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ABSTRACT
Background: The integration of time with dietary patterns throughout a day, or temporal dietary patterns (TDPs), have

been linked with dietary quality but relations to health are unknown.

Objective: The association between TDPs and selected health status indicators and obesity, type 2 diabetes (T2D),

and metabolic syndrome (MetS) was determined.

Methods: The first-day 24-h dietary recall from 1627 nonpregnant US adult participants aged 20–65 y from the NHANES

2003–2006 was used to determine timing, amount of energy intake, and sequence of eating occasions (EOs). Modified

dynamic time warping (MDTW) and kernel k-means algorithm clustered participants into 4 groups representing distinct

TDPs. Multivariate regression models determined associations between TDPs and health status, controlling for potential

confounders, and adjusting for the survey design and multiple comparisons (P <0.05/6).

Results: A cluster representing a TDP with evenly spaced, energy balanced EOs reaching ≤1200 kcal between 06:00

to 10:00, 12:00 to 15:00, and 18:00 to 22:00, had statistically significant and clinically meaningful lower mean BMI

(P <0.0001), waist circumference (WC) (P <0.0001), and 75% lower odds of obesity compared with 3 other clusters

representing patterns with much higher peaks of energy: 1000–2400 kcal between 15:00 and 18:00 (OR: 5.3; 95% CI:

2.8, 10.1), 800–2400 kcal between 11:00 and 15:00 (OR: 4.4; 95% CI: 2.5, 7.9), and 1000–2600 kcal between 18:00 and

23:00 (OR: 6.7; 95% CI: 3.9, 11.6).

Conclusions: Individuals with a TDP characterized by evenly spaced, energy balanced EOs had significantly lower

mean BMI, WC, and odds of obesity compared with the other patterns with higher energy intake peaks at different

times throughout the day, providing evidence that incorporating time with other aspects of a dietary pattern may be

important to health status. J Nutr 2020;150:3259–3268.
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Introduction

The prevalence of obesity has increased globally and represents
a major public health concern. Obesity is both an outcome
and a contributor to chronic disease development including
type 2 diabetes (T2D) and metabolic syndrome (MetS)
(1, 2). Behavioral habits like dietary intake are underlying
modifiable risk factors for obesity and chronic disease (3,
4). Traditional investigation of the diet-health relation has
focused on singular behaviors (e.g., breakfast skipping) (5–
7) or aspects of dietary intake (e.g., individual nutrients)
(8–10) in relation to health outcomes; however, numerous
aspects of behavior and dietary components could interact to
influence health (3). Dietary patterns refer to a way of con-
ceptualizing multiple dietary exposures including the quantities,
proportions, frequencies, and combinations of different foods
and beverages in diets, as a multifaceted construct (3, 11).

This multidimensional approach allows for a more inclusive
examination of the diet-health relation that might reveal
stronger associations between indicators of health and the role
of diet compared with single nutrients or food group approaches
(11, 12).

Temporality, or timing, of eating and the influence on
health is a recent area of interest (13–17). Most of the
accumulated evidence has evaluated timing of dietary intake
in a classification-based way, e.g., characterizing participants as
early energy consumers or later energy consumers based on the
timing of the majority of their energy intake throughout the day
followed by regression to determine links with health (18–21).
Similar classification-based designation of breakfast skippers
compared with those who eat breakfast suggests that breakfast
skipping is associated with higher BMI and impaired glucose
metabolism manifesting as higher fasting plasma glucose and
hemoglobin A1c concentrations in adults (5, 6). Moreover,
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studies that examined the association of late-night eating with
health reported a higher risk of obesity, MetS, and inflammation
in late-night eaters compared with early eaters (18, 22–24).
Collectively, these studies demonstrate that time of eating could
be associated with health. However, the studies are limited by
the focus on eating occasions (EOs) at a single time span or
part of the day with disregard to EOs at other times of the day.
Yet, the amount of energy or nutrient consumed at a certain
time may affect the amount consumed at following EOs or be
related to total energy intake throughout the day (25). Thus,
understanding whether and how patterns of intake over a day,
including the timing, amount of energy, and sequence of EOs,
are linked with health status will advance knowledge of the
importance of these multiple factors to health. Additionally,
insight into whether and to what extent the integration of these
factors determines health status may advance opportunities for
early detection of behavioral patterns that predispose to obesity
and chronic disease.

Data-driven methods including cluster and factor analyses
and investigator-driven methods including index-based analysis
(26, 27) have previously been used to determine dietary patterns
and evaluate their association with health. However, few studies
focused on dietary patterns have included multiple aspects of
dietary intake over time. Eicher-Miller et al. uniquely created
temporal dietary patterns (TDPs) by integrating time, amount
of energy, and sequence of EOs through a 24-h day using a
novel distance measure based on the dynamic time warping
(DTW) technique combined with cluster analysis (28). This
work showed that a TDP characterized by moderate and
proportionally equivalent energy consumed at evenly spaced
EOs throughout a day was associated with higher dietary
quality among US adults aged 20–65 y compared with other
TDPs (28). Considering the elevated disease risk associated
with poor dietary quality, this finding supports hypotheses that
TDPs may also be linked with health; however, this relation
has not been examined. Thus, the aim of this study was to
investigate whether TDPs determined using DTW and a kernel
k-means clustering approach are associated with selected health
status indicators and obesity, T2D, and MetS in adult men and
women in the USA. The hypothesis, building on evidence by
Eicher-Miller et al. (28), is that a TDP characterized by mod-
erate and proportionally equivalent energy consumed during
evenly spaced EOs will emerge and associate with improved
health status compared with other TDPs not exhibiting these
characteristics.
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Methods

Participants and data collection
NHANES is a cross-sectional survey of the noninstitutionalized, civilian,
US population that uses a complex, stratified, multistage probability
cluster sampling method (29). The National Center for Health Statistics
(NCHS), a program of the US CDC, administers NHANES. The NCHS
Research Ethics Review Board granted approval and documented
consent was obtained from all participants (30). The NHANES survey
protocol includes an in-person household interview followed by a
health examination in a mobile examination center. During the in-
person household interview, sociodemographic data including age, sex,
race/ethnicity, and poverty to income ratio (PIR) were collected using
an in-depth questionnaire (29). The health examination included the
collection of a 24-h dietary recall, anthropometric measurements, and
laboratory tests.

Analytic sample
Four years of NHANES data, 2003–2006, were combined for this
analysis. The analytic sample included nonpregnant US adults aged 20–
65 y with reliable 24-h recall dietary data, and complete anthropometric
and health status indicator data (n = 1627) (Supplemental Figure 1).
Pregnant women, children, adolescents, and adults older than retirement
age were excluded because their daily patterns may include variations
characteristic to the life stages they represent.

Anthropometric assessment and laboratory tests
Selected health status indicators were chosen for their previous links
with dietary components (31–35). Details of NHANES methods have
been widely reported but are summarized briefly here. Weight was
measured to the nearest 0.1 kg using a digital scale (36). Height and
waist circumference (WC) were measured with a stadiometer and tape
measure, respectively, to the nearest 0.1 cm (36). BMI was calculated as
weight in kilograms divided by height in meters squared (37).

A phlebotomist obtained blood samples from participants according
to a standardized protocol (38, 39). Fasting plasma glucose and
triglycerides were assessed after participants fasted for 8 to 24 h.
Fasting plasma glucose was measured using a hexokinase method
with a Roche/Hitachi 911 (cycle 03–04) or a Roche Cobas Mira
(cycle 2005–2006) (40, 41). Triglycerides were measured enzymatically
(42, 43). Hemoglobin A1c, total cholesterol, and HDL cholesterol
were based on samples taken regardless of fasting state. Hemoglobin
A1c was measured with HPLC using Primus CLC 330 and Primus
CLC 385 (Primus Corporation) in the 2003–2004 cycle and using
Tosoh A1c 2.2 Plus Glycohemoglobin Analyzer (Tosoh Medics, Inc.)
in the 2005–2006 cycle (44, 45). Total cholesterol was measured
enzymatically. An instrument change occurred in NHANES 2005–2006
for total cholesterol, but the method and laboratory location were
the same as in the 2003–2004 survey (46, 47). HDL cholesterol was
analyzed using a direct immunoassay method from 2003–2006 (47,
48). There was a change in equipment to measure HDL cholesterol
from 2005–2006, however, the laboratory method and location were
the same as in 2003–2004 (47, 48). Blood pressure was measured
using a mercury sphygmomanometer, with systolic and diastolic blood
pressures determined based on ≤4 measures (49); if >1 measurement
was obtained, the first was not considered, and the remaining
measurements were averaged; otherwise, the first measurement was
used.

Dietary data assessment
The first reliable 24-h dietary recall collected using the USDA’s
Automated Multiple-Pass Method (50) was used to determine energy
intake, time of intake, and sequence of EOs throughout a day (51).
A reliable dietary recall indicates that a participant has a food record
that specifies each individual food consumed, the quantity in grams
and nutrient amounts per food component (51). The USDA Food and
Nutrient Database for Dietary Studies (FNDDS) for 2003–2004 data
(USDA FNDDS, version 2.0) and 2005–2006 data (USDA FNDDS,
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version 3.0) were used to convert reported dietary intake information
into gram amounts and to determine their energy values (kcal).

Assessment of energy misreporting
Energy misreporting was examined as research shows that misreporting
could bias the relation between TDPs and adiposity (18, 52). Energy
misreporting was assessed as the ratio of reported total energy intake
to estimated energy requirement (EER) (53). EER was calculated using
the Dietary Reference Intake equations for adults based on sex, weight,
height, and physical activity (PA) level (54). Using accelerometry data
from 1 valid weekday revealed that participants in this sample spent
most of their time (minutes/day) in sedentary behavior. Calculation of
PA level was attempted using methods by Gerrior et al. (55), however,
the method resulted in very high estimates of activity levels and thus
tended to overestimate energy expenditure. Therefore, a low active
PA level (≥1.4 to <1.6) was used which conforms with national data
showing that most adults spend their time in sedentary behavior or light
activity (56, 57).

TDPs
A detailed description of the methodology used to determine the TDPs
has been previously described (58) with 1 minor change in this study
in which patterns were developed based on absolute amount of energy
intake rather than fractional energy intake data computed over a
24-h period. Briefly, 1 24-h dietary recall was used to develop time
series of length 24, with each entry representing absolute amount of
energy during an hourly time interval. The absolute energy and hourly
time stamps of nonzero EOs were extracted from the time series to
form the compact representation as defined in (58, 59). Based on our
previous work on pattern dietary intake, several distance measures were
investigated including the constrained DTW with Sakoe-Chiba band
(CDTW) and the modified dynamic time warping (MDTW) (60). Both
CDTW and MDTW belong to the elastic distance family and find the
optimal matching path among EOs in 2 time series (60). The matching
is “optimal” in the sense that the summed difference between matched
EOs is minimized. The Sakoe-Chiba band in CDTW and the weight
parameter β in MDTW are controlling parameters to avoid pathological
matchings (e.g., matching morning to evening EOs). Although the
Sakoe-Chiba band rigorously limits the maximum time difference
between matched EOs, the weight parameter β controls the matching
through a time difference penalty term: larger β indicates more penalty
on matching EOs that are different in time. Bands ranging between
60 and 720 min (60-min increments) and β ranging from 0 to 10
(2 increments) were explored in this project, and parameter values
outside of these ranges were omitted as they did not bring significant
changes in the clustering results. Further, the distance measures were
coupled with the kernel k-means algorithm (61) to partition the time se-
ries into several clusters such that EOs are more similar within the same
cluster and more dissimilar among different clusters. Cluster number
k = 4 was selected to divide the population into clusters representing
similar TDPs to maintain consistency with the previous development
of temporal patterning (28, 58, 60). MDTW β=10 was selected out of
each distance measure pairing of CDTW bandwidth = 420 and MDTW
β=10 with k-means clustering, based on inferential analyses with
health status indicators prioritized as: 1) most significant differences
between the 6 pairwise comparisons, 2) highest model R2 values, and
3) largest difference between highest and lowest mean of health status
indicators.

Statistical analysis
The Rao Scott F adjusted chi-square statistic determined significant
differences among clusters by characteristics: survey year (2003–
2004 and 2005–2006), sex (male or female), race/ethnicity (Mexican
American and other Hispanic, Non-Hispanic white, Non-Hispanic
black, and other-race including multirace), age groups (20–34, 35–49,
and 50–65 y), PIR, and BMI classified as underweight (<18.5 kg/m2),
normal weight (18.5–24.9), overweight (25.0–29.9), and obese (≥30.0)
(37). PIR, calculated as reported household income divided by the
federal poverty guideline for household income, was divided into

6 categories: 0–0.99, 1–1.99, 2–2.99, 3–3.99, 4–4.99, and ≥5.
Ratios <1 indicate a PIR below the officially defined poverty threshold
(62).

Disease categories included obesity, T2D, and MetS. The T2D
definition was based on elevated fasting plasma glucose (≥126 mg/dL),
hemoglobin A1c (≥6.5%), or self-report of: “yes” in response to the
question “have you ever been told by a doctor you have diabetes?”,
or to the use of glucose-lowering medications (63). The National
Cholesterol Education Program Adult Treatment Panel III definition
of MetS was applied to classify this condition based on the presence
of 3 or more of the following risk factors: 1) WC (>102 cm for
males, >88 cm for females); 2) triglycerides (>150 mg/dL) or taking
antihyperlipidemic medications; 3) HDL cholesterol (<40 mg/dL in
males, <50 mg/dL in females); 4) hypertension (>130/>85 mmHg)
or taking antihypertensive medications; and 5) impaired fast-
ing glucose (>110 mg/dL) or taking glucose-lowering medications
(64).

ANOVA determined differences in mean of health status indicators
by TDPs. ANOVA model assumptions were met for all models except
for hemoglobin A1c, fasting plasma glucose, and systolic blood pressure,
where an additional nonparametric Kruskal–Wallis test was used; the
nonsignificant P value results aligned with those of ANOVA which
are consistently featured. Multiple linear regression models determined
associations between 4 TDPs and health status indicators. For risk
of obesity, T2D, and MetS, multivariate logistic regression was used
to estimate ORs comparing the 4 TDPs. For both linear and logistic
models, potential confounders included survey year, sex, age group,
race/ethnicity, PIR, energy misreporting [energy intake (EI):EER] and
BMI (except for models with BMI, WC, and obesity as the outcome).
The EI:EER ratio was used as a continuous covariate in the analyses
based on methods by Murakami and Livingstone as this technique
has been shown to result in similar findings when compared with
excluding implausible reporters while avoiding selection bias (53,
65). Appropriate survey weights were constructed for the 2003–2006
survey years as directed by the NCHS (66). Sampling weights were
rescaled so that the sum of the weights matched the survey population
at the midpoint of the 4 y covering 2003–2006. Adjustment for
the complex survey design including clustering and stratification was
completed following NCHS guidelines (67). Comparisons between
groups were considered statistically significant when P <0.05/6 (Tukey–
Kramer type adjustment for multiple comparisons). Analyses were
completed using SAS Survey procedures and inferential analysis
version 9.4.

Visualization
The visualization (Figure 1) illustrates the distribution of nonzero
EOs in each cluster using heat maps. Each EO in the heat map is
marked by its time stamp (x-axis) and absolute amount of energy intake
(y-axis). Time ranged from 00:00 to 24:00 the next day with absolute
energy intake ranging from 0 kcal to 4000 kcal at a particular time.
The proportion of individuals reporting EOs (certain absolute energy
intake and time stamp) is indicated through shading and ranged from
0.0% to 15.0% of each cluster. Darker shading signifies that a greater
proportion of that particular cluster reported that specific energy intake
at that specific time. Figure 1 exhibits 4 distinct TDPs of energy intake.
Figure 2 adds color to differentiate the 4 clusters.

Results

Characteristics of participants in the 4 clusters representing
TDPs are shown in Table 1. The number of participants
was similar between Clusters 1, 2, and 3, though Cluster 4,
characterized by evenly spaced energy balanced EOs, included
the highest number of participants, ∼2 times the total number
in the other clusters. Significant differences were present
among clusters by sex (P <0.0001), age (P = 0.001), and
BMI (P = 0.03), but not by survey year, race/ethnicity, or
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FIGURE 1 Heat maps for MDTW clusters (A–D) which depict the absolute amount of energy intake ranging from 0 kcal to 4000 kcal (y-axis) for
US adults aged 20–65 y as drawn from NHANES 2003–2006 over a 24-h day from time 00:00 to time 24:00 the next day (x-axis). The proportion
of the sample is indicated by the inverse gray-scale legend with 0.0% of the cluster participants to 15.0% of the cluster participants. MDTW,
modified dynamic time warping.

PIR. Compared with the other 3 clusters, Cluster 4 had a
proportionally greater representation of females compared with
males (64.7% compared with 35.3%). Cluster 4 included a
higher proportion of ages 50–65 y (44.6%) compared with
the other age groups, specifically 20–34 y (23.5%) and 35–
49 y (31.9%). In respect to BMI, normal weight was more
heavily represented in Cluster 4 (30.8%) compared with
the other clusters (22.9–28.3%), whereas the obese category
was prominent in Clusters 2 and 3 (38.5% and 39.2%,
respectively) compared with Clusters 1 and 4 (34.6% and
33.2%, respectively).

Characteristics of TDPs

Compared with the other 3 clusters, the absolute amount of
energy intake in Cluster 4 was moderate, reaching ≤1200 kcal
for each of the 3 main EOs throughout the day from 06:00 to
23:00 with a greater proportion (∼10%) of the cluster engaging
in EOs from 06:00 to 10:00, 12:00 to 15:00, and 18:00 to
22:00 (Figure 1 and Table 2). In contrast, the other 3 clusters
revealed patterns with 1 distinct peak in absolute amount of
energy intake. For instance, participants in Cluster 1 consumed
a lower amount of energy (reaching ≤1200 kcal) at earlier hours

of the day between 07:00 and 13:00, compared to a peak in
intake between 15:00 and 18:00 with a higher proportion of
the cluster (∼12%) consuming between 1000 and 2400 kcal.
Energy intake tended to be lower towards later hours of the
day and reached up to 1000 kcal between 19:00 and 23:00.
Participants in Cluster 2 had a lower energy intake between
06:00 and 10:00, reaching ≤1000 kcal, compared with a peak
reaching ≤2400 kcal from 11:00 to 15:00 (a higher proportion
of the cluster, ∼10%, consumed energy ranging between 800
and 1600 kcal), followed by intake reaching ≤1400 kcal
between 17:00 and 22:00. Finally, Cluster 3 exhibited a spread-
out pattern in regards to amount of energy consumed with
energy intake reaching ≤1400 kcal between 07:00 and 13:00
and a much higher energy intake ranging between 1000 and
2600 kcal towards later hours of the day between 18:00 and
23:00 (a higher proportion of the cluster, ∼8–10%, consumed
energy between 1000 and 1600 kcal). Figure 2 represents the
distribution of the largest EO for each cluster and confirms
patterns observed in Figure 1 in which Clusters 1, 2, and 3
exhibited distinct peaks in energy intake at different times of
the day, whereas Cluster 4 displayed energy balanced EOs with
no distinct peaks.
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FIGURE 2 Heat maps for MDTW clusters (C1–C4) which depict the distribution of the largest EO within each cluster for US adults aged 20–
65 y as drawn from NHANES 2003–2006. The absolute amount of energy intake for each participant in the cluster ranged from 0 kcal to 4000 kcal
(y-axis) over a 24-h d from 00:00 to 24:00 the next day (x-axis). The proportion of the sample is indicated by the inverse color-scale legend with
0.0% of the cluster participants to 10.0% of the cluster participants. EO, eating occasion; MDTW, modified dynamic time warping.

Association of TDPs with adiposity and chronic
disease

Significant differences in mean BMI were present between Clus-
ters 3 and 4 in the unadjusted model (P <0.05; Supplemental
Table 1). Significant differences in mean WC and odds of
obesity relative to normal weight status were present between
Clusters 1 and 4, 2 and 4, and 3 and 4 in the unadjusted model
(P <0.01 and P <0.05, respectively; Supplemental Tables 2
and 3). Analysis to examine the dependence of BMI, WC, and
odds of obesity relative to normal weight status on cluster in
the adjusted models indicated significant differences between
Clusters 1 and 4, 2 and 4, and 3 and 4 (all P <0.0001),
whereas there were no significant differences in all other cluster
comparisons (Tables 3–5). The differences in mean BMI, mean
WC, and odds of obesity were greatest between Clusters 3 and
4 (BMI: β=4.8 ± 0.4, WC: β=12.7 ± 1.2 cm, obesity OR:
6.7; 95% CI: 3.9, 11.6), similar to the results of the unadjusted
model (BMI: β=1.1 ± 0.3, WC: β=5.9 ± 0.9 cm, obesity OR:
1.7; 95% CI: 1.2, 2.4; Supplemental Tables 1–3).

Regarding the other health status indicators, T2D, and MetS
investigated, there were 3 significant differences in mean HDL
cholesterol between Clusters 1 and 3, 2 and 4, and 3 and 4
(P <0.05) in the unadjusted model (Supplemental Table 4),
however, one significant difference was observed in the adjusted
model between Clusters 1 and 2 (Supplemental Table 5). There
was also 1 significant difference in mean total cholesterol
between Clusters 1 and 3 (P <0.05) in the unadjusted model
(Supplemental Table 6), but this difference was not observed
in the adjusted model (Supplemental Table 7). Moreover, there
were no significant differences amongst clusters in any of the
other examined health status indicators, T2D, and MetS in both
unadjusted and adjusted models (Supplemental Tables 8-21).

Discussion

TDPs generated from 1 24-h recall are associated with BMI,
WC, and obesity but not with any of the other health status
indicators or diseases investigated. To our knowledge, this is

the first study to assess the association of TDPs based on
timing, amount, and sequence of EOs throughout a 24-h period
with health in an adult US population, while adjusting for
potential confounders including energy misreporting. The mean
differences in BMI and WC associated with TDPs were both
statistically significant and clinically meaningful, implicating
a potential relevance to disease management and clinical
application (68–70). Thus, observed mean differences in these
health status indicators may suggest that TDPs could be an
important health exposure that requires further exploration.
Reverse causation in the observed associations cannot be
ruled out using the cross-sectional study design, nevertheless,
the aim of this study was not to establish causation but to
investigate whether developed TDPs using a novel methodology
meaningfully link to health regardless of the direction of
this association. A few studies have assessed the temporal
patterning of energy intake in adults throughout the day (28,
71). Using the latent class analysis approach, Leech et al. found
a “conventional” pattern defined by evenly spaced meals and
snacks consumed at conventional times in Australia, similar
to Cluster 4 found in this study, to be associated with lower
odds of overweight or obesity and central overweight or obesity
in women compared with another pattern characterized by
a higher eating frequency (71). Moreover, findings from the
current study support previous work which revealed that a
TDP characterized by 3 evenly spaced, energy balanced EOs
throughout the day was linked with improved dietary quality
(28, 60).

The findings of a significantly lower mean BMI and WC and
odds of obesity relative to normal weight status in Cluster 4
compared with all other clusters indicates that a pattern with
evenly spaced energy balanced EOs consumed throughout a day
may be more advantageous to health compared to patterns with
1 distinct peak in absolute amount of energy intake. Regular
intervals of energy intake throughout the day have a positive
impact on risk factors for diabetes mellitus and heart disease
(15). In fact, irregular patterns of total energy intake, i.e.,
with intake limited to 1 portion of the day or continuously
throughout the day, seem to be less advantageous for the
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TABLE 1 Characteristics of clusters representing temporal dietary patterns of US adults aged 20–65 y as drawn from the NHANES
2003–2006 (n = 1627)1

Characteristic Total (n) Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value2

Total 1627 214 (13.2) 340 (20.9) 283 (17.4) 790 (48.5)
Survey year 0.66

2003–2004 804 116 (54.2) 170 (50.0) 134 (47.3) 384 (48.6)
2005–2006 823 98 (45.8) 170 (50.0) 149 (52.7) 406 (51.4)

Sex <0.0001
Male 839 134 (62.6) 216 (63.5) 210 (74.2) 279 (35.3)
Female 788 80 (37.4) 124 (36.5) 73 (25.8) 511 (64.7)

Race/ethnicity 0.35
Mexican American 350 56 (26.2) 84 (24.7) 47 (16.6) 163 (20.6)
Other Hispanic 46 4 (1.9) 10 (2.9) 3 (1.1) 29 (3.7)
Non-Hispanic white 826 112 (52.3) 168 (49.4) 157 (55.5) 389 (49.2)
Non-Hispanic black 331 33 (15.4) 61 (17.9) 66 (23.3) 171 (21.6)
Other 74 9 (4.2) 17 (5.0) 10 (3.5) 38 (4.8)

Age group, y 0.001
20–34 458 72 (33.6) 99 (29.1) 101 (35.7) 186 (23.5)
35–49 548 67 (31.3) 130 (38.2) 99 (35.0) 252 (31.9)
50–65 621 75 (35.0) 111 (32.6) 83 (29.3) 352 (44.6)

PIR 0.98
0–0.99 219 28 (13.1) 43 (12.6) 40 (14.1) 108 (13.7)
1.00–1.99 352 51 (23.8) 76 (22.4) 60 (21.2) 165 (20.9)
2.00–2.99 221 27 (12.6) 41 (12.1) 36 (12.7) 117 (14.8)
3.00–3.99 254 34 (15.9) 59 (17.4) 44 (15.5) 117 (14.8)
4.00–4.99 152 21 (9.8) 32 (9.4) 23 (8.1) 76 (9.6)
≥5.00 370 46 (21.5) 80 (23.5) 69 (1.6) 175 (22.2)

BMI3 0.03
Underweight 20 3 (1.4) 3 (0.9) 4 (1.4) 10 (1.3)
Normal weight 466 49 (22.9) 94 (27.6) 80 (28.3) 243 (30.8)
Overweight 562 88 (41.1) 112 (32.9) 88 (31.1) 274 (34.7)
Obese 579 74 (34.6) 131 (38.5) 111 (39.2) 263 (33.2)

1n(%); total numbers do not always add up to sample size due to missing values.
2Rao Scott F adjusted χ2 P value is a goodness-of-fit, 1-sided test; statistical significance is indicated when P <0.05.
3BMI categories were defined per the WHO (37).
PIR, poverty to income ratio.

maintenance of body weight and optimum cardiometabolic
health compared with a more intentional eating strategy which
entails eating at planned intervals to distribute total energy
intake during the day (15). Other than having regular EOs of
moderate energy, intermittent fasting, which involves cycling
between periods of fasting (or reduced energy intake) and
eating over a given period, has gained considerable attention
with reported benefits including weight loss and improved
metabolic markers (72, 73). Time-restricted feeding, a modified
intermittent fasting protocol, allows ad libitum food intake

within specific time frames (from 3–4 h to 10–12 h) with an
extended fasting period (12–21 h) per day (74). In the current
study, none of the patterns coincided with these criteria as all
4 TDPs revealed EOs starting from 6:00 to 23:00 (17 h of
feeding) with no indication of a prolonged fasting period.
Nevertheless, it is important to note that cluster descriptions
characterize the group and do not represent individuals.

Furthermore, compared with the evenly spaced energy
balanced pattern of Cluster 4, both Clusters 2 and 3 had a
significantly greater mean BMI, mean WC, and odds of obesity

TABLE 2 Qualitative description of clusters representing temporal dietary patterns of US adults aged 20–65 y as drawn from the
NHANES 2003–2006 (n = 1627)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

n (%) 214 (13.2) 340 (20.9) 283 (17.4) 790 (48.6)
Overall temporal pattern Lower energy intake during earlier

(07:00–13:00) and later
(19:00–23:00) hours of the day
with absolute energy reaching
≤ ∼1200 and 1000 kcal,
respectively

Lower energy intake during later
(17:00–22:00) hours of the day
with absolute energy reaching
≤1400 kcal

Lower energy intake during
earlier hours (07:00–13:00)
with absolute energy reaching
≤1400 kcal

Moderate and consistent energy
intake throughout the day

Time of peak in energy intake 15:00–18:00 11:00–15:00 18:00–23:00 No peaks
Range of absolute energy at peak

energy intake occasion (kcal)
1000–2400 800–2400 1000–2600 Does not exceed 1200

3264 Aqeel et al.



TABLE 3 Mean BMI (kg/m2) and covariate-adjusted regression model results for clusters representing temporal dietary patterns of
US adults aged 20–65 y as drawn from the NHANES 2003–20061

Adjusted models2 n (%) BMI3 (kg/m2)
β4 ± SEE (95% CI)

compared to Cluster 2
β4 ± SEE (95% CI)

compared to Cluster 3
β4 ± SEE (95% CI)

compared to Cluster 4

Cluster 1 214 (13.2) 29.1 ± 6.3 0.2 ± 0.5 (–1.3, 1.6) –0.9 ± 0.6 (–2.4, 0.7) 4.0 ± 0.6 (2.3, 5.6∗)
Cluster 2 340 (20.9) 29.1 ± 6.3 –1.0 ± 0.5 (–2.4, 0.4) 3.8 ± 0.6 (2.2, 5.3∗)
Cluster 3 283 (17.4) 29.2 ± 6.4 4.8 ± 0.4 (3.7, 6.0∗)
Cluster 4 790 (48.6) 28.4 ± 6.2

1Differences in mean BMI were present among Clusters 3 and 4 at P <0.05 in the unadjusted model (Supplemental Table 1).
2Models were adjusted for survey year, sex, age, race/ethnicity, poverty to income ratio, and energy misreporting (EI:EER).
3Values are mean ± SD.
4ß represents the difference between mean BMI of cluster and reference cluster. Differences in mean BMI are different than those between raw means because they
represent differences in least square means.
Significance level: ∗P <0.0001
EER, estimated energy requirement; EI, energy intake; SEE, standard error of the estimate.

relative to normal weight status. The observed differences
between these means was smaller between Clusters 4 and
2, exhibiting a pattern of higher energy intake occurring
at earlier hours of the day (11:00 to 15:00), than between
Clusters 4 and 3, exhibiting a pattern of higher energy intake
occurring towards the later hours of the day (18:00 to 23:00).
Models controlled for total energy intake; thus, findings may
indicate that observed differences may be explained by temporal
differences in these patterns. Evidence from epidemiologic
studies suggests a positive association between evening meal
consumption and obesity. For example, in a study of 1245
middle-aged adults, consuming greater energy at dinner (≥48%)
compared with <33% or 33–48%, was associated with a
2.33-fold greater odds of developing obesity (75). Findings from
this analysis also revealed a greater magnitude of difference
in mean BMI and WC, and odds of obesity in a pattern
with later meal intake; yet, instead of assessing the timing
of a single meal or energy intake across stratified time
spans, this study examined TDPs based on a novel data-
driven approach which integrates several aspects of dietary
patterns.

The finding of no significant differences in examined health
status indicators among Clusters 1, 2, and 3 was unexpected.
These clusters were similar in terms of number of EOs,
however, they differed in the timing of the highest energy
intake occasion: Cluster 1 (15:00 to 18:00), Cluster 2 (11:00 to
15:00), and Cluster 3 (18:00 to 23:00). Notably, the association
between evening meal intake and measures of adiposity
remains inconclusive (76); specifically, some observational
studies showed a positive association between evening meal
intake and weight, BMI, and/or odds of overweight (18, 77, 78),

whereas others found no association (79–81), which may help
explain the findings of this study.

Interestingly, TDPs were associated with long-term markers
of health including BMI and WC, whereas no significant
associations were found between patterns and other examined
health indicators including serum biomarkers, especially fasting
plasma glucose and triglycerides, which may more closely reflect
dietary intake reported in the 24-h recalls. Leech et al. reported
a “later lunch” temporal eating pattern characterized by a
later lunch EO (between 13:00 to 14:00) to be associated
with higher systolic and diastolic blood pressures compared
with a “conventional” pattern (lunch at 12:00) in women
(82); however, no such associations were found between TDPs
and blood pressure in the current study. These results may be
an artifact of laboratory procedures or may be explained by
large intra- and interindividual variability in serum biomarkers
and blood pressure compared with BMI and WC. Otherwise,
findings may indicate that TDPs more strongly associate with
long-term health status indicators; however, more research is
needed to further elucidate these findings.

Sociodemographic characteristics such as those included
in this study (Table 1) have been shown to be associated
with diet-related differences in health. Limited studies have
examined how energy distribution throughout the day may
differ between population groups and results suggest potential
differences by sociodemographic factors (83). For instance,
females have been reported to be generally more regulated
in their eating patterns compared with males (84). Striegel-
Moore et al. found that males are more likely than females
to engage in night eating (85), which is consistent with the
higher proportion of males in Cluster 3 with the latest meal

TABLE 4 Mean WC (cm) and covariate-adjusted regression model results for clusters representing temporal dietary patterns of US
adults aged 20–65 y as drawn from the NHANES 2003–20061

Adjusted models2 n (%) WC (cm)3

β4 ± SEE (95% CI)
compared to Cluster 2

β4 ± SEE (95% CI)
compared to Cluster 3

β4 ± SEE (95% CI)
compared to Cluster 4

Cluster 1 214 (13.2) 99.4 ± 15.4 0.4 ± 1.5 (–3.5, 4.4) –2.5 ± 1.4 (–6.4, 1.4) 10.2 ± 1.5 (6.2, 14.3∗)
Cluster 2 340 (20.9) 99.5 ± 15.1 –2.9 ± 1.4 (–6.6, 0.9) 9.8 ± 1.4 (6.1, 13.5∗)
Cluster 3 283 (17.4) 100.2 ± 15.9 12.7 ± 1.2 (9.5, 15.8∗)
Cluster 4 790 (48.6) 96.1 ± 15.1

1Differences among clusters in mean WC in the unadjusted model were similar to those in the adjusted model at P <0.01 (Supplemental Table 2).
2Models were adjusted for survey year, sex, age, race/ethnicity, poverty to income ratio, and energy misreporting (EI:EER).
3Values are mean ± SD.
4ß represents the difference between mean WC of cluster and reference cluster. Differences in mean WC are different than those between raw means because they represent
differences in least square means.
Significance level: ∗P <0.0001
EER, estimated energy requirement; EI, energy intake; SEE, standard error of the estimate; WC, waist circumference.
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TABLE 5 OR of obesity relative to normal weight status and covariate-adjusted regression model results for clusters representing
temporal dietary patterns of US adults aged 20–65 y as drawn from the NHANES 2003–20061

Adjusted models2 n (%)
OR3,4 (95% CI)

compared to Cluster 2
OR3,4 (95% CI)

compared to Cluster 3
OR3,4 (95% CI)

compared to Cluster 4

Cluster 1 214 (13.2) 1.2 (0.7, 2.2) 0.8 (0.4, 1.5) 5.3 (2.8, 10.1∗)
Cluster 2 340 (20.9) 0.7 (0.4, 1.2) 4.4 (2.5, 7.9∗)
Cluster 3 283 (17.4) 6.7 (3.9, 11.6∗)
Cluster 4 790 (48.6)

1Differences among clusters in OR of obesity in the unadjusted model were similar to those in the adjusted model at P <0.05 (Supplemental Table 3).
2Models were adjusted for survey year, sex, age, race/ethnicity, poverty to income ratio, and energy misreporting (EI:EER).
3OR represents OR of obesity of cluster and reference cluster.
4Obesity defined as BMI ≥30 kg/m2 (37).
Significance level: ∗P <0.0001.
EER, estimated energy requirement; EI, energy intake.

intake occasion (18:00 to 23:00) compared with Cluster 4
characterized by evenly spaced energy balanced EOs. Moreover,
Cluster 4 also included a higher observed proportion of the
age group 50–65 y compared with all other clusters; a regular
meal pattern has been more commonly observed in older adults
compared with young adults, where the latter group has been
described as having a more “de-synchronized” eating pattern
(83, 84).

Daily dietary patterns that may be associated with behav-
ioral factors that were outside of the scope of this study include
exercise and sleep timing. As such, insight into how these
behavioral components interact within a day, and overall, as
part of a lifestyle pattern may unfold stronger associations with
health compared to when they are considered separately. Such
data has become more available through the use of technology-
assisted assessment tools that target dietary and activity patterns
and could be potentially integrated to determine whether
or how timing of these behaviors interact in relation with
health. Moreover, the use of traditional nutrition epidemiology
analysis along with data-driven methods to integrate time into
these behavioral patterns holds promise to explore how these
temporal patterns link to health and with further development,
this evidence may provide insight to inform population-level
dietary and PA guideline recommendations.

The strengths of the current analyses include the use of a
data-driven approach that integrates amount, time of eating,
and sequence of EOs throughout the day for the development
of TDPs. Additionally, this approach avoids between-subject
variation that participants may have in regard to EO definitions.
Limitations of this study include the cross-sectional nature,
which provides a snapshot of the participants’ dietary intake
and cannot demonstrate causation. Also, the sample size is
small and represents ∼8% of the original sample of participants
included in survey years 2003–2006; therefore, study results
should be interpreted with caution. Notably, sample size
attrition is mostly attributable to the selected age range 20–
65 y and the inclusion of health status indicators examined
in a fasting subsample of participants (both criteria resulted in
loss of ∼84% of the original sample). Moreover, patterns were
developed based on 1 24-h dietary recall; however, the inclusion
of a second recall would have further limited our sample size;
also, since information regarding the distribution of timing of
dietary patterns over multiple days is unknown, exploration of
the time, amount, and sequence of dietary intake over multiple
days represents a research gap for future study. Furthermore, in
this sample, ∼60% of recalls were collected on a weekday and
since different TDPs may emerge on weekends, future studies
should consider this investigation.

This article demonstrates that TDPs are associated with
differences in BMI, WC, and obesity. Individuals with a TDP
characterized by evenly spaced, energy balanced EOs exhibited
significantly lower mean BMI, mean WC, and odds of obesity
relative to normal weight status compared with the other
3 patterns characterized by distinct peaks in energy intake at
different times throughout the day. The incorporation of time to
the concept of dietary patterns including amount and sequence
of EOs may be important to determine links with health and
could provide insight into the detection of behavioral patterns
that predispose to obesity and chronic disease.
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