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Abstract

Radical reactions hold a number of inherent advantages in organic synthesis that may potentially 

impact the planning and practice for construction of organic molecules. However, the control of 

enantioselectivity in radical processes remains one of the longstanding challenges. While 

significant advances have recently been achieved in intramolecular radical reactions, the governing 

of asymmetric induction in intermolecular radical reactions still poses challenging issues. We 

herein report a catalytic approach that is highly effective for controlling enantioselectivity as well 

as reactivity of the intermolecular radical C–H amination of carboxylic acid esters with organic 

azides via Co(II)-based metalloradical catalysis (MRC). The key to the success lies in the catalyst 

development to maximize noncovalent attractive interactions through fine-tuning of the remote 

substituents of the D2-symmetric chiral amidoporphyrin ligand. This noncovalent interaction 

strategy presents a solution that may be generally applicable in controlling reactivity and 

enantioselectivity in intermolecular radical reactions. The Co(II)-catalyzed intermolecular C–H 

amination, which operates under mild conditions with the C–H substrate as the limiting reagent, 

exhibits a broad substrate scope with high chemoselectivity, providing effective access to valuable 

chiral amino acid derivatives with high enantioselectivities. Systematic mechanistic studies shed 

light into the working details of the underlying stepwise radical pathway for the Co(II)-based C–H 

amination.
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INTRODUCTION

Nitrogen-centered radicals have been frequently exploited as reactive intermediates for the 

development of new methods in organic synthesis.1 Among different applications, free 

aminyl radicals have been demonstrated with the potential for the direct functionalization of 

C(sp3)–H bonds to form valuable nitrogen-containing compounds.2 Despite significant 

progress on this potentially powerful synthetic methodology, the control of enantioselectivity 

in regard to radical C–H amination remains a formidable task and largely unaddressed.3 

Among considerable efforts in surmounting this challenge,4 metalloradical catalysis (MRC) 

represents a conceptually new approach that utilizes metalloradical complexes as a new kind 

of catalyst for the generation of metal-supported organic radicals as key intermediates to 

regulate subsequent radical reactions.5–7 To this end, Co(II) complexes of porphyrins, a 

family of stable 15e-metalloradicals, have been shown to homolytically activate organic 

azides to generate α-Co(III)-aminyl radicals, a new type of aminyl radical supported by 

metal complexes.8 With the employment of D2-symmetric chiral amidoporphyrins as the 

supporting ligands, we recently achieved enantioselective intramolecular radical C–H 

amination for stereoselective construction of chiral N-heterocycles.9 These catalytic 

reactions proceed through a stepwise radical pathway that involves metalloradical activation 

of organic azides to generate α-Co(III)-aminyl radical intermediates IA, followed by 

intramolecular H atom abstraction (HAA) to form ω-Co(III)-alkyl radical intermediates IIA, 

and subsequent intramolecular radical substitution (RS) resulting in the formation and 

release of the aminated product (Scheme 1A). In principle, the analogous stepwise radical 

mechanism should also operate for the intermolecular version of the radical C–H amination, 

involving the corresponding intermediates IB and IIB (Scheme 1B). However, there are 

additional challenges inherently associated with the control of reactivity and 

enantioselectivity in the intermolecular radical process. In the absence of the linkage 

between the N-centered radical and C–H bond (as in the case of intermediate IA), 

intermolecular H atom abstraction from the C–H bond of the substrate by α-Co(III)-aminyl 

radical intermediate IB could be complicated by issues with regioselectivity and 

chemoselectivity. Furthermore, without the covalent linkage in the resulting ∞-Co(III)-alkyl 

radical intermediate IIB, the C-centered radical aIIB would be virtually “free” to escape 

from the Co(III)-amido complex bIIB, which would terminate the desired catalytic cycle. 

Consequently, it could lead to side reactions and radical chain processes, resulting in further 

loss of reactivity and selectivity. Moreover, considering that the concentrations of both aIIB 

and bIIB are equally low (not higher than the catalyst concentration), the last step of 

intermolecular radical substitution would be intrinsically difficult as a bimolecular second-

order reaction. Besides the issue of reactivity, the control of enantioselectivity in 

intermolecular radical substitution is a topic virtually unexplored. With “free” 

interconversion between two prochiral faces of typical C-centered radicals, we wondered 

what factors could be exploited to govern the asymmetric induction of C–N bond formation 

via radical substitution between aIIB and bIIB. Encouraged by our recent success in the 

development of enantioselective radical processes for intramolecular C–H amination,9 we 

envisioned that the key to addressing these issues would be the catalyst development to 

maximize noncovalent attractive interactions through fine-tuning of the environments of D2-

symmetric chiral amidoporphyrin ligand. If achieved, intermolecular radical C–H amination 
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via Co(II)-based MRC could potentially provide a generally applicable strategy for 

stereoselective synthesis of chiral amines directly from omnipresent C–H bonds with a wide 

range of organic azides.

Development of catalytic systems for direct functionalization of ubiquitous C(sp3)–H bonds 

with nitrogen sources represents a highly attractive approach for general synthesis of 

valuable amines.10 Despite intensive research efforts, development of enantioselective 

catalytic systems for the synthesis of chiral amines by intermolecular C–H amination is still 

in its infancy. Notable examples include asymmetric amination systems by chiral catalysts 

based on metal complexes of rhodium,11 ruthenium,12 and manganese,13,12b which typically 

proceed via concerted C–H insertion involving electrophilic metallonitrene intermediates. 

Enantioselective intermolecular C–H amination has also been demonstrated with engineered 

iron–heme enzymes14 and rhodium-based catalyst under photoredox conditions.15 While 

they represent significant advances, these catalytic systems experienced limitations such as 

the need for excess C–H substrates, limited substrate scope, or low level of enantiocontrol. 

Evidently, there persists an unmet need of general and efficient catalytic systems for highly 

enantioselective intermolecular C–H amination. In comparison to ionic reactions, radical 

reactions are inherently more reactive and less sensitive to the electronic requirements of 

substrates, characteristics that may lead to the development of more effective catalytic 

systems with a broad substrate scope, including the amination of challenging electron-

deficient C–H bonds. We herein report the first catalytic radical system via Co(II)-MRC for 

enantioselective intermolecular C–H amination. Specifically, we describe the development 

of Co(II)-based metalloradical system that can activate fluoroaryl azides16 for 

enantioselective amination of α-C–H bonds in carboxylic acid esters, a class of electron-

deficient C–H bonds. This new Co(II)-catalyzed C–H amination provides a straightforward 

method for stereoselective synthesis of chiral α-amino acid derivatives directly from widely 

available carboxylic esters. We hope to show the importance of catalyst development in 

achieving effective control of both reactivity and enantioselectivity in this intermolecular 

radical process.

RESULTS AND DISCUSSION

Catalyst Development.

To assess the feasibility of the proposed intermolecular radical process, we first examined 

the α-C(sp3)–H amination reaction of ethyl (4-methoxyphenyl)-acetate (1a) with 4-

trifluoromethyl-2,3,5,6-tetrafluorophenyl azide (2a) by Co(II) complexes of porphyrins 

(Scheme 2A and Table S1). With the use of the first-generation metalloradical catalyst 

[Co(P1)] (P1 = 3,5-DitBu-ChenPhyrin),17 it was gratifying to find that the C–H amination 

reaction could afford the desired α-aryl α-amino acid ester 3aa in high yield (81%) with low 

but significant enantioselectivity (20% ee). Replacing the catalyst by the analogous [Co(P2)] 

(P2 = 2,6-DiMeO-ChenPhyrin), which has methoxy groups at the 2,6-positions instead of 

tert-butyl groups at the 3,5-positions, resulted in some improvement in enantioselectivity 

(32% ee) but led to considerable decrease in reactivity (40% yield). Encouraged by these 

initial results, we then systematically investigated the ligand effect on the reactivity and 

selectivity of the Co(II)-catalyzed reaction. When second-generation metalloradical catalyst 
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[Co(P3)] (P3 = 3,5-DitBu-QingPhyrin),18 which bears cyclopropanecarboxyamides with 

two contiguous stereocenters, was employed, the reaction occurred in a better reactivity 

(62% yield) but with almost no enantioselectivity. However, switching the catalyst [Co(P3)] 

to its analogous [Co(P4)] (P4 = 2,6-DiMeO-QingPhyrin) gave rise to even higher yield 

(85%) and resumed asymmetric induction at a low but significant level (12% ee), indicating 

once again the significant influence of the nonchiral substituents in the ligand on the 

catalytic reaction. To our delight, the use of [Co(P5)] (P5 = 2,6-DiPhO-QingPhyrin), in 

which the methoxy groups were replaced with phenoxy groups at the 2,6-positions, led to a 

significant increase in enantioselectivity (86% ee) without affecting the high reactivity (85% 

yield). Further catalyst development by substituting the O atoms at the 2,6-positions of the 

nonchiral substituents in [Co(P5)] with S atoms led to the development of [Co(P6)] (P6 = 

2,6-DiPhS-QingPhyrin; see the Supporting Information for X-ray structure), which proved 

to be an even more effective catalyst, producing α-amino acid ester 3aa in excellent yield 

(95%) with exceptional enantioselectivity (97% ee). The difference in performance between 

[Co(P6)] and [Co(P5)] demonstrates that even a ligand modification as subtle as heteroatom 

substitution of O atoms by S atoms can give rise to remarkable improvements in both 

reactivity and enantioselectivity, manifesting the effectiveness of catalyst development in 

controlling the radical process. As depicted in the proposed stereochemical model on the 

basis of DFT calculations (Scheme 2B), the effectiveness of [Co(P6)] in controlling 

reactivity and enantioselectivity may be attributed to the cooperative interplay of several 

noncovalent interactions among the two substrates and the catalyst, including multiple H-

bonding and π-stacking interactions as well as van der Waals forces (see Supporting 

Information for details). Together, these attractive weak forces hold the two reacting 

substrates within the catalyst’s pocket in proximity and orient them in proper conformations 

to facilitate the stereoselective C–N bond formation. According to the DFT-optimized 

model, [Co(P6)] catalyzes the preferred formation of product 3aa as (R)-enantiomer over 

(S)-enantiomer, an outcome that is consistent with the experimental observation (see Table 

1). As comparison, intermolecular C–H amination reactions were conducted under the same 

optimized conditions for substrates ethyl-benzene (1A) and N,N-diethyl-2-phenylacetamide 

(1B), which have no and similar H-bonding ability to 1a, respectively (Scheme 2C). While 

the reaction of 1B afforded the corresponding α-aryl α-amino acid amide 3Ba in 91% yield 

with 97% ee, amination of 1A produced the desired α-aminoethylbenzene 3Aa in 47% yield 

with 17% ee. Together, these results clearly revealed the importance of H-bonding 

interaction as suggested by the DFT model.

Substrate Scope.

Using the optimized catalyst [Co(P6)], we then investigated the scope of fluoroaryl azides 2 
for Co(II)-catalyzed C–H amination using arylacetate ester 1a as the standard substrate 

(Table 1A). Similar to 4-trifluoromethyl-2,3,5,6-tetrafluorophenyl azide (2a), analogues 

bearing other para-substituents such as −CN (2b), −NO2 (2c), −SO3Ph (2d), and −CO2Me 

(2e) could also be used as effective nitrogen sources for the C–H amination, generating the 

corresponding α-aryl α-amino acid esters 3ab–3ae in good to excellent yields with high 

enantioselectivities (Table 1; entries 1–5). In addition, both pentafluorophenyl azide (2f) and 

4-bromotetrafluorophenyl azide (2g) were suitable aminating reagents for the catalytic 
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process, leading to productive formation of N-fluoroaryl α-amino acid esters 3af and 3ag 
with excellent enantioselectivities (Table 1; entries 6 and 7). Interestingly, 4-

tetrafluoropyridinyl azide (2h) could serve as a competent nitrogen precursor for highly 

enantioselective C–H amination of 1a to form the amino acid derivative 3ah without 

complications from the pyridine unit (Table 1; entry 8). Additionally, the Co(II)-based 

system could use 2,3,5,6-tetrafluorophenyl azide (2i) for the amination reaction, producing 

the desired product 3ai with excellent enantioselectivity, albeit in low yield (Table 1; entry 

9). When 2,4,6-trifluorophenyl azide (2j) was used, however, the corresponding amination 

product 3aj was obtained in low yield with only moderate enantioselectivity (Table 1; entry 

10). It is worth noting that the use of 2,4,5-trifluorophenyl azide afforded only a trace 

amount of the corresponding C–H amination product while no product was observed with 

the use of 3,4,5-trifluorophenyl azide under the same conditions, suggesting the importance 

of 2,6-difluoro substituents on the aryl azides for effective intermolecular C–H amination. In 

addition to rendering the Co(III)-aminyl radical electrophilic, both of the ortho-fluoro atoms 

may play important roles in facilitating the cooperative interplay of the multiple noncovalent 

interactions (Scheme 2B).

Subsequently, a wide range of arylacetate esters 1 were examined as C–H substrates for 

Co(II)-catalyzed amination by [Co(P6)] using azide 2a as a representative nitrogen source 

(Table 1B). Similar to ethyl ester (1a), various esters of phenylacetate, such as methyl (1b), 

ethyl (1c), isopropyl (1d), and phenyl (1e) esters, could be productively aminated to form the 

corresponding α-amino acid esters 3ba–3ea with excellent enantioselectivities (Table 1; 

entries 11–14). It is worth mentioning that the amination process for the synthesis of α-

amino acid derivatives could be scaled up, as demonstrated by the synthesis of optically 

active compound 3ba on a 3.0 mmol scale in 75% yield with 96% ee. In addition to para-

OMe-substituted 1a, arylacetate derivatives bearing substituents with varied electronic 

properties at different positions on the aromatic ring, such as meta-OMe (1f), ortho-OMe 

(1g), para-Me (1h), para-tBu (1i), para-CF3 (1j), para-Cl (1k), and para-Br (1l) groups, could 

all act as adequate C–H substrates for the Co(II)-based enantioselective amination, allowing 

for the convenient access to highly enantioenriched α-amino acid derivatives 3fa–3la 
bearing various functionalized α-aryl units (Table 1; entries 15–21). The C–H amination 

could also be applied to arylacetates with extended aromatic and heteroaromatic systems as 

shown in high-yielding formation of α-amino acid derivatives with α-naphthyl (3ma), α-

indolyl (3na), α-pyrrolyl (3oa), and α-thiophenyl (3pa) groups with excellent 

enantioselectivities (Table 1; entries 22–25). The absolute configurations of the newly 

generated stereogenic centers in 3ha and 3ma were both established as (R) by X-ray 

crystallography.

Furthermore, the [Co(P6)]-based catalytic system could be expanded to the enantioselective 

C–H amination of both arylcrotonate esters (Table 1C) and aryltetrolate esters (Table 1D). 

For example, the allylic C–H bonds of ethyl phenylcrotonate (1q) could be effectively 

aminated by [Co(P6)] with azide 2a, producing the γ-aryl γ-amino acid ester 3qa in good 

yield with high enantioselectivity (Table 1; entry 26). The Co(II)-based system proved to be 

similarly effective for highly enantioselective amination of allylic C–H bonds in 

arylcrotonate esters (1r–1u) bearing aryl substituents (Table 1; entries 27–30). In all the 
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cases, the corresponding allylic regioisomer γ-aryl α-amino acid esters were also generated 

but as the minor products. Likewise, [Co(P6)] was capable of catalyzing enantioselective 

amination of the propargylic C–H bonds in aryltetrolate esters as exemplified by efficient 

reactions of tetrolate derivatives 1v–1z containing disparate aryl groups with azide 2a, 

delivering the functionalized γ-aryl γ-amino acid derivatives 3va–3za in high yields with 

good enantioselectivities (Table 1; entries 31–35). The absolute configuration of the major 

enantiomer of 3va was established as (R) by X-ray crystallography, which is the same as 

3ha and 3ma. Notably, the C–H amination process catalyzed by [Co(P6)] exhibited 

chemoselectivity as the normally more reactive C=C and C≡C bonds were unaffected. It is 

also worth noting that the [Co(P6)]-catalyzed amination displayed high regioselectivity at 

the γ-position over the α-position, two possible reactive sites that are associated with both 

the allylic and propargylic radical intermediates.

Mechanistic Studies.

Comprehensive studies were carried out to gain insight into the underlying stepwise radical 

mechanism of the Co(II)-catalyzed intermolecular C–H amination (Scheme 3). To directly 

detect the α-Co(III)-aminyl radical intermediate I, the isotropic X-band electron 

paramagnetic resonance (EPR) spectrum was recorded at room temperature for the reaction 

mixture of [Co(P1)] with azide 2h in benzene without C–H substrate (Scheme 3A). The 

spectrum displays notable signals that are characteristic of α-Co(III)-aminyl radicals.9,8a 

The observed isotropic g-value of ~2.00 is consistent with the generation of organic radical 

I[Co(P1)]/2h upon spin translocation from the Co(II) center to the N atom during the process 

of metalloradical activation. Consistent with the spin delocalization in α-arylaminyl radical 

intermediate I[Co(P1)]/2h, the observed signals were broad and could be fittingly simulated by 

involving its three resonance forms on the basis of couplings by 59Co (I = 7/2), 14N (I = 1), 

and 19F (I = 1/2): 82% of N-centered radical at α-position NαI[Co(P1)]/2h (g = 2.04824; A(Co) 

= 117.9 MHz; A(N) = 139.5 MHz; A(F) = 0 MHz), 8% of C-centered radical at γ-position 

CγI[Co(P1)]/2h (g = 2.01921; A(Co) = 0 MHz; A(N) = 69.2 MHz; A(F) = 130.0 MHz), and 10% 

of N-centered radical at ε-position NεI[Co(P1)]/2h (g = 2.08007; A(Co) = 0 MHz; A(N) = 95.9 

MHz; A(F) = 0 MHz). Furthermore, intermediate I[Co(P1)]/2h could be detected by high-

resolution mass spectrometry (HRMS) with ESI ionization. The obtained spectrum evidently 

exhibited a signal corresponding to [I + [Co(P1)]/2h]+ (m/z = 1503.6881), resulting from the 

neutral α-Co(III)-aminyl radical I[Co(P1)]/2h by the loss of one electron. Both the 

experimentally determined exact mass and isotope distribution pattern matched well with 

those calculated from the formula of [(P1)Co(NC5NF4)+)] (m/z = 1503.6879; see 

Supporting Information for details). Correspondingly, α-Co(III)-aminyl radical intermediate 

I[Co(P6)]/2a, generated from the reaction mixture of [Co(P6)] with azide 2a, could also be 

detected by EPR with much stronger signals, which seems consistent with the higher activity 

of [Co(P6)] compared to [Co(P1)] (Scheme 3A). Similarly, the broad EPR signals of 

I[Co(P6)]/2a could be fitted nicely with three resonance structures: 88% of N-centered radical 

at α-position NαI[Co(P6)]/2a (g = 2.01362; A(Co) = 116.7 MHz; A(N) = 124.9 MHz; A(F) = 0 

MHz), 4% of C-centered radical at γ-position CγI[Co(P6)]/2a (g = 2.02094; A(Co) = 0 MHz; 

A(N) = 110.3 MHz; A(F) = 81.0 MHz), and 8% of C-centered radical at ε-position 

CεI[Co(P6)]/2a (g = 2.07664; A(Co) = 0 MHz; A(N) = 0 MHz; A(F) = 0 MHz).
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To determine the kinetic isotope effect (KIE), a direct competition experiment between the 

reactions of arylacetate ester 1i and its bisdeuterated analogue 1iD with azide 2a was 

conducted using achiral catalyst [Co(P7)] (P7 = 3,5-DitBu-IbuPhyrin) (Scheme 3B).19 A 

mixture of amination products 3ia and 3iaD was formed in a 75% combined yield. Analysis 

of the product mixture by 1H NMR provided an intermolecular KIE value (kH/kD) of 8.1. 

This high degree of primary KIE is consistent with the proposed step of C–H bond cleavage 

via intermolecular H atom abstraction by α-Co(III)-aminyl radical intermediate I[Co(P7)]/

2a.9 To assess the potential electronic effect of the Co(II)-based radical process, competition 

reactions were performed for intermolecular C–H amination between ethyl phenylacetate 

ester (1c) and its para-substituted arylacetate analogs having wide-ranging electronic 

properties with azide 2a by [Co(P7)] (Scheme 3C). The results revealed a strong linear 

correlation between the log(kX/kH) and the Hammett constants (σp) of the para-substituents 

with a negative slope of −0.77. The Hammett plot signifies the electrophilic nature of the 

key radical intermediate I[Co(P7)/2a, which is likely a result of the strong electron-

withdrawing effect of the fluoroaryl group. To directly trap ∞-Co(III)-alkyl radical 

intermediate aII generated from intermolecular H atom abstraction, the amination reaction 

of arylacetate ester 1b with azide 2a was conducted in the presence of TEMPO (2.0 equiv) 

using chiral catalyst [Co(P6)] (Scheme 3D). Remarkably, amination product 3ba was still 

formed with the similarly high enantioselectivity (95% ee) in spite of excess TEMPO, 

although in a much lower yield (34%) than the reaction without TEMPO. Concurrently, the 

reaction also produced compound 4b in 40% yield without any asymmetric induction, which 

was evidently formed from trapping of the “free” alkyl radical intermediate aII1b by 

TEMPO outside the chiral environment of the Co(III)-amido complex bII[Co(P6)]. Further 

TEMPO trapping experiments in different solvents indicated that solvent viscosity had some 

effect but was not a major factor to affect the outcome (Table S2).

To further probe the existence of the ∞-Co(III)-alkyl radical intermediate, the (Z)-isomer of 

ethyl 4-methoxyphenylcrotonate (Z)-1s was employed as the C–H substrate for the catalytic 

amination with azide 2a using [Co(P6)] as the catalyst (Scheme 3E). Besides the C–H 

amination product (Z)-3sa and unreacted (Z)-1s with unchanged configuration, two other 

products, 5sa and (E)-3sa, were also generated, indicating the existence of three allylic 

radical isomers (a1II1s, a2II1s, and a3II1s). Interestingly, all three amination products 

(Z)-3sa, 5sa, and (E)-3sa were formed with high enantioselectivities, suggesting that the 

allylic radical intermediates were not “free” when reacting inside the chiral environment of 

the Co(III)-amido complex bII[Co(P6)]/2a. To evaluate diastereoselectivity of the Co(II)-

catalyzed intermolecular C–H amination, (+)-menthyl phenylacetate (+)-6 and (–)-menthyl 

phenylacetate (−)-6 were utilized as chiral C–H substrates for amination with azide 2a using 

both [Co(P6)] and [Co(P7)] (Scheme 3F). While achiral catalyst [Co(P7)] gave almost no 

control of diastereoselectivity in both reactions with (+)-6 and (−)-6, chiral catalyst [Co(P6)] 

enabled the stereoselective formation of amination products (+)-7 and (−)-7, respectively, 

with excellent diastereoselectivities. These results indicate that the Co(II)-based catalytic 

system can effectively control the stereochemistry of intermolecular C–H amination over the 

substrate. The differences in the ratio of the two diastereomers most likely reflect a 

matched–mismatched effect of chirality between the ligand and the substrate.
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CONCLUSIONS

In summary, we have demonstrated, for the first time, a highly enantioselective system for 

intermolecular radical C–H amination via Co(II)-based metalloradical catalysis (MRC). The 

Co(II)-catalyzed amination, which operates under mild conditions with C–H substrate as the 

limiting reagent, exhibits a broad substrate scope and high chemoselectivity, providing 

effective access to valuable chiral amino acid derivatives with high enantioselectivities. The 

key to the success of controlling both reactivity and enantioselectivity of this intermolecular 

radical process is the development of a Co(II)-based metalloradical catalyst through fine-

tuning of the remote substituents of the D2-symmetric chiral amidoporphyrin ligand to 

maximize cooperative noncovalent attractive interactions.

This new enantioselective intermolecular C–H amination process, which is fundamentally 

different from traditional metallonitrene insertion process, has been shown to proceed 

through a stepwise radical pathway, involving sequential steps of (i) metalloradical 

activation (MRA) of organic azides, (ii) intermolecular hydrogen atom abstraction (HAA) 

from C–H substrates, and (iii) intermolecular radical substitution (RS) for C–N bond 

formation, with effective control of both reactivity and enantioselectivity. We anticipate that 

this radical approach for intermolecular C–H amination, revealed by Co(II)-based MRC, 

will become generally applicable. It is our hope that this work will spur the development of 

new catalytic radical systems for direct functionalization of omnipresent C(sp3)–H bonds to 

form valuable nitrogen-containing compounds with potential control of chemo-, regio-, and 

stereoselectivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Intra- and Intermolecular Pathways for Radical C–H Amination via Co(II)-Based 

Metalloradical Catalysis
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Scheme 2. 
Ligand Effect on Co(II)-Based Asymmetric System for Intermolecular C–H Amination with 

Organic Azidesa

aCarried out with 1 (0.10 mmol) and 2a (0.15 mmol) in the presence of 4 Å molecular sieves 

by [Co(Por*)] (4 mol %) in trifluorotoluene (0.5 mL) at 40 °C for 48 h. Isolated yields. 

Enantiomeric excess was determined by chiral HPLC. bStructure of P6 was determined by 

X-ray crystallography.
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Scheme 3. 
Mechanistic Studies on Co(II)-Catalyzed Intermolecular C–H Amination with Organic 

Azides
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