostate 

volumetric point clouds as input.

3.1. Data Acquisition

A total of 50 pairs of T2-weighted MR and TRUS images were collected from 50 prostate 

cancer patients who underwent HDR brachytherapy at our clinic. The 3D TRUS images 

were captured with a clinical ultrasound scanner (HI VISION Avius, Hitachi Medical Group, 

Japan) and a transrectal 7.5 MHz prostate biplane probe (UST-672-5/7.5) in the operating 

room before catheter placement. To scan over the longitudinal axis, a mechanical SurePoint 

stepper (Bard Medical, Inc., GA) was used to guide the stepwise movement of the US probe 

along the longitudinal axis. Multiple parallel scans in the transverse plane were captured 

from the patient, with a 1mm step size from the apex to the base. The patient was scanned in 

lithotomy position. The size of a typical prostate is ~60–80 mm in the longitudinal axis. A 

margin of 5–10 mm anterior and posterior to the prostate was scanned to ensure whole 

prostate coverage. The T2-weighted MR images were acquired using a 1.5T scanner 

(MAGNETOM Avanto, Siemens, Germany) with repetition time of 1200ms and echo time 

of 123ms. MR images were acquired using a body coil. The original voxel sizes of the MR 

and TRUS images were 0.63×0.63×2.00 mm3 and 0.12×0.12×1.00 mm3 respectively. For 

consistency, all MR and TRUS images were resampled to an isotropic voxel size of 

0.5×0.5×0.5 mm3 prior to image registration. Institutional review board approval was 

obtained with no informed consent required for this HIPAA-compliant retrospective 

analysis.

3.2 Volumetric Point Cloud Generation

Prostate can be represented by volumetric point cloud. It is crucial to have accurate prostate 

segmentation for shape-based MR-TRUS image registration. Ghavami et al. reported that all 
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top five prostate segmentation methods in PROMISE12 challenge were based on CNN 

(Ghavami et al., 2019; Litjens et al., 2014). The top DSC on whole MRI prostate 

segmentation was 0.90. Yuan et al. proposed a global optimization approach to delineate 3D 

endfiring TRUS prostate and achieved a DSC of 0.93 (Yuan et al., 2013) Yang et al. 

improved TRUS prostate segmentation in brachytherapy with TRUS-CT registration and 

achieved an average DSC of 0.91 (Yang et al., 2017). In this study, we developed two 

separate CNN networks for MR and TRUS prostate segmentations. The DSC of our 

automatic segmentation results were 0.88±0.05 and 0.92±0.03 for MR and TRUS images, 

respectively. The mean surface distance (MSD) of our automatic segmentation results were 

1.02±0.35mm and 0.6±0.23mm for MR and TRUS images, respectively. Our prostate 

segmentation methods have been published. Readers are referred to Lei et al. (Lei et al., 

2019) and Wang et al. (Wang et al., 2019) for details regarding our segmentation methods.

The segmented prostate masks were then meshed into first order tetrahedron elements for 

volumetric prostate point cloud generation. First order tetrahedron elements were used to be 

consistent with our following FE analysis. Second order tetrahedron elements could be used 

if the element type in the meshing is consistent with the element type used in the FE. The 

volumetric MR and TRUS prostate point cloud were subsequently used as the input for the 

point cloud matching and image registration. Surface triangular meshes were obtained from 

the tetrahedron meshes after mesh analysis to facilitate calculation of surface-based loss 

function, which is described in detail later. For robust mesh generation, it is not required for 

the MR and TRUS mesh to have the same number of vertices, elements, faces or patterns.

3.3 Training Datasets Generation

For many surface-based methods, the shape of the prostate was represented using 3D surface 

point cloud. The final voxel-wise dense DVF was generated from surface point cloud 

deformation using interpolation-based models such as spline interpolations. The 

interpolation-based models may generate inaccurate intraprostatic deformation due to the 

lack to internal control points and biomechanical constraints. To address this issue, we aim 

to train a network that can predict dense volumetric point cloud motion with biomechanical 

constraints for MR-TRUS registration. To this end, we need to generate dense volumetric 

point cloud pairs with FE-calculated point correspondences between the dense volumetric 

point cloud pair for the network training. The patient-specific FE models proposed by Hu et 
al. (Hu et al., 2012) and Wang et al. (Wang et al., 2016) cannot be easily applied to our case 

since the prostate shapes segmented from MR and TRUS images are usually different from 

each other. Instead of using US probe-prostate interactions as boundary conditions, using 

nodal displacement between MR and TRUS prostate shapes as boundary conditions ensures 

that the FE-deformed MR prostate shape match the TRUS prostate shape. Population-based 

training datasets could be prepared by performing such FE analysis for every case in our 

datasets. To build FE models with such boundary condition, we need to first establish 

surface point correspondence. In the next section, surface point registration process is 

described in detail to establish point correspondence.

3.3.1 Prostate Surface Registration—Unless otherwise stated, MR prostate point 

cloud and source point cloud are used interchangeably while TRUS prostate point cloud and 
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target point cloud are used interchangeably. A modified iterative closest point (ICP) based 

non-rigid surface registration algorithm was used to establish surface point cloud 

correspondence. The input of the non-rigid ICP algorithm is the prostate surface mesh which 

include 3D surface point cloud and triangular element connectivity. As an initialization step, 

the MR and TRUS surface meshes were aligned by overlapping their geometrical centers. 

Rigid alignment was then performed by optimizing a global bidirectional point cloud 

correspondence loss (Besl and McKay, 1992). The bidirectional point cloud correspondence 

includes forward vertex correspondence (source vertex to target vertex) and backward vertex 

correspondence (target vertex to source vertex).

For computational efficiency, a sparse set of source vertices with even spatial distribution 

were sampled from the original dense source vertices so that target vertices have a higher 

spatial density than that of the sampled source vertices. As a result, for the ith vertex on the 

sampled source surface, there are one nearest neighbor vertex on the target surface and 

multiple vertices on target surfaces for which their nearest neighbor vertex is the same ith 

vertex on the sampled source surface. Forward vertex correspondence is defined as the 

nearest neighbor of one source vertex on the target surface:

vt(i) = min
j ∈ 1, Nt

d vjt, vis (1)

where vis represents the ith vertex on source surface, vjt represents the jth vertex on the target 

surface, the source and target surfaces have a total number of Ns and Nt vertices. d vjt, vis

denote the Euclidean distance between the two spatial vertices vjt and vis.

Backward vertex correspondence is defined as the vertices on the target surface for which 

the same ith vertex on the source surface is their nearest neighbor. Backward vertex 

correspondence can be expressed as one or more vertices:

vt(i) = vjt vis = min
j ∈ 1, Nt
i ∈ 1, Ns

d vjt, vis (2)

Rotation, translation and scaling are solved iteratively by minimizing a weighted forward 

closest point distance and backward closest point distance (Audenaert et al., 2019). Scaling 

was not used in our study as the voxel sizes of the resampled MR and US images were 

consistent prior to meshing.

T(R, c, s) = min ∑
i

Ns
wid2 T vis , vt(i) + ∑

j

Nj
wjd2 T vjs , vt(j) (3)

where the first term minimizes the forward closest point distance and the second term 

minimizes the backward closest point distance. The inclusion of the second term is to 

introduce extra force to warp the source surface to the target surface with high curvatures 
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since the second term puts more weight on the target surface. Final rigid alignment was 

achieved using:

v′ = sRvs + c (4)

To account for the complex prostate deformation, additional non-rigid transformation was 

needed. The distances between the source and target point cloud were modeled as a sum of 

Nc Gaussian Radial Basis Functions (G-RBF) (Kim et al., 2016). For computational 

efficiency, Nc is usually a much smaller subset of Ns The distances vector could be modeled 

using G-RBF as:

d vis = ∑
k

Nc
wkφ vis − ck , iϵ 1, Ns , φ(r) = e−(εr)2 (5)

where wk is the deformation coefficient to be determined, ck is located at the source surface 

point location vis. The width of the Gaussian function is controlled by r. ε is the distance 

between the ck and vis. The deformation coefficient wk could be calculated by minimizing:

∑
i

Ns
d vis − δ vis

2
(6)

where δ vis  is the distance mapping to be approximated using G-RBF. Given the distance 

mapping δ(vs) between the source and target surface during iteration, the deformation 

coefficient wk can be calculated as:

w = ϕTϕ + λI −1ϕTδ vs (7)

A final step to refine the surface point matching was performed by locally aligning the two 

surface point clouds as a weighted local rigid transformation (Audenaert et al., 2019; Li et 
al., 2008).

3.3.2 Finite Element Simulation of Prostate Deformation—FE simulations were 

performed using the established surface point correspondences as boundary condition to 

calculate intraprostatic deformations. Commercial FE software (ANSYS 2019 R2, 

Oxfordshire, UK) was used to construct FE models. The FE models were configured as a 

static structural job in ANSYS. Throughout our experiments, the initial material properties 

of prostate were modeled as Young’s modulus E = 5kPa and Poisson’s ratio v = 0.49, same 

as that used in Khallaghi et al.’s work (Khallaghi et al., 2015a). Prostate material behavior 

was simulated by an isotropic and homogeneous hyper-elastic material, represented by Neo-

hookean hyper-elastic model (Shahzad et al., 2015). According to continuum mechanics, we 

have:

G = E
2(1 + v) K = E

3(1 − 2v) (8)
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where G is the initial shear modulus, which was calculated to be 14.9kPa, K is the bulk 

modulus, which was calculated to be 83kPa. Compressible Neo-hookean material has a 

strain energy function of (Pence and Gou, 2015):

W = C10 I1 − 3 + 1
D1

Jel − 1 2
(9)

where C10 is the material constant that control the shear behavior, which was calculated to 

be C10 = G/2 = 7.45kPa, D1 is the material constant that control the bulk compressibility, 

which was calculated to be D1 = 2/K = 2.4 × 10−5Pa−1. I1 denotes the first strain invariant, 

Jel denotes the elastic volume strain.

There are around 1000 nodes and 5000 tetrahedral elements in the FE models. A template 

ANSYS input file was generated for each patient using ANSYS Workbench. Subsequently, 

these input files were modified to apply the surface point correspondences as nodal 

displacement boundary conditions. Large deflection checkbox in ANSYS was switched on 

to account for the material stiffness change due to prostate shape change. The FE models 

were solved using ANSYS Mechanical APDL with 10 sub-steps with equal time interval. 

Nodal directional displacements of each sub-step were recorded. One example of the FE 

meshing and final nodal displacement contour were shown in Fig. 2.

The proposed network took two prostate point clouds generated from MR and TRUS, 

respectively. The network predicted the MR prostate points motion vector to align the 

prostate shape of MRI to that of the TRUS. The inputs of the network have two 

characteristics. First, there is no one-to-one point correspondence between the two point 

clouds. Second, the numbers of points in the two point clouds are not necessarily the same. 

Nevertheless, the two point clouds before and after deformation in the FE simulation have 

such correspondence and the same number of points. Therefore, the network cannot be 

directly trained using the two point clouds and nodal displacements in the FE simulation. To 

generate the MR prostate points motion vectors for network training, we first generated 

voxel-wise DVF images from the FE volumetric nodal displacements using thin-plate-spline 

interpolation. The voxel-wise DVF images were considered as the ground truth deformation 

between the MR and TRUS prostate. Then, MR prostate points motion vectors were sampled 

from the voxel-wise DVF images. For 50 patients, we generated a total of 500 FE results 

which include ten FE sub-steps per patient. Each training dataset contains a MR prostate 

volumetric point-cloud set, a TRUS prostate volumetric point-cloud set, and the ground truth 

motion vector of MR point-cloud set. Each point cloud set contains around 25,000 points.

3.4 ProRegNet

3.4.1 Network design—Fig.3 shows the goal of ProRegNet, which is to directly match 

the MR prostate shape to the TRUS prostate shape. Point cloud data structure is represented 

by a group of spatially distributed 3D points. Compared to image data structure, point cloud 

data structure is highly irregular. Point cloud data structure has several important properties, 

which are 1) points in the point cloud are unordered, meaning that the geometrical 

representation and interpretation should not change regardless of the order of the points in 

the point cloud. The network should be immune to any permutation of the points in the point 
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cloud; 2) despite being unordered, point cloud is spatially organized. The interaction among 

points locally or globally forms its own signature that uniquely features the underlying 

geometric representation; 3) the meaning of the point cloud should be invariant under rigid 

transformations, such as rotation and translation. A rotated prostate represented by a rotated 

point cloud with vertices at different spatial locations should have the same meaning as the 

original prostate. A network that directly consumes point cloud needs to consider all the 

above-mentioned properties. The vertices number discrepancy between the source point 

cloud and target point cloud imposes additional challenge to the network design.

The source point cloud has Ns vertices, expressed as vis,i ∈ 1, Ns . The target point cloud has 

Nt vertices, expressed as vit,i ∈ 1, Nt . As an initialization step, rigid ICP of surface points 

were performed to roughly align the point clouds. Then, the centroids of the source and 

target point clouds were calculated as the geometrical centers and expressed as vcs and vct, 

respectively. The input vectors of the network were then rearranged as a matrix of size Ns × 

7 and Nt × 7 for the source and target point clouds, respectively. The ith point in the source 

point cloud was rearranged as vis = (xi
s s, yi

s s, zi
s s, xi

s t, yi
s t, zi

s t, mis), where xi
s s, yi

s s, zi
s s

 are 

the ith point location in the source point cloud relative to vcs, xi
s t, yi

s t, zi
s t

 are the ith point 

location in the source point cloud relative to vct, and mis is a binary indicator of whether the 

point belongs to the prostate surface. The mis was introduced to incorporate surface point loss 

to the network. Similarly, the ith point in the target source point cloud is expressed as 

vit = (xi
t s, yi

t s, zi
t s, xi

t t, yi
t t, zi

t t, mit), where xi
t s, yi

t s, zi
t s

 are the ith point location in the target 

point cloud relative to vcs, xi
t t, yi

t t, zi
t t

 are the ith point location in the target point cloud 

relative to vct, and mit is a binary indicator of whether the point belongs to the target prostate 

surface. The reason to spatially encode each point with respect to both vcs and vct is to provide 

two frames of reference for network point cloud motion prediction.

In ProRegNet, N points were randomly sampled from the original point cloud pair. Two 

types of convolutional layers specific to point cloud were introduced, one for convolution 

and the other for de-convolution. The point cloud convolutional layer first samples n regions 

from the input point cloud with farthest point sampling. The centers of the n regions were at 

vk′ . For each region with radius of r around vk′ , features were extracted using function:

fk = MAX
i ∣ d vis, vk′ < r

ℎ vis ∣ i
(10)

where function h(·) was realized as a multi-layer perceptron (MLP) network. The MAX 

operation is element-wise max pooling. Max pooling was used here as a symmetric 

operation which is suitable for the unordered point cloud and invariant to point cloud rigid 

transformations. With varying value of radius r, the MLP network could learn multi-scale 

local point cloud features. For the point cloud de-convolutional layer, features of n input 

points were computed on specified locations on the target points with n′ points, where n′ > 

Fu et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



n. The point cloud convolutional and de-convolutional layers solve the problem of end-to-

end feature learning of a single point cloud. However, they did not address the problem of 

point cloud motion prediction between two point-clouds. Liu et al. (Liu et al., 2018) 

proposed a point cloud embedding layer to address this issue. Due to the lack of one-to-one 

point correspondence, the point cloud embedding layer used multiple softly corresponding 

points in the target point cloud near a source point within radius of re. The point cloud 

embedding layer learnt to use both feature similarities and spatial relationships to predict a 

weighted point correspondence.

Fig. 4 shows the architecture of the ProRegNet. N was set to 4096 in our network. Each 

input point cloud first went through a separate PC conv operator, which includes two-point 

cloud convolutional layers with r = 5mm, n = 1024, c = 64 and r = 10mm, n = 265, c = 128, 

respectively. Then, the learnt features from both point clouds were fed into a point cloud 

embedding layer with re = 2.5mm, c = 256. The last point cloud conv operator includes two 

point-cloud convolutional layers with r = 17.5mm, n = 64, c = 256 and r = 25mm, n = 16, c 
= 512, respectively. The point cloud up-conv operator includes three point-cloud de-

convolutional layers to resample the number back to its original size of N.

3.4.2 Loss functions—The loss of the ProRegNet was a weighted sum of surface point 

cloud loss and volumetric point cloud loss. Mean square error was used as the loss function 

between the predicted motion and ground truth motion. The volumetric point cloud loss put 

equal weight on every point in the point cloud. Surface point cloud loss was added to 

promote the point correspondence between prostate surface points. Therefore, mis was 

encoded into vis to distinguish the surface points from the intraprostatic points. Challenges to 

design a suitable surface loss function include 1) the function needs to be differentiable with 

respect to point locations; 2) the function needs to be computationally efficient since the loss 

needs to be calculated repeatedly throughout the optimization process; 3) the function needs 

to be robust to outliers. Fan et al. (Fan et al., 2016) studied two distance metrics, which are 

the Chamfer distance and Earth Mover’s distance. We adopted the Chamfer distance (CD), 

which is defined as:

dCD vs′, vt′ = ∑
i ∈ Ns′

MIN
j ∈ Nt′

d2 vis′, vjt′ + ∑
j ∈ Nt′

MIN
i ∈ Ns′

d2 vjt′, vis′
(11)

where vis′ and vjt′ represent the surface points from the source point cloud and target point 

cloud. Ns′ and Nt′ are the number of surface points for source and target, respectively. For 

each point, the Chamfer distance algorithm finds the nearest neighbor in the other point 

cloud and adds the squared distance of each points together. The Chamfer distance is 

continuous and piecewise smooth with respect to point locations. The final loss for 

ProRegNet is:

L = AVG V p − V GT
2 + 10 ⋅ dCD vs′, vt′ (12)

where the first term is the mean square error between the predicted motion vector and the 

ground truth motion vector. The second term is the surface distance loss. The weighting 
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factor was set to 10 because the ratio between the number of volumetric and surface points 

was around 10.

3.4.3 Training and Testing—ProRegNet was implemented in Python 3.6 and 

TensorFlow on a NVIDIA TITAN XP GPU with 12GB of memory. Adam gradient 

optimizer with learning rate of 1e-3 was used in optimization. Ten FE results per patient 

were used to generate nine training datasets by pairing up the first step with each subsequent 

sub-step. In total, we have 450 training datasets for 50 patients. Five-fold cross validation 

was used to train and test the network. During training and testing, 4096 points were first 

randomly sampled from the original point cloud. For 4096 volumetric points, there were 

around 400 surface points. Since the network was trained to be invariant to point 

permutations, the sampled 4096 points were randomly shuffled ten times in testing stage. 

Final motion results were obtained by averaging the ten motion predictions. Voxel-wise DVF 

image was obtained from the network motion prediction using thin-plate-spline 

interpolation. MR image was then deformed using the voxel-wise DVF to register with the 

TRUS image.

The training datasets preparation is time-consuming. However, once trained, the network can 

make the point matching prediction very rapidly in less than 3 seconds. The ProRegNet took 

around 2 hours to train. The prostate can be segmented on MR and US images using our 

previously trained segmentation networks in less than 2 seconds (Lei et al., 2019; Wang et 

al., 2019). The whole MR-TRUS image registration procedures, including segmentation, 

meshing, network prediction and DVF image calculation took 3 to 5 mins on average.

3.5 Comparison Methods

To demonstrate the superiority of the proposed method, it was compared with another two 

MR-TRUS image registration methods. The first method was a surface-based method, which 

performed prostate surface registration same as Section 3.3.1. Voxel-wise DVF image was 

then obtained from the surface point cloud motion using thin-plate-spline interpolation. The 

other method was to use CNN for MR-TRUS image registration. From the 450 point-cloud 

training datasets, we created another 450 image training datasets. Each image training 

dataset includes a MR prostate mask, a TRUS prostate mask and a ground truth DVF image 

obtained using FE models. Fig.5. shows the network structure of the CNN network. The 

CNN has 12 convolutional layers and 3 max pooling layers. Bicubic resampler was used to 

resample the predicted DVF to its original image size. Deformed MR masks were generated 

using spatial transformers. DICE coefficient loss, DVF mean absolute error (MAE) loss and 

DVF regularization smoothness loss were minimized for network training. To provide spatial 

information to the input mask images, three spatially-encoded masks in the x, y, z directions 

were generated from one input mask. There was a total of 6 spatially-encoded masks, three 

masks for MR and another three masks for TRUS. For fair comparison, the CNN was trained 

in the same way as ProRegNet. For the ease of description, the surface-based method was 

referred to ‘SurfReg’. The CNN-based method is referred to ‘CnnReg’.
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3.6 Evaluation of Registration Accuracy

Target registration error (TRE) were calculated to evaluate the registration accuracy. 

Landmarks such as centers of small nodules, cysts, calcifications were carefully selected 

manually by an experienced physician. For each patient, around 3 to 5 landmarks were 

selected. DSC coefficient was calculated to evaluate the volume overlap ratio between the 

deformed MR and TRUS prostate. To evaluate the surface similarity between the deformed 

MR and TRUS prostate, we used Hausdorff distance (HD) and mean surface distance 

(MSD). The HD measures the local maximum distance between the deformed MR prostate 

shape and the TRUS prostate shape. The MSD is the mean surface distance between the two 

surfaces. Jacobian determinants (JD) and normal strains Exx, Eyy, Ezz of the deformation 

field were calculated to assess the physical fidelity of the predicted deformation. The 

Jacobian determinant is defined as:

D = det(ε + I) (13)

where ε is the strain tensor calculated from the deformation field, I is the identity matrix, 

det(·) is the determinant of the matrix.

4 Results

4.1 Registration accuracy

To evaluate the registration accuracy, we calculated eight metrics, including DSC, MSD, 

HD, TRE, JD, Exx, Eyy and Ezz, for SurfReg, CnnReg and ProRegNet, respectively. The 

results were compared and analyzed. Table 1 shows the mean and standard deviation of 

DSC, MSD, HD and TRE for the three different methods. Boxplot of these metrics were 

shown in Fig. 6 and Fig. 7. The central mark in the boxplot is the median, the top and 

bottom edges of the box indicate the 75th and 25th percentiles, respectively. The dashed line 

in boxplot extends to the most extreme data points that are not outliers. Outliers are shown 

as red ‘+’ symbol. As evidenced by its DSC, MSD and HD values, SurfReg has the best 

performance on surface matching and volume matching among the three methods. This is 

reasonable since SurfReg focused solely on the surface point matching. As described in 

Section 3.3.1, SurfReg utilized G-RBF to calculate general deformation for rough point 

matching and a weighted rigid deformation for local fine point matching. Therefore, 

SurfReg enforced the two prostate shapes to match well both globally and locally. CnnReg 

generated the second-best surface matching and volume matching performance in terms of 

DSC, MSD and HD. However, volume overlapping (DSC) and surface distance (MSD, HD) 

metrics are not accurate or adequate to evaluate the point-to-point MR-TRUS registration 

accuracies. The reasons are 1) intraprostatic deformation is not considered in DSC, MSD or 

HD; 2) exact shape matching could sometimes generate adverse effect due to inaccurate 

local segmentations as a result of either poor contrast, low slice resolution or tissue 

ambiguities. To evaluate the intraprostatic registration accuracy, TRE were calculated and 

reported in Table 1. Paired student t-test was performed to analyze the statistical significance 

for all four metrics. Contrary to DSC, MSD and HD values, the TRE values suggested that 

ProRegNet was the most accurate among the three methods, with an average improvement 

of 0.91mm over CnnReg and 1.13 mm over SurfReg. Multiple comparisons were made with 
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the same null hypothesis using DSC, MSD, HD. Bonferroni correction suggests a threshold 

significance level of 0.05/3=0.017 to account for the familywise type I error. The p-values (1 

vs. 3) in Table 1 are greater than 0.017, which suggests that SurfReg has the same 

performance as ProRegNet in terms of DSC, MSD and HD.

Registration results of two cases are shown in Fig. 8 and Fig. 9 in the transverse, coronal and 

sagittal planes. In Fig. 8 and Fig. 9, first column shows the original TRUS and MR images. 

Second column shows the images after rigid registration in checkboard and red-green fusion. 

Third, fourth and fifth columns show the registration results for SurfReg, CnnReg and 

ProRegNet, respectively. Blue dashed contour indicates TRUS prostate shape while red 

dashed contour indicates MR prostate shape. The cyst within prostate was highlighted by 

arrows. Arrows were not plotted in fused images to avoid occlusion. The checkboards were 

placed so that the checkboard edges crossed the cyst of interest for better visualization. Fig.8 

and Fig. 9 shows that the prostate shape matching after registration was the best for SurfReg 

than the other two methods. However, as illustrated by the arrows in Fig. 8 and Fig. 9, 

ProRegNet has the best cyst matching among the three methods. This phenomenon could be 

explained by the fact that SurfReg lacks biomechanical constraint for intraprostatic 

deformation regularization. For SurfReg, TPS interpolation was used to calculate 

intraprostatic deformation, leading to under-constrained deformation. Despite trained using 

ground truth DVFs, the CnnReg only achieved limited improvement over SurfReg in terms 

of TRE. The results show that CnnReg could not efficiently learn how to perform 

registration from the spatially-encoded prostate mask pair. This could be explained by the 

fact that MR-TRUS masks lack enough intensity-based features for the registration task. As 

a result, CnnReg which is good at extracting intensity-based textural features from images 

failed to significantly outperform SurfReg. On the contrary, ProRegNet has managed to 

learn the underlying point matching pattern directly from the point cloud pair and its 

correspondences. Despite of some contour discrepancies between the deformed MR shape 

and TRUS shape, the ProRegNet generated the best cyst matching among the three methods. 

Therefore, we claim that it is sometimes necessary to tolerate certain level of prostate 

surface mismatch and preserve the underlying biomechanical constraints, given possible 

inaccurate local contours. Similar concept was found in Khallaghi et al.’s work (Khallaghi et 
al., 2015a), where the authors proposed to use statistical shape models to account for 

prostate contour inaccuracies for consistent surface registration.

Strain tensor images were obtained from the predicted DVF. JD, Exx, Eyy and Ezz images 

were calculated from the strain tensor images to evaluate the physical fidelity of the 

predicted DVF. JD of the predicted DVF calculated by Eq. 13 represents the volumetric 

strain. JD value greater than one means volumetric expansion while JD value less than one 

means volumetric shrinkage. Negative JD value means deformation singularity, indicating 

‘folding’ in the DVF. Fig. 10 shows that the ranges of JD are all positive, which means the 

predicted DVF is free from singularities for all three methods. Since SurfReg enforced 

strong surface matching, SurfReg was more likely to generate inaccurate JD near the 

surface, as evidenced by the arrows in Fig. 10. Though trained using the ground truth DVF, 

CnnReg generated JD images that were not smooth enough near the prostate surface. In 

comparison, ProRegNet generated JD images that were in best agreement to the ground 

truth. To evaluate the JD error quantitatively, we calculated the mean absolute error between 
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the ground truth and the predicted JD within the prostate mask for all three methods. Results 

were reported in Table 2. The proposed ProRegNet had the smallest mean and standard 

deviation error for JD, Exx, Eyy and Ezz. P-values were calculated using two-sample t-test for 

(ProRegNet, SurfReg) and (ProRegNet, CnnReg). P-values show that the improvement of 

ProRegNet over SurfReg was statistically significant for JD, Eyy and Ezz. However, the 

improvement of ProRegNet over CnnReg was statistically significant for only Ezz. This 

could be explained by the fact that both the ProRegNet and CnnReg were trained using the 

ground truth DVF, resulting in statistically insignificant differences for JD, Exx and Eyy. 

Nevertheless, Fig. 10 suggests that the CnnReg had significant JD error, especially outside 

the prostate mask, which was not included in the JD error calculation in Table 2.

Fig. 11 shows one example slice before and after registration for all three methods. Fig.11 

(A2–A4) shows the deformed MR, with the TRUS contours shown in blue and deformed 

MR contours shown in red. Fig.11 (B2–B4) shows the absolute JD error with same TRUS 

contours shown in blue. We have found out that the SurfReg sometimes generated 

unrealistically deformed MR image after registration, such as Fig.11(A2). This phenomenon 

was more likely to happen near the prostate surface for patients whose prostate has 

undergone significant shape changes during TRUS. Such phenomenon did not occur for any 

patient using ProRegNet. Indicated by the arrows in Fig.11 (A3), there may be large contour 

shape discrepancies after registration for CnnReg. We aligned the JD error image vertically 

with the deformed MR images to analyze the correlation. As indicated by the arrows, poor 

registration results occurred at locations where JD errors were large. Fig. 11 (B4) shows that 

JD error was minimal for ProRegNet. Fig.11 demonstrated that the biomechanical 

constraints learnt by ProRegNet was effective in regularizing the deformation prediction.

Besides the numerical evaluations, qualitative assessments of registration uncertainties were 

also performed by one experienced medical physicist with more than 10 years of experience 

on MR-TRUS fusion. To assess the uncertain levels of registration results, we have followed 

the guidelines recommended by AAPM Task Group 132 (Brock et al., 2017), which defines 

uncertainty level of 0 to 4 as ‘whole scan aligned’, ‘locally aligned’, ‘usable with risk of 

deformation’, ‘usable for diagnosis only’, ‘alignment not acceptable’, respectively. Fig. 12 

shows the grouped bar plot of the uncertainty levels for all three methods. The mean 

uncertainty levels were 2.08, 2.04 and 1.50 for SurfReg, CnnReg and ProRegNet, 

respectively. The unacceptable cases were caused by large prostate shape discrepancies at 

regions such as lateral prostate, prostate apex and base, resulting in unrealistically stretched 

or compressed prostate.

4.2 Robustness of ProRegNet to Inaccurate Segmentation

In practice, the prostate shapes might be corrupted due to inaccurate segmentations. We 

studied the robustness of ProRegNet to inaccurate segmentations and meshing perturbations 

by adding random noise to the locations of the points in both MR and TRUS point cloud. 

The original point clouds were perturbed by adding noise with four levels of amplitude on 

selected points with five percentages. The four spatial noise amplitude levels were [−2.5, 

2.5], [−5.0, 5.0], [−7.5, 7.5] and [−10.0, 10.0] mm with random uniform distribution. The 

five percentages were 20%, 40%, 60%, 80% and 100%. Experiments of registration were 
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conducted on these noisy prostate shapes. TRE was calculated using the same landmarks 

and reported in Table 3. It can be observed from Table 3 that the TRE generally increased 

from 1.51mm to 1.97mm as the noise level increased from 2.5mm on 20% points to 10mm 

on 100% points.

To further study the statistical significance of the TRE results between using original shapes 

and using noisy shapes, we calculated the p-values using two-sample t-test. The p-values 

were shown in Table 4. For visual comparison, we plotted noisy shapes with its original 

shapes on both TRUS and MR prostate shapes in Fig. 13. Blue point clouds represent 

original shapes while red point clouds represent noisy shapes. Fig.13 (A1–A4) show TRUS 

prostate shapes with noise amplitude of ±2.5, ±5, ±7.5, ±10 mm on 100% of points, 

respectively. Fig. 13 (B1–B4) show MR prostate shapes with noise amplitude of ±2.5, ±5, 

±7.5, ±10 mm on 100% of points, respectively. Table 4 shows that only shapes of Fig. 13 

(A4 and B4) in Fig. 13 caused the ProRegNet to generate TRE values that were statistically 

significantly different than the original shapes. Both Table 3 and Table 4 demonstrated that 

our ProRegNet was able to perform robustly under severe noisy contamination on the 

original point clouds. One reason for the good robustness to noise is that the point clouds of 

prostate shapes in the training datasets had no specific spatial patterns. The spatial pattern of 

the point clouds could easily be destroyed by the added noise, which would significantly 

degrade the network performance. The robustness of ProRegNet could also be attributed to 

the fact that noise was added uniformed to all the points which did not perturb the overall 

shapes of the prostate much. Nevertheless, this proved that the ProRegNet was able to 

retrieve important shape representative features and discard inaccurate outlier points.

Since the automatically prostate segmentation may have errors, we performed an additional 

experiment to investigate the robustness of our method to such segmentation errors. For the 

ease of evaluation, we have chosen the case in Fig.9 as the experiment subject as the cyst in 

this case is clearly visible. Manual contour was carefully prepared for this patient. MR-

TRUS registration was performed using the manual segmentation and compared to that 

using the automatic segmentation results. In Fig. 14, we can see that there are very minimal 

differences between the registration results. The registration results using manual contours 

appear to be slightly better as judged by the cyst matching indicated by the arrows in Fig. 

14.

5 Discussions

In this study, a novel deep learning-based point cloud matching method was proposed for 

MR-TRUS image registration. Due to the vast appearance difference between MR and 

TRUS images, image intensity-based similarity metrics have very limited success in MR-

TRUS image registration. To bypass the need for an accurate similarity metric, the 

segmented prostate shapes were utilized to drive the registration process. The prostate 

shapes are the reliable features that are available in both MR and TRUS images. However, it 

is difficult to propagate the prostate surface-driven deformation to intraprostatic 

deformation. Intraprostatic deformation was usually calculated from surface-driven 

deformation using interpolation-based models, such as radial basis functions, free-form 

deformations and Gaussian-basis functions. These interpolation-based models may result in 
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implausible interior deformation field due to the lack of intraprostatic control points and 

deformation regularization. To address this issue, we have used volumetric point could with 

many intraprostatic points. The proposed ProRegNet was able to directly consume irregular 

3D point cloud and predict the motion between the MR and TRUS volumetric point clouds 

without iterations. Biomechanical models have been proven to be superior to interpolation-

based models (Khallaghi et al., 2015a; Khallaghi et al., 2015b; van de Ven et al., 2015). 

However, it is impractical to build a patient-specific FE model for every patient who 

underwent TRUS in the operating room given that FE modeling is very time-consuming and 

resource-intensive. Recently, Liang et al. (Liang et al., 2018) published a paper on a first 

attempt to use deep learning as a fast and accurate surrogate for the time-consuming FE 

modeling on aorta stress calculation. Inspired by this work, we proposed to train a deep 

learning network to replace FE modeling that deforms the MR prostate shape to TRUS 

prostate shape. A total of 500 training datasets, 10 datasets per patient, were generated by 

FE modeling of MR-TRUS deformation for 50 patients. The proposed ProRegNet was 

trained to learn the biomechanical constraints that were encoded in the FE-generated point 

correspondence.

It is important to ensure the segmentation accuracy of the prostate for surface-driven 

registrations. Manual contour is too time-consuming to be performed for every patient in 

real time. In addition, human contour is prone to error under time-constraint and fatigue. To 

address this issue, we proposed to use deep learning-based methods for prostate 

segmentation in the first step. The deep learning-based methods could achieve an average 

DSC of 0.86 and 0.92 for MR and TRUS, respectively. To avoid large segmentation errors, 

physicians are encouraged to check and make necessary corrections prior to registration. We 

have found out that the most extreme outlier case in Fig. 6 and Fig. 7 for ProRegNet was 

from the same patient. To further analyze the cause, we plotted the prostate shapes of this 

outlier case in Fig. 15 (B1 and B2). For comparison purpose, another case with good 

registration accuracy was shown in Fig. 15 (A1 and A2). The cause of the outlier could be 

two-fold, 1) the large shape discrepancy could be caused by segmentation inaccuracies, 

especially at the apex and base slices along the transverse axis. Though the prostate 

boundary is usually more visible in MR than TRUS, MR prostate segmentation is prone to 

error because MR usually has a large slice thickness. The large slice thickness would 

introduce errors especially at the apex and base of the prostate since the prostate may end 

between slices. To avoid such an outlier, we could ask physicians to check the contours and 

make necessary corrections quickly prior to registration; 2) the prostate shape in TRUS has 

undergone large deformation compared to MR, leading to significant prostate shape 

difference. The small training datasets could not cover this extreme case, resulting in poor 

generalization to this extreme case. We could collect more datasets to include such cases 

into the training datasets in the future.

In this study, we utilized nodal displacement boundary conditions instead of US probe-

prostate interaction modeling to drive the prostate deformation. The US probe-prostate 

interaction modelling may be advantageous at modelling the actual US imaging process. 

However, it is very difficult to accurately define other FE boundary conditions that require 

not only precise surrounding organs modelling such as shapes, stiffnesses but also proper 

interactions handling between them such as nodal coupling, friction or frictionless sliding. In 
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addition, the level of elastic support the prostate gets from its surrounding tissues directly 

affects how much rigid translation the prostate could undergo when the prostate is pressed 

by the US probe. More importantly, the FE simulation driven by different US probe-prostate 

tissue interactions could hardly deform the MR prostate in a way that exactly replicate the 

prostate shape of the US. This is undesired in our study since our goal is to replicate the 

prostate shape correspondence between MR and US, before and amid the US imaging, so 

that we can predict the prostate motion from the two shapes. On the contrary, nodal 

displacement boundary condition could ensure that the FE-deformed MR prostate shape 

matches that of the US prostate shape. Being aware that the nodal displacement 

correspondence generated by surface registration could lead to errors in FE simulation, we 

only generated training datasets based on the surface registration method to bootstrap our 

biomechanical modelling and network training. Once the network was trained, one-to-one 

point correspondence was not required to predict the motion vector field of one volumetric 

point cloud to match the other. It was further shown in Fig. 14 that the proposed method is 

tolerable to certain levels of prostate segmentation errors.

We used the sum of volumetric points motion error and surface Chamber distance as loss 

function. The volumetric points motion error which measures the differences between the 

predicted motion and the FE-generated motion enables the network to learn the 

biomechanically constrained motion patterns. The surface Chamber distance encourages the 

network to match prostate shapes at the same time. We have trained another model without 

the surface distance loss to test its importance. The DSC, MSD, HD and TRE for the 

network trained without surface distance loss were 0.93±0.02, 0.97±0.17 mm, 3.40±1.06 

mm and 1.61±0.55 mm, respectively. All four metrics were worse without surface distance 

loss, demonstrating the usefulness of surface distance loss.

One limitation of this study is that only one set of material parameters was used in the FE 

modeling. Hu et al. (Hu et al., 2012) simulated the prostate using a range of parameters. 

Wang et al. (Wang et al., 2016) obtained the prostate material parameter using US shear 

wave elastography. The accuracy of the US elastography needs to be carefully studied before 

its precision can be trusted. All tissues were assumed to behave as isotropic, homogeneous 

and elastic material in both studies, which is another source of error in biomechanical 

modeling. It is difficult to justify the importance of absolute accuracy of patient-specific 

material elasticity given other uncertainties, such as material anisotropy, heterogeneity and 

boundary condition precision. On the other hand, it is reasonable for Wang et al. to measure 

individual material elasticity since they aimed to build a patient-specific model. On the 

contrary, we aimed to build a population-based model using FE. Fu et al. (Fu et al., 2013) 

reported that soft tissue is highly inhomogeneous with nondeterministic material parameters. 

Soft tissue of the same subject could vary across different days. Hence, it is reasonable to 

use the mean prostate elasticity for population-based simulations.

Our method was trained and tested using datasets from brachytherapy which has a similar 

US probe-tissue interaction, US image acquisition and needle/catheter placement orientation 

as perineum biopsy. On the other hand, end-fired biopsy widely used today has different 

processes, which may cause different prostate deformation pattern. Therefore, the proposed 

method may not be readily applicable to end-fired biopsy. The segmentation networks were 
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trained and tested using images from our department. They are likely to generate sub-

optimal segmentation results on images from different commercial systems. In the future, we 

plan to investigate our networks using multi-institutional datasets from different imaging 

systems.

We have investigated our method via comparison with the traditional surface-based methods 

and CNN-based method using eight different metrics. To study the robustness of our method 

to noise, many experiments were conducted with prostate shapes contaminated with 

different level of noise. Though we have investigated our method from different 

perspectives, there are many other experiments that we could conduct to further improve our 

understanding. Currently, we paired only the first step with the subsequent sub-steps of FE 

results to prepare the training datasets. In the future, we will try to pair up any two sub-steps 

of the FE results in the training dataset. In this manner, we could have 2250 training datasets 

instead of the current 450 training datasets, which should increase the network’s ability to 

generalize well on new patients. In addition, the network could learn the point matching as a 

multi-step temporal procedure by pairing up each sub-step with its subsequent sub-step. 

Despite not available across all patients, corresponding anatomical landmarks inside the 

prostate have been demonstrated to be helpful in MR-TRUS image registration. We plan to 

develop an automatic algorithm to detect and establish landmarks correspondences prior to 

registration to further improve the registration accuracy.

6 Conclusions

A novel deep learning-based 3D point cloud matching method was proposed for MR-TRUS 

image registration. Population-based FE models were conducted to simulate prostate 

deformations between MR and TRUS. The FE-generated deformation field was used to train 

the proposed network to apply biomechanical constraint on the 3D point matching. Our 

results demonstrated that the proposed method was able to accurately and rapidly register 

MR and TRUS prostate images for image-guided prostate intervention.
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Highlights

• Volumetric point cloud motion was predicted by network for MR-TRUS 

prostate registration.

• FE-simulated point correspondences were used to model biomechanical 

constraints.

• Surface Chamber distance loss was used to promote prostate shape 

registration.
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Fig. 1. 
Flowchart of the proposed method. The proposed framework consists of three major steps 

which are volumetric point cloud generation, training datasets preparation, network training 

and testing.
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Fig.2. 
A: Prostate meshing in FE model, representing MR prostate, B: Contour of prostate 

displacement magnitude after deformation, representing US prostate.
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Fig. 3. 
ProRegNet aims to predict volumetric point cloud motion from a point cloud pair. Red point 

cloud represents the TRUS prostate shape while blue point cloud represents the MR prostate 

shape. A1 and A2 show the point clouds in axial plane while B1 and B2 show the point 

clouds in sagittal plane.
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Fig. 4. 
Network design of ProRegNet. The network consists of PC conv, PC embedding and PC up-

conv operations. The loss function is a weighted sum of prostate surface PC loss and 

intraprostatic PC loss.
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Fig. 5. 
Network design of CnnReg. The CNN network consists of 12 convolutional layers and 3 

max pooling layers. The loss function contains DVF regularization loss, DVF mean absolute 

error loss and Dice loss.
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Fig.6. 
Boxplots of MSD and HD for SurfReg, CnnReg and ProRegNet. The central mark in the 

boxplot is the median, the top and bottom edges of the box indicate the 75th and 25th 

percentiles, respectively. The dashed line in boxplot extends to the most extreme data points 

that are not outliers. Outliers are shown as red ‘+’ symbol.
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Fig.7. 
Boxplots of DSC and TRE for SurfReg, CnnReg and ProRegNet. The central mark in the 

boxplot is the median, the top and bottom edges of the box indicate the 75th and 25th 

percentiles, respectively. The dashed line in boxplot extends to the most extreme data points 

that are not outliers. Outliers are shown as red ‘+’ symbol.
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Fig.8. 
Example image slices from one case. Results are shown in the transverse, coronal and 

sagittal planes. First column shows the original TRUS and MR images. Second column 

shows the images after rigid registration in checkboard and red-green fusion. Third, fourth 

and fifth columns show the registration results for SurfReg, CnnReg and ProRegNet, 

respectively. Blue dashed contour indicates the TRUS prostate shape while red dashed 

contour indicates MR prostate shape. The cyst within prostate were highlighted by arrows on 

the original images.
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Fig.9. 
Example image slices from another case. Results are shown in the transverse, coronal and 

sagittal planes. First column shows the original TRUS and MR images. Second column 

shows the images after rigid registration in checkboard and red-green fusion. Third, fourth 

and fifth columns show the registration results for SurfReg, CnnReg and ProRegNet, 

respectively. Blue dashed contour indicates the TRUS prostate shape while red dashed 

contour indicates MR prostate shape. The cyst within prostate were highlighted by arrows on 

the original images.
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Fig.10. 
Example slices of JD comparison for SurfReg, CnnReg and ProRegNet from two different 

cases. Red contour indicates the TRUS prostate shape. Arrows indicate high JD errors.
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Fig.11: 
TRUS image. B1: MR image. A2–A4: Deformed MR images after registration by SurfReg, 

CnnReg and ProRegNet, respectively. B2-B4: JD absolute error for SurfReg, CnnReg and 

ProRegNet, respectively. Blue contours indicate the TRUS prostate shapes while the red 

contours indicate MR prostate shapes. Poor registration was observed at regions where JD 

error was large, as indicated by arrows.
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Fig. 12. 
Qualitative expert uncertainty assessments of MR-TURS image registration results.
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Fig.13. 
Point clouds contaminated with different level of noise. Blue point clouds represent original 

shapes while red point clouds represent noisy shapes. A1–A4: TRUS prostate shapes with 

noise amplitude of ±2.5, ±5, ±7.5, ±10 mm on 100% of points, respectively. B1–B4: MR 

prostate shapes with noise amplitude of ±2.5, ±5, ±7.5, ±10 mm on 100% of points, 

respectively.
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Fig. 14. 
A–B: Manual contours and automatic contours on TRUS and MR images, respectively. 

Manual contours are shown in red and automatic contours are shown in blue. C–D: Fused 

images of registration results using manual contours and automatic contours, respectively.
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Fig. 15. 
MR-TRUS prostate shapes before and after ProRegNet registration in the sagittal plane. 

Green shape represents TURS prostate shape while red shape represents MR prostate shape. 

A1–A2: Prostate shapes before and after registration for one good case. B1–B2: Prostate 

shapes before and after registration for the outlier case.
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Table 1.

DSC, MSD, HD and TRE for SurfReg, CnnReg and ProRegNet. Values: Mean±Std

DSC MSD (mm) HD (mm) TRE (mm)

SurfReg (1) 0.98±0.01 0.58±0.04 1.86±1.24 2.70±1.15

CnnReg (2) 0.96±0.03 0.73±0.19 2.51±1.21 2.48±1.05

ProRegNet (3) 0.94±0.02 0.90±0.23 2.96±1.00 1.57±0.77

p-value (1 vs. 3) 0.11 0.02 0.09 0.005

p-value (2 vs. 3) <0.001 <0.001 <0.001 0.002
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Table 2.

Mean absolute error between the ground truth and prediction for Jacobian determinant, normal strain in the x, 

y, z directions. Values: Mean±Std.

JD Exx Eyy Ezz

SurfReg (1) 0.18±0.04 0.10±0.02 0.12±0.03 0.10±0.02

CnnReg (2) 0.17±0.05 0.10±0.01 0.10±0.02 0.12±0.04

ProRegNet (3) 0.14±0.02 0.09±0.01 0.09±0.01 0.09±0.01

p-value (1 vs 3) 0.01 0.05 0.01 0.01

p-value (2 vs 3) 0.09 0.14 0.19 0.02
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Table 3.

Noise sensitivity of ProRegNet in terms of TRE in mm. Values: Mean±Std. Statistical significance is indicated 

in bold.

Noise Amplitude (mm) Point Percentage

20% 40% 60% 80% 100%

[−2.5,2.5] 1.51±0.62 1.54±0.59 1.53±0.65 1.55±0.59 1.53±0.58

[−5,5] 1.54±0.56 1.53±0.59 1.57±0.56 1.55±0.60 1.57±0.59

[−7.5,7.5] 1.65±0.61 1.69±0.62 1.67±0.57 1.70±0.63 1.73±0.66

[−10,10] 1.74±0.58 1.79±0.65 1.87±0.60 1.94±0.77 1.97±0.79
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Table 4.

P-values between TREs calculated using original shapes and TREs calculated using noisy shapes. Statistical 

significance is indicated in bold.

Noise Amplitude (mm) Point Percentage

20% 40% 60% 80% 100%

[−2.5,2.5] 0.91 0.78 0.84 0.71 0.84

[−5.0,5.0] 0.78 0.81 0.58 0.72 0.60

[−7.5,7.5] 0.29 0.18 0.21 0.18 0.12

[−10.0,10.0] 0.09 0.05 0.01 0.01 0.01
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