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Abstract

We consider machine-learning-based thyroid-malignancy prediction from cytopathology whole-

slide images (WSI). Multiple instance learning (MIL) approaches, typically used for the analysis 

of WSIs, divide the image (bag) into patches (instances), which are used to predict a single bag-

level label. These approaches perform poorly in cytopathology slides due to a unique bag 

structure: sparsely located informative instances with varying characteristics of abnormality. We 

address these challenges by considering multiple types of labels: bag-level malignancy and 

ordered diagnostic scores, as well as instance-level informativeness and abnormality labels. We 

study their contribution beyond the MIL setting by proposing a maximum likelihood estimation 

(MLE) framework, from which we derive a two-stage deep-learning-based algorithm. The 

algorithm identifies informative instances and assigns them local malignancy scores that are 

incorporated into a global malignancy prediction. We derive a lower bound of the MLE, leading to 

an improved training strategy based on weak supervision, that we motivate through statistical 

analysis. The lower bound further allows us to extend the proposed algorithm to simultaneously 

predict multiple bag and instance-level labels from a single output of a neural network. 

Experimental results demonstrate that the proposed algorithm provides competitive performance 

*Corresponding author: david.dov@duke.edu (David Dov).
Credit Author Statement
David Dov: Conceptualization, Investigation, Methodology, Software, Writing
Shahar Z. Kovalsky: Conceptualization, Visualization, Data Curation, Writing
Serge Assaad: Methodology, Writing
Jonathan Cohen: Conceptualization, Data Curation, Project administration
Danielle Elliott Range: Conceptualization, Data Curation
Avani A. Pendse: Data Curation
Ricardo Henao: Conceptualization, Resources
Lawrence Carin: Supervision, Funding acquisition, Resources

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Med Image Anal. Author manuscript; available in PMC 2022 January 01.

Published in final edited form as:
Med Image Anal. 2021 January ; 67: 101814. doi:10.1016/j.media.2020.101814.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared to several competing methods, achieves (expert) human-level performance, and allows 

augmentation of human decisions.

Graphical Abstract
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1. Introduction

The prevalence of thyroid cancer is increasing worldwide (Aschebrook-Kilfoy et al., 2013). 

The most important test in the preoperative diagnosis of thyroid malignancy is the analysis 

of a fine needle aspiration biopsy (FNAB), which is stained and smeared onto a glass slide. 

The FNAB sample is examined under an optical microscope by a cytopathologist, who 

determines the risk of malignancy according to various features of follicular (thyroid) cells, 

such as their size, color and the architecture of cell groups. The diagnosis of FNAB, 

however, involves substantial clinical uncertainty and often results in unnecessary surgery.

We consider the prediction of thyroid malignancy from FNAB, for which we have 

established in Dov et al. (2019); Elliott Range et al. (2020) a dataset of 908 samples. Each 

sample comprises a whole slide image (WSI) scanned at a typical resolution of ~ 

40,000×25,000 pixels, as well as the postoperative histopathology diagnosis, that is 

considered the ground truth in this study. The goal in this paper is to predict the ground truth 

malignancy label from the WSIs. Each sample also includes the diagnostic score assigned to 

the slide by a cytopathologist according to the Bethesda System (TBS) (Cibas and Ali, 

2009), which is the universally accepted reporting system for thyroid FNAB (there are six 

TBS categories). TBS 2 indicates a benign slide, TBS 3, 4 and 5 reflect inconclusive 

findings with an increased risk of malignancy, and TBS 6 indicates malignancy. TBS 1 is 

assigned to inadequately prepared slides and is out of the scope of this work. Further, we 

consider a set of 4494 manually annotated local labels of informative image regions 
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containing follicular groups. The local labels indicate three categories of abnormality: “0” - 

normal, “1” - atypical, and “2” malignant.

Machine learning, and in particular deep neural networks, have become prevalent in the 

analysis of WSIs (Ozolek et al., 2014; Litjens et al., 2016; Kraus et al., 2016; 

Sirinukunwattana et al., 2016; Djuric et al., 2017; Ilse et al., 2018; Zhang et al., 2019; 

Campanella et al., 2019; Glass et al., 2020a,b). Due to the large resolution of WSIs, 

gigabytes in size, each image is typically split into a set (bag) of small regions (instances) 

that are processed individually into local estimates, then aggregated into a global image-

level prediction. This approach, often referred to as multiple instance learning (MIL) 

(Quellec et al., 2017), addresses memory-capacity limitations of existing graphical processor 

unit (GPU) computing platforms. Widely used MIL approaches include Zhang et al. (2006) 

and Kraus et al. (2016), which propose to aggregate local predictions via noisy-or or noisy-
and pooling functions, respectively. In Ilse et al. (2018) a weighted combination of local 

decisions is proposed, incorporating an attention mechanism to form a global decision.

The vast majority of previous studies consider the analysis of histopathology biopsies, which 

comprise whole tissues covering large regions of the WSI. In contrast, FNABs 

(cytopathology biopsies), as we consider in this paper, contain separate, sparsely located 

groups of follicular cells, which are informative for diagnosis. The diagnosis of the FNABs, 

performed by a trained (cyto-)pathologist, includes the identification of follicular groups 

followed by evaluation of their characteristics. A WSI containing even as few as six 

follicular groups with a size of tens of pixels, which corresponds to less than 0.01% of the 

area of the slide, is considered sufficient for diagnosis. FNABs are considered significantly 

more challenging for diagnosis by pathologists due to their sparsity, and since in many cases, 

the characteristics of individual follicular groups are subject to subjective interpretation. An 

example of a large image region of 10000×5000 pixels containing merely a single follicular 

group, as well as examples of follicular groups with different abnormality levels, are 

presented in Fig. 1. Due to these challenges, the automated analysis of FNAB is addressed in 

the literature in a limited scale and scope. Specifically for thyroid FNAB, Daskalakis et al. 

(2008); Varlatzidou et al. (2011); Gopinath and Shanthi (2013); Kim et al. (2016); Gilshtein 

et al. (2017); Savala et al. (2018); Sanyal et al. (2018) consider manually selected individual 

follicular cells in extreme magnification or a small number of “zoomed-in” regions. 

However, these studies do not address the problem of intervention-free malignancy 

prediction from cytopathology WSIs.

The paper Cheplygina et al. (2019) surveyed MIL, semi- and weakly-supervised learning 

approaches. These scenarios consider classification tasks with different assumptions on the 

availability of training labels: in MIL, only global labels are available at the bag (WSI) level, 

while in semi/weakly supervised setting local labels at the instance (image region) are only 

partially available or are noisy(Zhou, 2018). Cheplygina et al. (2019) pointed out three gaps 

in the existing literature of medical image analysis associated with these scenarios. In the 

following, we address these gaps in the context of thyroid malignancy prediction. First, 

Cheplygina et al. (2019) claim that MIL, semi- and weakly-supervised learning are typically 

studied as separate problems, despite the close relation between them. Here, we investigate 

how only a few local, instance-level, labels can improve prediction beyond the classical MIL 
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setting, where only a global label at the WSI/bag level is available. This is important in 

medical applications, where the collection of local labels requires significant manual effort, 

raising the question of what kind of labels to collect and what is the expertise required for 

their collection. For example, a non-expert could identify informative instances containing 

groups of follicular cells, while only a cytopathologist expert can determine the level of their 

abnormality (normal/atypical/malignant). In this context, we note the closely related task of 

region-of-interest detection, studied extensively for object detection (Uijlings et al., 2013; 

Girshick et al., 2014; Girshick, 2015; Ren et al., 2017). However, here we are not strictly 

concerned with the accurate estimation of bounding boxes of individual instances, a difficult 

challenge in the case of cytopathology, as our goal is to predict the global per-slide label.

The second gap is related to the structure of the bag in MIL in terms of the prevalence of 
positive instances (PPI) in a bag, which is typically not taken into account. The classical 

definition of MIL assumes at least one positive instance in a positive bag, while Kraus et al. 

(2016), for example, assume a certain number of positive instances triggering a global 

positive label. In our context, PPI measures the fraction of the positive instances (in a 

positive WSI), i.e., those containing follicular groups with clear characteristic of 

malignancy. In contrast, a positive bag also contains non-malignant follicular groups, as well 

as uninformative instances. The uninformative instances constitute the vast majority of the 

scan, mainly containing red blood cells, considered in our case as background. This forms a 

unique bag structure of low PPI. On the other hand, once background instances are filtered 

out, as we propose in our approach, the bags composed of only informative instances have a 

high PPI structure; namely, the follicular groups are consistent in their indication of 

malignancy to a certain level, which we explore in this paper.

The third gap is the question of how to use multiple labels for improving classification. To 

this end, we consider the joint prediction of the malignancy labels, the TBS categories, and 

the local abnormality labels. Since both TBS categories and the local labels correspond to 

the increasing probability of malignancy, we consider their joint prediction using ordinal 

regression (Gutierrez et al., 2016; McCullagh, 1980; Agresti, 2003; Dorado-Moreno et al., 

2012). The joint prediction is motivated by the observation that the local labels, as well as 

TBS categories, are a consistent proxy for the probability of malignancy (Jing et al., 2012; 

Pathak et al., 2014), and so their joint prediction induces cross-regularization.

This paper extends a previous conference publication Dov et al. (2019), where we presented 

an algorithm that provides predictions of thyroid malignancy comparable to those of 

cytopathology experts (we compared to three such experts). In Dov et al. (2019), we focused 

on a more thorough description of the clinical problem we address and provided complete 

details on the dataset and its acquisition. This paper focuses on the detailed derivation and 

the analysis of the proposed algorithm. Novel contributions, which go beyond Dov et al. 

(2019), include: We propose a maximum likelihood estimation (MLE) framework for 

classification in the mixed setting, where multiple global and local labels are available for 

training. While in classical MIL, informative instances are implicitly identified, the MLE 

framework allows explicit identification of them using the local labels, which we show to be 

especially useful in the low-PPI setting. We further derive a lower bound of the MLE, which 

corresponds to a weakly supervised training strategy, in which the global labels are 
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propagated to the instance level and used as noisy local labels. Statistical analysis and 

experiments on synthetic data show that this training strategy is particularly useful for high-

PPI bags obtained by filtering out the background instances. From the lower bound of the 

MLE, we derive the algorithm for malignancy prediction, that is based on deep-learning and 

comprises two stages. The algorithm identifies instances containing groups of follicular cells 

and incorporates local decisions based on the informative regions into the global slide-level 

prediction. The lower bound of the MLE further allows us to investigate the simultaneous 

prediction of the global malignancy and the TBS category scores, as well as the local 

abnormality scores. Specifically, using ordinal regression, we extend our framework to 

jointly predict these labels from a single output of a neural network. Extensive cross-

validation experiments comparing the proposed approach to competing methods, as well as 

ablation experiments, demonstrate the competitive performance of the proposed algorithm. 

We further show that the proposed ordinal regression approach allows application of the 

proposed algorithm to augment cytopathologist decisions.

2. Problem formulation

Let X = {Xl} be a set of WSIs, where Xl = {xl,m} is the set of Ml instances in the lth WSI. 

The mth instance xl, m ∈ ℝw × ℎ × 3 is a patch from an RGB digital scan, whose width and 

height are w and h, respectively. Let Y = {Y l} be the corresponding set of malignancy labels: 

Yl ∈ {0,1}, where 0 and 1 correspond to benign and malignant cases, respectively. The goal 

is to predict thyroid malignancy Y l. Similar to Y , consider the set S = {Sl}, where Sl ∈ 

{2,3,4,5,6} is the TBS category assigned to a WSI by a pathologist.

We consider an additional set of local labels U = {Ul}, where Ul = {ul,m} and ul,m ∈ {0,1}. 

ul,m = 1 if instance xl,m contains a group of follicular cells, and ul,m = 0 otherwise. Our 

dataset includes 4494 such informative instances, manually selected (by a trained 

pathologist) from 142 WSIs. These local labels are exploited in the proposed framework for 

the improved identification of the informative instances. The instances containing follicular 

groups are further labeled according to their abnormality, forming the set V = {vl, m}, vl,m ∈ 

{0,1,2} (normal, atypical and malignant). While in the classical MIL setting, only the set of 

binary malignancy labels Y  is available, we explore in this paper the contribution of the 

additional label sets S, U and V  for the improved prediction of thyroid malignancy.

3. Proposed framework for thyroid malignancy prediction

3.1. MLE formulation

Let ℒ be the likelihood over the dataset given by:

ℒ ≜ P (X, Y , U) = ∏
l

P (Y l Xl, Ul)P (Ul Xl)P (Xl), (1)

where for simplicity we only consider at this point the sets of labels Y , U. We drop the right 

most term by assuming a uniform distribution over the WSIs, and further assume the 

following conditional distribution on the label Yl:
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Y l Xl, Ul ∼ Bernoulli 1
M ∑

m
σ(gθ(xl, m))ul, m , (2)

where gθ(xl, m) ∈ ℝ is the output of a neural network with parameters θ,σ(⋅) is the sigmoid 

function, and M ≜ ∑mul, m (note M ⪡ Ml). This statistical model suggests the estimation of 

Yl from an average of local, instance-level estimates gθ(xl,m), weighted by ulm according to 

the level of their informativeness. We note that the true labels ul,m are available only for a 

small subset of instances. Therefore, ul,m in (2) and throughout the paper, refers to estimates 

of these labels unless otherwise noted. In addition, we consider ul,m as binary variables for 

simplicity, and note that our framework can be extended to continuous variables as well. We 

further analyze (2) in Subsection 3.2. Substituting (2) into (1) leads to the following log 

likelihood expression, the derivation of which is presented in Appendix 1:

log ℒ = Σl Y l log 1
M

Σm σ(gθ(xl, m))ul, m

+ (1 − Y l) log 1 − 1
M

Σm σ(gθ(xl, m))ul, m

+ Σm log P (ul, m xl, m) .

(3)

Maximizing the first two terms on the right hand side of (3) is equivalent to minimizing the 

binary cross entropy (BCE) loss in the MIL setting. For example, the average pooling 

method is obtained by setting ul,m = const, and the noisy-or algorithm (Zhang et al., 2006) is 

obtained by setting ul,m = 0 for all instances except the one providing the highest prediction 

value.

In fact, one can obtain a more general form of MIL classifier by considering a more general 

form of (2): Yl|Xl, Ul ~ Bernoulli(h(∑m g(xl,m)ul,m)), where ℎ( ⋅ ) ∈ ℝ and g( ⋅ ) ∈ ℝD. This 

follows from Zaheer et al. (2017); Ilse et al. (2018), who showed that any function invariant 

to the order of the instances, i.e., the MIL classifier in our case, can be decomposed into the 

form h(∑m g(xl,m)ul,m) with a particular selection of h, g. The attention mechanism of Ilse et 

al. (2018), for example, explicitly identifies informative instances, ul,m, in a data-driven 

manner. Hou et al. (2016) proposed an EM-based iterative algorithm for MIL by 

heuristically estimating ul,m in the last term of (3) from instance level malignancy 

predictions. We show in Section 4 that classical MIL algorithms, in which selection of 

informative instances is implicit, completely fail to predict malignancy due to the low PPI of 

FNABs, which mostly comprise irrelevant background instances.

Equation (3) is more general than the classical MIL setting, as it also allows use of the local 

labels to estimate the informativeness of the instances. To that end, we propose to greedily 

maximize (3) in two steps: we use another neural network, denoted by rϕ(⋅), trained using 

the last term of (3) and the local labels to estimate the informativeness of instances ul,m (see 

details in Subsection 3.4), and predict slide-level malignancy from the informative instances. 

Once trained, the network for the identification of informative instances rϕ(⋅) is applied to 

the WSIs, and the estimated weights ul,m are set to 1 for the M most informative instances, 

and zero otherwise; hence the definition M ≜ ∑mul, m in (2) holds. We fix M = 1000
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instances, a value that balances the tradeoff between having a sufficient amount of training 

data to predict malignancy and using instances that with high probability are informative.

Once the informative instances are identified, we turn to the prediction of malignancy from 

the first two terms in (3). Since Σmul, m M = 1, we can write:

log ℒ = Σl Y l log Σm σ(gθ(xl, m))ul, m
M

+ (1 − Y l) log Σm
ul, m
M (1 − σ(gθ(xl, m)))

+ Σm log P (ul, m xl, m) .

(4)

Using Jensen’s inequality, we get the lower bound:

log ℒ ≥ Σl, m
ul, m
M [Y l log (σ(gθ(xl, m)))

+ (1 − Y l) log (1 − σ(gθ(xl, m)))]
+ log P (ul, m xl, m)
≜ log ℒY + Σl, m log P (ul, m xl, m) .

(5)

Recalling that ul,m are binary, the term −log ℒY  is the BCE loss calculated using only the 

informative instances. The lower bound implies the global labels {Yl} are assumed to hold 

locally, i.e., separately for each instance. We propose to train the neural network gθ(⋅) 
according to (5), and consider {gθ (xl,m)} as local, instance-level, predictions of thyroid 

malignancy, which are averaged into a global slide-level prediction:

fθ(Xl) = 1
M ∑

m
gθ(xl, m)ul, m, (6)

where high values of fθ (Xl) correspond to high probability of malignancy. Accordingly, the 

predicted slide-level thyroid malignancy Y l is given by:

Y l =
1; if fθ(Xl) > β
0; else

, (7)

where β is a threshold value.

3.2. Analysis of the lower bound in the high-PPI setting

The extent to which the assumption that the global label holds locally and separately for 

each instance, which stems from (5), is directly related to the bag structure. This assumption 

holds perfectly in the extreme case of PPI = 1, i.e., that all instances are malignant in a 

malignant WSI and all of them are benign in a benign WSI. Yet, PPI smaller than 1 

corresponds to a weakly supervised setting where instances are paired with noisy labels. 

Experimental studies, such as the those presented in Alpaydin et al. (2015); Rolnick et al. 

(2017), previously reported on the robustness of neural networks to such label noise. In this 

subsection, we analyze the utility of the lower bound in (5), (6) and (7) for MIL in the high 
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PPI setting. We note that the PPI of the bags is indeed high once the uninformative labels 

were filtered out, as we show by the analysis of the abnormality labels vl,m} in Section 4.

A common practice in binary classification is to predict the conditional class probability 

P(Yl = 1|Xl). Specifically, in standard (single-instance) classification P(Yl = 1|Xl) is 

predicted, for example, from an output of a neural network trained with BCE loss. For 

simplicity, we analyze logit (Yl = 1|Xl), where logit( ⋅ ) ≜ log P ( ⋅ )
1 − P ( ⋅ ) , rather than P(Yl = 1|

Xl). The following proposition shows that fθ (Xl) in (6) is related directly to logit (Yl = 1|

xl,m).

Proposition 1. The estimate of logit(Yl = 1|Xl) is given by a linear function of fθ (Xl):

logit(Y l = 1 Xl) = Mfθ(Xl) + C, (8)

where C is a constant and M is the number of the informative instances.

Proposition 1 implies that making a prediction according to (7) by comparing fθ (Xl) to a 

threshold value β is equivalent to comparing the estimated logit function to the threshold 

γ ≜ Mβ + C. The proof is provided in Appendix 2. We further note that the logit function is 

directly related to the likelihood ratio test. Using Bayes rule: logit(Yl = 1|Xl) = log Λ + P(Y 
= 0)/P(Y = 1), where Λ is the likelihood ratio defined as Λ ≜ P(Xl|Yl = 1)/P(Xl|Yl = 0). This 

implies that thresholding fθ (Xl) is equivalent to applying the likelihood ratio test, widely 

used for hypothesis testing (Casella and Berger, 2002).

Proposition 1 provides further insight into the training strategy suggested in (5). An implicit 

assumption made in the proof is that σ (gθ (xl,m)) estimates the probability P(Yl = 1|xl,m) of 

the slide being malignant given a single instance xm; a similar assumption is made in the 

derivation of the noisy-and MIL in Kraus et al. (2016). Proposition 1 therefore implies that 

fθ (Xl) predicts well the likelihood ratio provided that gθ (xl,m) is a good estimate of P(Yl = 

1|xl,m). Equation (5) indeed suggests to directly predict the global label from each instance 

separately. The higher the PPI is, the lower is the noise level in the the labels used to predict 

P (Yl = 1|xl,m) and, according to the proposition, the better is the global prediction of P (Yl = 

1|Xl). This comes in contrast to (3) and, specifically, to classical MIL approaches, wherein 

the network is optimized to predict the global label from the multiple instances, and there is 

no guarantee on the quality of predictions of individual instances.

3.3. Simultaneous prediction of multiple global and local label

We now consider prediction of the TBS categories S and the local abnormality scores V
using the likelihood over the full dataset P (X, Y , U, S, V). To make the computation of the 

likelihood tractable, we assume that P (Y ∣ X, U), P (S ∣ X, U) and P (V ∣ X, U) are independent. 

The straightforward approach under this assumption is to extend (3) and (5) by adding two 

cross entropy loss terms to predict the labels S and V , which leads to a standard multi-label 

scenario. However, this does not encode the strong relation between Y , S and V , in the sense 

that all indicate various abnormality (malignancy) levels. We therefore propose to encode 

these relations into the architecture of the neural network gθ(⋅). Specifically, we take 
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advantage of the ordinal nature of S and V , where higher values of the labels indicate a 

higher probability of malignancy, and propose an ordinal regression framework to predict all 

three types of labels from a single output of the network. In what follows, we consider for 

simplicity only the prediction of the global TBS category S. Extending the framework to 

predict the local labels V  is straightforward, as our lower bound formulation in (5) treats 

local and global labels in the same manner.

Similar to (7), we propose to predict the TBS category by comparing the output of the 

network fθ(Xl) to threshold values β0 < β1 < β2 < β3 ∈ ℝ. Recall that the TBS category takes 

an integer value between 2 and 6, yielding:

Sl =
2; if fθ(Xl) < β0

n + 2; if βn − 1 < fθ(Xl) < βn, n ∈ [1, 2, 3]
6; if fθ(Xl) > β3

. (9)

The proposed framework for ordinal regression is inspired by the proportional odds model, 

also termed the cumulative link model (McCullagh, 1980; Dorado-Moreno et al., 2012). The 

original model suggests a relationship between fθ (Xl), the threshold βn and the cumulative 

probability P (Sl − 2 ≤ n), i.e.,

logit (Sl − 2 ≤ n) = βn − fθ(Xl) . (10)

The proportional odds model imposes order between different TBS by linking them to fθ 
(Xl) so that higher values of fθ (Xl) correspond to higher TBS categories. Recalling that the 

logit function is a monotone mapping of a probability function into the real line, values of fθ 
(Xl) that are significantly smaller than βn correspond to high probability that the TBS 

category is smaller than n + 2.

We deviate from McCullagh (1980); Dorado-Moreno et al. (2012) by estimating P (Sl − 2 > 

n) rather than P (Sl − 2 ≤ n), which gives (derivation presented in Appendix 3):

P (Sl − 2 > n) = 1
1 + exp[−(fθ(Xl) − βn)] . (11)

We note that this deviation is not necessary for the prediction of TBS, yet it allows 

combining the predictions of the thyroid malignancy and the TBS category in an elegant and 

interpretable manner. We observe that the right term in the last equation is the sigmoid 

function σ(fθ (Xl) − βn). Accordingly, we can train the network to predict P (Sl − 2 > l) 
according to:

log ℒS ≜ ∑
l, m

ul, m ∑
n = 0

3
Sl

n log [σ(gθ(xl, m) − βn)]

+ (1 − Sl
n) log [1 − σ(gθ(xl, m) − βn)],

(12)

where Sl
n = 1(Sl − 2 > n) and 1( ⋅ ) is the indicator function. Specifically, maximizing log ℒS

is equivalent to minimizing 4 BCE loss terms with the labels Sl
n, n ∈ (0,1,2,3), whose 
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explicit relation to TBS is presented in Table 5 in the Appendix. The use of gθ (xl,m) in (12), 

instead of the more natural choice of fθ (Xl), is enabled by the lower bound in (5). The lower 

bound also allows us to extend this framework to predict the local abnormality score, which 

we denote by log ℒV, similar to (12) by considering two additional thresholds, γ0, γ1 and 

two corresponding BCE loss terms.

For the simultaneous prediction of thyroid malignancy, TBS category and the local labels, 

the total loss function is given by the sum of (5), (12) and log ℒV. We note the similarity 

between log ℒS in (12) and log ℒY  in (5), a result of our choice to estimate P(Sl − 2 > n) 

rather than P(Sl − 2 ≤ n) and has the following interpretation: log ℒY  can be considered a 

special case of ordinal regression with a single fixed threshold value of 0. The total loss 

function simultaneously optimizes the parameters θ of the network gθ (⋅) according to 7 

classification tasks, corresponding to threshold values {0,β0,β1,β2,β3,γ0,γ1}.

The threshold values {β0,β1,β2,β3} (and {γ0, γ1}) are learned along with the parameters of 

the networks, via stochastic gradient descent. While the training procedure does not 

guarantee the correct order of β0 < β1 < β2 < β3 (Dorado-Moreno et al., 2012), we have 

found in our experiments that this order is indeed preserved.

We note that, in some cases, the term of the loss function corresponding to the prediction of 

malignancy may conflict with that of the TBS category or the local label. For example, 

consider a malignant case (Yl = 1) with TBS category 3 assigned by a pathologist. The term 

of the loss, in this case, which corresponds to TBS penalize high values of fθ (Xl) whereas 

the term corresponding to malignancy encourages them. We therefore interpret the joint 

estimation of TBS category, the local labels, and malignancy as a cross-regularization 

scheme. Given two scans with the same TBS but different final pathology, the network is 

trained to provide higher prediction values for the malignant case. Likewise, in the case of 

two scans with the same pathology but different local labels, the prediction value of the scan 

with the higher abnormality score is expected to be higher. Thus, the network adopts 

properties of the Bethesda system and the abnormality scores, such that the higher the 

prediction value fθ (Xl) the higher is the probability of malignancy. Yet the network is not 

strictly restricted to the Bethesda system and the local labels, so it can learn to provide better 

predictions.

3.4. Identification of the informative instances

We predict the informativeness of the instances using a second neural network rϕ(xl,m), 

optimized according to:

log ℒU ≜ Σl, m ul, m log(σ(rϕ(xl, m)))
+ (1 − ul, m) log (σ(rϕ(xl, m))) ,

(13)

where here {ul,m} is the set of the local labels. The term −log ℒU is the standard BCE loss 

obtained from the last term in (5), assuming ul, m ∣ xl, m~Bernoulli σ(rϕ(xl, m)) . Training the 

network requires sufficiently many labeled examples, the collection of which was done 

manually by an expert pathologist through an exhaustive examination of the slides. To make 
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the labeling effort efficient, the cytopathologist only marked positive examples of instances 

containing follicular groups (ul,m = 1). We further observed in our experiments that instances 

sampled randomly from the whole slide mostly contain background. Therefore, to train the 

network rϕ(xl,m), we assume that ul,m = 0 for all instances in the last equation except those 

manually identified as informative. More specifically, we propose the following design of 

training batches. We use batches comprising an equal number of positive and negative 

examples to overcome the class imbalance. As positive examples, we take follicular groups 

sampled uniformly at random from the set of the labeled instances, i.e., for which ul,m = 1. 

Negative examples are obtained by sampling uniformly at random instances from the whole 

slide. Since in some cases informative instances can be randomly sampled and wrongly 

considered uninformative, the proposed training strategy can be considered weakly 

supervised with noisy negative labels.

To summarize, our complete log likelihood function is:

log ℒtotal ≜ log ℒY + log ℒS + log ℒV + log ℒU, (14)

where log ℒtotal is the lower bound on the full log-likelihood of the probabilistic model we 

assume for X, Y , U, S, V . Note that one can further weight the different likelihood 

components if desired. This however is not considered in the experiments, for simplicity.

4. Experiments

4.1. PPI analysis on synthetic data

In Subsection 4.2, we evaluate the performance of the proposed algorithm of predicting 

thyroid malignancy compared to baseline MIL algorithms, considering the two settings of 

low PPI, when a bag comprises all instances in the WSI, and in the high PPI, after 

background instances were filtered out as a preprocessing step. To better understand the 

effect of the PPI on the performance of the different methods, we experimented with the 

CIFAR10 dataset Krizhevsky et al. (2009), designing a MIL setting where we can 

synthetically control the PPI. In this experiment, we consider each image as an instance and 

group them into bags. A bag is assigned with a positive label if at least one instance is 

positive and the PPI is controlled by setting the proper number of positive and negative 

instances in the bag. In this manner we construct multiple MIL datasets with different PPI 

values and evaluate the performance of the methods for each one of them. Specifically, 

CIFAR10 comprises natural images from 10 classes; we assign a positive label to an 

instance (image) if it belongs to one of 5 arbitrarily chosen classes and a negative label if it 

belongs to the other 5 classes. Each dataset comprises 1000 bags, with 100 instances each. 

The instances are assumed independent and are sampled uniformly at random from the 

original dataset, with equal probability to positive and negative bags. We note that we 

assume independence between the instances to facilitate the simulation, an assumption 

which may not hold in practice as instances from the same slide may be correlated. Given an 

average PPI value of a dataset, we allow slight variation of the PPI in each bag by sampling, 

uniformly at random, bag-level PPI values in the range of 0.8 – 1.2 of the average PPI. For 

each MIL dataset, we train each algorithm for 30 epochs and repeat the experiment 10 times.
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We compare the proposed weakly supervised training strategy derived from the lower bound 

in (5) to the following MIL algorithms: noisy-or MIL, where the global prediction value is 

the highest local prediction, noisy-and MIL Kraus et al. (2016), the attention-based MIL 

algorithm presented in Ilse et al. (2018), and average-pooling MIL obtained by maximizing 

the first two terms of (3) rather than their lower bound. The methods are denoted “NoisyOr,” 

“NoisyAnd,” “AttentionMIL” and “AveragePooling,” respectively. The performance of the 

different algorithms is presented in Fig. 2.

As expected, the performance of the methods is improved with the increase of the PPI since 

there are more positive instances indicating that a bag is positive. Noisy-or MIL provides 

inferior performance compared to the other methods for most PPI values, and only for low 

PPIs it performs comparably. This is because the global decision is based only on a single 

instance, so this approach does not benefit from the multiple positive instances present in the 

slides when the PPI is high. This method was excluded from the following experiments due 

to poor performance.

Noisy-and MIL performs on par with average-pooling, where in both methods equal weights 

are assigned to the different instances. The improved performance obtained by the proposed 

training strategy compared to average-pooling MIL supports the use of the lower bound in 5, 

and the analysis in Section 3.2 implying that a better global prediction is obtained by 

training the network to directly predict the global label from each instance separately. For 

low PPI, the attention-based MIL provides the best performance indicating the advantage of 

using the attention mechanism to properly weight the instances. The proposed training 

strategy performs well for high PPI values, and provides the best performance even for PPI 

values as low as 0.18. This highlights an important advantage of the proposed training 

strategy, that allows prediction of the global label separately from each instance, even in the 

presence of a large amount of label noise.

4.2. Thyroid malignancy prediction

Experimental Setting.—To evaluate the proposed algorithm, we performed a 5-fold 

cross-validation procedure, splitting the 908 scans by 60%, 20%, 20% for training, 

validation, and testing, respectively, such that a test scan is never seen during training. The 

algorithm is trained using a Tesla P100-PCIE GPU with 16 Gb of memory. We use instances 

of size 128 × 128 pixels. This size is large enough to capture large groups of follicular cells 

while allowing the use of sufficiently many instances in each minibatch. Both the network 

for the identification of the informative instances rϕ(⋅) and the network for the prediction of 

malignancy gθ(⋅) are based on the small and the fast converging VGG11 architecture 

Simonyan and Zisserman (2014), details of which are summarized in Table 4. We observed 

in our experiments that the training procedure of rϕ(⋅) converges after a few epochs, so we 

set a stopping criterion to avoid over-fitting. Specifically, we use the average of predictions 

of positive examples, a criterion we find more reasonable than, e.g., the area under the 

(ROC) curve (AUC). The latter takes into account negative examples, the accuracy of which 

we are uncertain since negative examples are randomly sampled from the WSI. We stop the 

training process if this measure does not increase between epochs, which typically occurs 

after 1 to 5 epochs. We use 10 instances per minibatch, a value set arbitrarily and that has a 
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small effect on the performance. The malignancy prediction network gθ(⋅) is trained for 100 

epochs with a minibatch size of 288 instances, which corresponds to the maximum memory 

capacity of the GPU.

Identification of instances containing follicular groups.—We evaluated the 

performance of the network for the identification of informative instances rϕ(⋅) using the 

annotated 142 WSIs, obtaining a test AUC of 0.985. A limitation of this analysis is that 

negative labels were sampled uniformly at random (as in the training procedure). We also 

calculated the average prediction value over the true informative instances, i.e., those 

annotated by the pathologist, and received a test average prediction value of 0.97. Lastly, as 

we show below, the proposed approach leads to a significant improvement in the prediction 

of thyroid malignancy, in turn implying that the informative instances are indeed identified 

properly. In Fig. 3, we present examples of detected informative instances containing 

follicular groups.

We further illustrate in Figs. 4 and 5 a heat map of prediction values and a corresponding 

histogram of informativeness predictions in an example scan. With low prediction values, 

the majority of the instances contain background, as is seen in both figures. Specifically, the 

follicular groups (Fig. 4 top) are highlighted with bright colors in the heat map (Fig. 4 

middle). In Fig. 5, the majority of instances contain background with low prediction values, 

however, the histogram is bimodal, with a second peak in the range of 0.95 to 1. These high 

predictions indeed correspond to instances containing follicular groups, which we select for 

thyroid malignancy prediction. This illustrates the extremely low PPI of FNAB WSIs, where 

only ~ 2% are informative and can be used to determine malignancy. We note that this 

example scan contains a relatively large amount of informative regions, selected for ease of 

presentation. In practice, the amount of informative regions can be as small as 0.01% as 

already stated.

In this context, we note that the number, size and complexity of follicular groups are features 

that may indicate malignancy. Follicular group count alone is not a reliable proxy for 

malignancy. For example, TBS 6 slides tend to have increased numbers of large follicular 

groups. However, malignant slides in lower TBS categories typically have lower counts of 

follicular groups. Moreover, there exists benign cases (e.g., cases known as ‘Follicular 

Adenomas’) which exhibit similar characteristics in which the WSI is typically covered with 

a large number of follicular groups. For that reason, we avoid counting follicular groups.

We further note that we do not consider in this paper the accurate detection of bounding 

boxes Liu et al. (2019) nor pixel-level segmentation of follicular groups, rather just 

classifying instances of constant size as informative or not. The prediction of bounding 

boxes and segmentation could allow for the explicit estimation of the size and the shape of 

follicular groups and have the potential to improve classification performance. Yet, these are 

much more challenging tasks that require a significant amount of annotation effort both for 

training and evaluation data. Specifically, our data set does not include accurate boxes 

around the bounds of the follicular groups, and in many cases, only a part of the group is 

annotated.
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PPI analysis.—While the large number of background instances pose low PPI, filtering 

them out as a preprocessing step significantly changes the PPI in the bag. To shed light on 

the structure of the bag, restricted to the subset of the informative instances, we present in 

Table 1 the distribution of the manually annotated local abnormality scores across the binary 

labels of malignancy and TBS categories. We note that the local abnormality labels were 

collected from an arbitrarily selected WSIs, and the cytopathologist, who was blinded to the 

malignancy and TBS categories of the WSIs, labeled each follicular group independently of 

other groups. In Table 1 top, 80% of the instances in malignant WSIs (Yl = 1) are labeled 

malignant, and most of them originated in TBS 6 slides. This demonstrates the consistency 

between the local and the global labels, i.e., high PPI. Yet the PPI is lower than one: for 

example, the cytopathologist assigned an atypical category to 17% of instances in malignant 

slides implying that they do not contain clear characteristics of malignancy. This 

demonstrates the label noise induced by the use of the lower bound in (5), according to 

which the global labels are propagated to the instance level. Interestingly, as seen in Table 1 

bottom, benign slides include some instances marked malignant (vl,m = 2) by the 

pathologist. This contradicts the classical MIL assumption that in a negative bag all bags are 

negative illustrating the uncertainty in the diagnosis of cytopathology FNABs.

Prediction of thyroid malignancy.—To evaluate the proposed algorithm and the 

contribution of the different label sets in its design, we first consider the prediction of 

thyroid malignancy from the whole slide using only the global labels, and use the baseline 

approaches “NoisyAND (Y , S),” “AttentionMIL (Y , S)” and a standard CNN (“CNN (Y , S)”), 

all of which are trained to simultaneously predict malignancy and the TBS category 

(notations indicate the labels used for training). These baselines are designed originally to 

process whole images, which is not possible in our case due to memory limitations. 

Therefore, we use crops of size 448 × 448 pixels, which allows 10 crops per minibatch, 

subject to memory limitations. These values were selected to optimize performance over the 

validation set. We compare these methods, to a version of the proposed algorithm trained 

according to (5) without the use of the local abnormalities, denoted by “Proposed (U, Y , S).” 

This comparison highlights the contribution of the local label set U for better identification 

of informative instances in the low PPI setting.

Once we applied the network to filter out the uninformative instances, each slide is 

represented by a set of the informative instances only, leading to a high PPI regime. We 

evaluate competing MIL approached in this case also, denoting them “NoisyAND (U, Y , S),” 

“AttentionMIL (U, Y , S)” and “AveragePooling (U, Y , S). These MIL methods are trained to 

predict the global labels (Y , S) from the set of the the informative instances representing each 

slide. We note that there is no straightforward way to incorporate the local abnormality 

labels V  into the competing MIL approaches, since they are designed to use only global, 

slide level labels. We compare these methods to a variant of the proposed method “Proposed 

(U, Y , S)”, which uses the same labels.

In addition, we consider multiple variants of the proposed algorithm, where each uses a 

different combination of the local and the global labels Y , S and V , respectively. Lastly, to 

better understand the advantage of using a single output of gθ(⋅) for the joint prediction of 
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the labels, we consider a version termed “Proposed2Heads (U, Y , S),” in which the network 

has two outputs, one for the prediction malignancy and the other for the prediction of the 

TBS category.

Table 2 summarizes the performance of the algorithms in the form of the area under receiver 

operating characteristic curve (AUC) and the average precision (AP). As can be seen in the 

table, “CNN (Y , S),” “NoisyAND (Y , S)” and “AttentionMIL (Y , S)” achieve markedly 

inferior performance compared to other methods. This is because their decisions are largely 

dominated by irrelevant background data. Specifically, the attention mechanism in 

“AttentionMIL (Y , S)” does not properly identify the informative instances due to low PPI. 

The method “Proposed (U, Y , S)” performs significantly better reflecting the large 

importance of separately identifying the informative instances according to the last term in 

(5) using the local labels.

In the high-PPI MIL setting, where each bag comprises only informative instances, 

“Proposed (U, Y , S)” marginally outperforms the methods “NoisyAND (U, Y , S),” 

“AttentionMIL (U, Y , S)” and “AveragePooling (U, Y , S),” and has among the lowest standard 

deviation. In particular, the higher AUC and AP values of the proposed algorithm, trained 

using the lower bound of the MLE in (5), compared to “AveragePooling (Y , U, S)” devised 

from (3) are consistent with the experiment on synthetic data, as well as our analysis in 

Subsection 3.2, which suggest that better local predictions lead to improved global 

decisions. Moreover, as the analysis suggests, in the high-PPI setting, there is no advantage 

to the sophisticated aggregation of decisions from multiple instances presented in Ilse et al. 

(2018), relative to the simple averaging in (6).

The method “Proposed (U, Y , S)” marginally outperforms all other variants of the proposed 

method including both “Proposed (U, Y )” and “Proposed2Heads (U, Y , S)”. This 

demonstrates the advantage of the proposed framework in the joint prediction of TBS 

categories, along with the binary malignancy labels from a single output of a neural network 

presented in Subsection 3.3. Interestingly, “Proposed (U, Y , S, V)” provides inferior 

performance compared to “Proposed (U, Y , S)”. We trained the method “Proposed 

(U, Y , S, V)” using both the 4,494 manually annotated instances, as well as ~ 545,000 

instances (M = 1000 instances per WSI), for which we considered the global labels as noisy 

local labels. To balance the large difference in the size of these sets and better understand the 

contribution of the local labels, we considered minibatches comprising of 20% instances 

with local annotations. While it is possible to further tune the proportion of the instances 

with the local labels in the minibatches, this experiment suggests that there is no significant 

advantage to further incorporating local abnormalities scores in the proposed framework. 

This further demonstrates how well the network is trained using weak supervision by the 

global labels. This result further provides insight on the role the local labels and on the 

potential effect of inter-reviewer variability in their collection, which in our case was 

performed by a single pathologist. Specifically, we expect a small inter-reviewer variability 

in the identification of the follicular groups, which does not require a special expertise. On 

the other hand, assigning abnormality scores to the follicular groups can be done only by 

expert pathologists, and we do expect variability between reviewers. In the setting of our 
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experiments, and under the constraints we had on collecting expert annotations, the small 

number of 4,494 abnormality labels did not improve the results.

Comparison to human-level performance.—For the comparison of the algorithm to 

human-level performance, we use a subset of 109 slides which were reviewed by 3 expert 

cytopathologists (Experts 1 to 3), who assigned TBS categories, in addition to the TBS 

available in the original medical record (MR TBS). The performance of the proposed 

algorithm (“Proposed (U, Y , S)”) is compared to those of human in Fig. 6, using receiver 

operating characteristic (ROC) and precision-recall (PR) curves. Curves representing the 

performance of the human experts are obtained by considering the TBS categories as 

“human predictions of malignancy” such that TBS categories 2 to 6 correspond to increasing 

probability of thyroid malignancy. The AUC score obtained by the proposed algorithm is 

comparable to those of humans, and the algorithm provides an improved AP score compared 

to the human experts.

Figure 7 further presents a comparison of TBS scores assigned by the algorithm and the 

human experts. High values are obtained at the top-left and right-bottom of the matrix, while 

off-diagonal values decay. This block diagonal structure is exactly what is expected from the 

algorithm rather than, e.g., a diagonal structure. For the indeterminate cases, assigned TBS 3 

to 5 by the experts, the term of the loss function corresponding to final pathology ℒY

encourages the algorithm to deviate from the original TBS, and provide either lower values 

in the benign cases or higher values in the malignant ones. On the other hand, cases assigned 

with TBS 2 and 6 by cytopathologists are benign and malignant, respectively, in more than 

97% of the cases. This high confidence in TBS 2 and 6 cases is similarly encoded in the 

algorithm, as we note that all the cases for which the algorithm predicts TBS 2 or 6 are 

indeed benign or malignant, respectively.

This implies the potential to apply the algorithm for augmenting cytopathologists’ decisions. 

By the joint prediction of TBS and malignancy from a single output of the network, the 

proposed framework allows the grouping of predictions according to increasing probabilities 

of malignancy, using the thresholds {β0,β1,β2,β3} in (12). This allows one to naturally 

combine the human and algorithm decisions according to the following rule: use human or 

the algorithm’s decision if either of them assign TBS 2 or 6. In the case both of them assign 

an indeterminate score of TBS 3 to 5, we consider two variants: 1) use human decision, and 

2) use the algorithm’s decision. Table 3 shows that the combined rule where indeterminate 

decisions are held by the algorithm indeed improves the decisions of all three experts, 

further implying that the algorithm performs beyond human-level in indeterminate cases.

5. Conclusions

We have considered machine-learning-based prediction of thyroid malignancy from 

cytopathology WSIs, in the setting where multiple local and global labels are available for 

training. An MLE formulation has been presented, that extends MIL to this setting, and, 

using a lower bound of the MLE, devised a two-stage algorithm. Inspired by the work of a 

cytopathologist, the algorithm identifies informative instance containing follicular cells, and 

then assigns a reliable slide-level malignancy score, similar to the Bethesda system, where 
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higher values correspond to higher probabilities of malignancy. We showed that the MLE 

framework facilitates the use of local labels for the improved identification of informative 

instances in the low-PPI regime, where most instances are uninformative. In the high-PPI 

setting, after the uninformative instances have been excluded, statistical analysis and 

experiments on both synthetic and cytopathology WSIs data showed the advantage of the 

weakly supervised training strategy induced by the lower bound of the MLE. Experimental 

results further showed that the proposed framework for simultaneous prediction of binary 

malignancy labels and TBS categories does not benefit from the use of the manually 

collected abnormality scores. While a non-expert can manually identify informative 

instances, assigning abnormality scores requires the expertise of an expert cytopathologist 

and is costly and time-consuming. We showed that the proposed algorithm, without using 

these labels, achieves performance comparable to three cytopathologists, and demonstrated 

the application of the algorithm to improve human decisions. The proposed MLE framework 

and the lower bound have two important properties that are general rather than specific to 

thyroid data: the framework decouples the identification and classification of instances, and 

it naturally associates between local and global labels. Our future plans are to apply the 

framework to the diagnosis of prostate cancer, where these properties may be particularly 

useful. First, prostate diagnosis is determined by the classification of prostate glands, so that 

it may be useful first to separate them from the irrelevant background. Moreover, in prostate 

slides there is an explicit relation between the local and global labels: the global diagnostic 

score, termed the Gleason score, is given by the frequency and the severity of the local 

labels.

Appendix 1

By substituting (2) into (1) we get:

ℒ = ∏ l
1

M ∑m(σ(gθ(xl, m))ul, m)
Yl

⋅ 1 − 1
M ∑m(σ(gθ(xl, m))ul, m

1 − Yl

⋅ P (Ul Xl) .

(15)

We take a log from both sides of the equation:

log ℒ = ∑ lY l log 1
M ∑mσ(gθ(xl, m))ul, m

+ (1 − Y l) log 1 − 1
M ∑mσ(gθ(xl, m))ul, m

+ log P (Ul Xl),

(16)

and we get (3) by rewriting the right term by assuming that being an instance informative is 

independent of other instances.

Appendix 2

Proposition 1 The estimate of logit(Yl = 1|Xl) is given by a linear function of fθ (Xl):
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logit(Y l = 1 Xl) = Mfθ(Xl) + C, (17)

where C is a constant and M is the number of the informative instances.

The proof is based on the assumption that the instances xl,m are independent random 

variables. We note that this assumption is used to facilitate the derivation and it might not 

hold in practice for instances taken from the same scan. Yet, we motivate this assumption by 

the large variability between the follicular groups in their size, architecture and the number 

of cells as demonstrated in Fig. 3.

PROOF. From the definition of logit(Yl = 1|Xl), and using the Bayes rule we get:

logit(Y l = 1 Xl) = log P (Y l = 1 Xl)
P (Y l = 0 Xl)

= log P (Xl Y l = 1)
P (Xl Y l = 0) + log P (Y l = 0)

P (Y l = 1) .
(18)

By further using the independence assumption, we have:

logit(Y l = 1 Xl) = ∑
m

log P (xl, m Y l = 1)
P (xl, m Y l = 0) + log P (Y l = 0)

P (Y l = 1) . (19)

Since for the uninformative instances P (xl,m|Yl = 1) = P (xl,m|Yl = 0), the sum in last 

equation is in fact over the M informative instances rather than over the whole set of size M. 

Another application of the the Bayes on the first right term leads to:

logit(Y l = 1 Xl) = Σm log P (Y l = 1 xl, m)P (Y l = 0)
P (Y l = 0 xl, m)P (Y l = 1)

+ log P (Y l = 0)
P (Y l = 1)

= Σm log P (Y l = 1 xl, m)
P (Y l = 0 xl, m) + C

= Σm logit(Y l = 1 xl, m) + C,

(20)
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Table 4.

VGG11 based architecture used for both the first and the second neural networks in the 

proposed algorithm. Each conv2d layer comprises 2D convolutions with the parameters 

kernel_size = 3 and padding = 1. Parameters of the Max-pooling layer: kernel_size = 2, 

stride = 2. The conv2d and the linear layers (except the last one) are followed by batch 

normalization and ReLU. The network is trained using the binary cross entropy (BCE) loss 

via stochastic gradient descent with learning rate 0.001, momentum 0.99 and weight decay 

with decay parameter 10−7.

Feature extraction layers

Layer Number of filters

conv2d 64

Max-pooling(M-P)

conv2d 128

M-P

conv2d 256

conv2d 256

M-P

conv2d 512

conv2d 512

M-P

Classification layers

Layer Output size

Linear 4096

Linear 4096

Linear 1

where: C ≜ (M + 1)log(
P (Yl = 0)
P (Yl = 1) ). According to (5), the last equation is estimated by:

logit(Y l = 1 Xl) = ∑
m

ul, mgθ(xl, m) + C . (21)

Finally, (17) is given by assigning (6) into (21).

Appendix 3

By definition of the logit function and since P (Sl − 2 ≤ n) = 1 − P (Sl − 2 > n) we have:

logit (Sl − 2 > n) = − logit (Sl − 2 ≤ n) . (22)

Further substituting the last equation into (10), gives:

logit (Sl − 2 > n) = − (fθ(Xl) − βn) . (23)
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Last, we rewrite (23) as

P (Sl − 2 > n) = 1
1 + exp [−(fθ(Xl) − βn)] . (24)

Table 5.

Binary labels used in the proposed ordinal regression framework to predict the Bethesda 

score.

Sl
0 Sl

1 Sl
2 Sl

3

Bethesda score

Sl = 2 0 0 0 0

Sl = 3 1 0 0 0

Sl = 4 1 1 0 0

Sl = 5 1 1 1 0

Sl = 6 1 1 1 1
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Highlights

• Machine-learning-based thyroid-malignancy prediction from cytopathology 

whole slides

• Beyond multiple instance learning: incorporating multiple global and local 

labels

• Weakly supervised method derived from a lower bound of a maximum 

likelihood estimator

• Ordinal regression framework for multi-label predictions augments human 

decisions

Dov et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
(Top) Example of a large image region of 10000 × 5000 pixels containing only a single 

group of follicular cells marked by the small rectangle. Top right corner: WSI with a 

rectangle indicating the location of the large image region. Bottom right corner: x10 zoomed 

in image of the informative follicular group. (Bottom) Examples of follicular groups with 

different abnormality levels. From left to right: benign, atypical and malignant.
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Fig. 2. 
Accuracy vs. PPI on CIFAR10 data.
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Fig. 3. 
Instances containing follicular groups. The rows, from top to bottom, correspond to TBS 2 – 

6 categories.
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Fig. 4. 
(Top) Whole-slide cytopathology scan. (Bottom left) Detail of the area marked by the red 

rectangle. (Middle) Heat map of prediction values of the first neural network. Instances 

predicted to contain follicular groups correspond to bright regions. (Bottom right) Detail of 

the are marked by the red rectangle.
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Fig. 5. 
Histogram of predictions for instances taken from a single slide. High prediction values 

correspond to high probabilities that an instance contain follicular groups.
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Fig. 6. 
ROC (Left) and PR (Right) curves comparing the performance of the proposed algorithm 

and human experts in predicting thyroid malignancy. Blue curve - the proposed algorithm. 

Red curve - pathologist from the medical record. Purple, orange and green curves - expert 

cytopathologists 1, 2, and 3, respectively (these three individuals analyzed the same digital 

image considered by the algorithm, and these experts were not the same as the clinicians 

from the medical record).
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Fig. 7. 
Confusion matrix of TBS categories assigned by the proposed algorithm vs. human experts. 

The colors in the plot correspond to a column normalized version of the confusion matrix.
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Table 1.

Distribution of local abnormality labels. (Top) Distribution in malignant slides (Yl = 1). (Bottom) Distribution 

in benign slides (Yl = 0).

Local abnormality labels (vl,m)

Global label Benign (0) Atypical (1) Malignant (2)

Sl = 2 15 (33%) 30 (67%) 0 (0%)

Sl = 3 20 (38%) 32 (62%) 0 (0%)

Sl = 4 0 (0%) 51 34%) 100 (66%)

Sl = 5 4 (6%) 28 (47%) 28 (47%)

Sl = 6 4 (0%) 110 (10%) 1027 (90%)

Total 43 (3%) 251 (17%) 1155 (80%)

Local abnormality labels (vl,m)

Global label Benign (0) Atypical (1) Malignant (2)

Sl = 2 1234 (80%) 328 (20%) 0 (0%)

Sl = 3 281 (40%) 373 (53%) 46 (7%)

Sl = 4 41 (6%) 619 (89%) 38 (5%)

Sl = 5 4 (5%) 74 (95%) 0 (0%)

Sl = 6 0 0 0

Total 1565 (51%) 1396 (46%) 84 (3%)
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Table 2.

Comparison of the performance of the competing algorithms in the form of AUC and AP scores.

Method AUC AP

CNN (Y , S) 0.748 ± 0.035 0.498 ± 0.037

NoisyAND (Y , S) 0.761 ± 0.027 0.538 ± 0.037

AttentionMIL (Y , S) 0.743 ± 0.055 0.486 ± 0.095

NoisyAND (U, Y , S) 0.845 ± 0.016 0.708 ± 0.041

AttentionMIL (U, Y , S) 0.823 ± 0.021 0.643 ± 0.048

AveragePooling (U, Y , S) 0.850 ± 0.025 0.693 ± 0.037

Proposed (U, Y ) 0.858 ± 0.017 0.719 ± 0.029

Proposed (U, S) 0.852 ± 0.024 0.713 ± 0.040

Proposed (U, V ) 0.835 ± 0.024 0.693 ± 0.049

Proposed (U, Y , V ) 0.858 ± 0.014 0.721 ± 0.035

Proposed (U, S, V ) 0.857 ± 0.018 0.733 ± 0.048

Proposed2Heads (U, Y , S) 0.860 ± 0.019 0.711 ± 0.046

Proposed (U, Y , S) 0.870 ± 0.017 0.743 ± 0.037

Proposed (U, Y , S, V ) 0.860 ± 0.024 0.730 ± 0.047
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Table 3.

Combined human and algorithm decisions. Decision rule: use human or algorithm decisions if either of them 

assign TBS 2 or 6. “Combined345Human”: the decision in TBS 3,4,5 cases is made by human. 

“Combined345Alg: the decision in TBS 3,4,5 cases is by the algorithm.

Human Combined345Human Combined345Alg

Expert 1 0.909 0.918 0.925

Expert 2 0.917 0.925 0.929

Expert 3 0.931 0.934 0.937

Human Combined345Human Combined345Alg

Expert 1 0.759 0.784 0.812

Expert 2 0.848 0.867 0.886

Expert 3 0.848 0.864 0.888
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