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ABSTRACT: Branched-chain amino acids (BCAAs), particularly leucine, were
reported to decrease obesity and relevant metabolic syndrome. However,
whether valine has a similar effect has rarely been investigated. In the present
study, mice were assigned into four treatments (n = 10): chow diet
supplemented with water (CW) or valine (CV) and high-fat diet supplemented
with water (HW) or valine (HV). Valine (3%, w/v) was supplied in the
drinking water. The results showed that valine treatment markedly increased
serum triglyceride and insulin levels of chow diet-fed mice. The body weight,
serum triglyceride level, white adipose tissue weight, and glucose and insulin
intolerance were significantly elevated by valine supplementation in high-fat
diet-fed mice. Metabolomics and transcriptomics showed that several genes
related to fat oxidation were downregulated, and arachidonic acid and linoleic
acid metabolism were altered in the HV group compared to the HW group. In conclusion, valine supplementation did not suppress
lipid deposition and metabolic disorders in mice, which provides a new understanding for BCAAs in the modulation of lipid
metabolism.

■ INTRODUCTION

Worldwide obesity has become a problem that cannot be
ignored mainly as a consequence of changes in diet. It was
estimated that there will be 2.16 billion adults overweight and
1.12 billion obese all over the globe by 2030.1 Obesity is defined
by WHO (World Health Organization) as an unusual
accumulation of adipose tissue that presents a nutritional
disorder and is associated with the occurrence of type 2 diabetes
and insulin resistance. Therefore, attention has been focused on
searching the supplements including macronutrients2 that could
effectively and safely treat or prevent obesity.3

Branched-chain amino acids (BCAAs), including leucine,
isoleucine, and valine, account for around 35% of the essential
amino acid requirements in mammals.4 BCAAs are not only
considered to be the building blocks of proteins but also play a
regulatory role in lipid metabolism and fat deposition. Evidences
showed that the addition of BCAAs significantly reduced fat
deposition and controlled obesity. For instance, in a study where
high-fat diet (HFD)was provided for six weeks and BCAAs were
given for another two weeks, BCAAs treatment markedly
reduced body weight and white adipose tissue (WAT) mass, as
well as hepatic triglyceride (TG) concentration inmice.5 Dietary
supplementation with BCAAs also alleviated hepatic steato-
sis6−8 and improved glucose homeostasis.9,10 Besides the
beneficial role for the mixture of BCAAs, individual BCAA
supplementation showed a positive effect on suppressing fat
accumulation and obesity. Long-term leucine treatment

dramatically improved glycemic control in mouse models of
obesity.11 Similarly, it has reported that supplementation of
leucine alleviates insulin resistance and liver steatosis in db/db
mice.12 Moreover, isoleucine prevented the accumulation of
tissue triglycerides.13 Our previous study revealed that leucine
and isoleucine had the similar effect on reducing lipid
accumulation and improving insulin sensitivity in obese mice
fed HFD.2 Nevertheless, little is known about the effect of
another single BCAA valine on lipid metabolism and obesity.
Although fat loss was stimulated in mice fed a valine-deprived
diet for one week,14 the impact of repletion of valine has not
been reported. Therefore, we speculated that valine supple-
mentation may inhibit fat accumulation.
In this study, we investigated the influence of valine

supplementation on body weight, WAT weight, insulin
sensitivity, and lipid profiles in mice. A combination of
metabolomics and transcriptomics was employed to screen the
possible metabolic pathways involved. Furthermore, real-time
PCR was operated to confirm the results obtained by
transcriptomics.
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■ RESULTS

Valine Supplementation Led to Increased Body
Weight and Decreased Food Intake in HFD. As shown in
Figure 1A, body weights of the four groups continuously grew.
From the ninth week, the body weight of the HW group was

higher compared with that of the CW group. Valine addition
made no difference to body weight in mice fed chow diet,
however, a tendency to gain body weight in mice fed HFD. The
mice fed chow diet ingested more food than those fed HFD
(Figure 1B), but HFD-fed mice took more energy than chow

Figure 1. Effects of valine supplementation on body weight, food intake, and white adipose tissue weights in mice. (A) Body weight (grams); (B) food
consumption (grams/day); (C) epididymal white adipose tissue (eWAT) (grams); and (D) perirenal white adipose tissue (pWAT) (grams). Values
are means ± SEM (n = 10), and columns accompanied by the same letter are not significantly different from each other. *p < 0.05 vs CW.
Abbreviations: chow diet + water (CW); chow diet + valine (CV); high-fat diet + water (HW); and high-fat diet + valine (HV).

Figure 2. Effects of valine supplementation on serum biochemical parameters and hepatic histology inmice. (A) Total cholesterol (mmol/L); (B) total
triglycerides (mmol/L); (C) glucose (mmol/L); and (D) insulin (mmol/L). Values are means ± SEM (n = 10), and columns accompanied by the
same letter are not significantly different from each other. (E) Hepatic histological examination by H&E staining, scale bar = 100 μm. Abbreviations:
chow diet + water (CW); chow diet + valine (CV); high-fat diet + water (HW); and high-fat diet + valine (HV).
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diet-fed mice due to higher energy density of HFD. Notably,
valine addition decreased the food consumption and energy
intake. The volumes of daily drinking water in CW, CV, HW,
and HV were 3.49 ± 0.1, 3.51 ± 0.08, 3.55 ± 0.27, and 3.56 ±
0.13 mL, respectively. Therefore, the daily amounts of valine
intake in CV and HV groups were 0.11 and 0.12 g. There was no
significant difference in valine intake between CV and HV
groups.
Valine Supplementation Caused Fat Accumulation

and Increased Serum Triglycerides. As shown in Figure
1C,D, HFD significantly enlarged the volumes of epididymal
white adipose tissue (eWAT) and perirenal white adipose tissue
(pWAT) of mice in comparison to chow diet. Valine
supplementation further increased the weights of eWAT and
pWAT in the HV group. Serum total cholesterol and triglyceride
concentrations were elevated in the HFD groups compared to
chow diet groups (Figure 2A,B). Total cholesterol level was not
altered, but serum triglyceride level was further upregulated by
valine treatment in HFD- or chow diet-fed mice. The lipid
amassed in the liver as vacuoles, which have an obvious
appearance with hematoxylin and eosin (H&E) staining.
Histological analysis showed that histomorphology was normal
in chow-fed mice, but the increase of adipose hollow space and
the disorder of hepatic plate arrangement were observed in both
HFD-fed groups (Figure 2E).
Valine Supplementation Deteriorated Glucose and

Insulin Tolerance. Fasting glucose and insulin concentrations
in the CW group were markedly lower compared to the HW
group (Figure 2C,D). Valine addition had no effect on fasting
glucose and insulin in HFD-fed mice. However, valine
supplementation increased fasting insulin and decreased fasting
glucose under chow diet. For glucose tolerance test (GTT), the
value of area under curve (AUC) in HFDwas significantly larger
than that in chow diet (Figure 3A,B). Valine supplementation

improved glucose tolerance under chow diet but worsened
glucose tolerance under HFD. For insulin tolerance test (ITT),
valine treatment had no effect on AUC values of HFD-fed mice
and deteriorated insulin tolerance under chow diet (Figure
3C,D).

Liver Metabolomics. To further explore the effect of valine
treatment on the development of obesity in mice, metabolomics
analysis was carried out between HW and HV groups. The ion
peaks obtained from all experimental samples and quality
control (QC) samples were Pareto-scaling processed to obtain a
principal component analysis (PCA) model. QC samples in the
PCA model were densely aggregated, suggesting that the result
of this project was reproducible (Figure S1A). The orthogonal
partial least squares discriminant analysis (OPLS-DA) score plot
of HV was significantly different from that of HW in metabolism
mode (Figure S1B). After sevenfold cross-validation, the model
evaluation parameters R2Y and Q2 were 0.991 and 0.681,
respectively, indicating that the model is steady and credible.
The volcano plot intuitively showed the significant differences
between the metabolites of two groups of samples (Figure S1C).
Then, we performed hierarchical clustering of the 54
metabolites, and the heat map is presented in Figure 4. These
metabolites showed significant differences in expression
between HW and HV. A decrease in some amino acids can be
observed in the HV group. Threefold increase was observed for
hepatic valine level after valine treatment. By contrast, the levels
of leucine, threonine, D-proline, methionine, serine, glycine,
asparagine, phenylalanine, and tyrosine were decreased. Methyl
donors, including betamine, dimethylglycine, glycerophospho-
choline, 1-palmitoyl-sn-glycero-3-phosphocholine, cytidine 5′-
diphosphocholine (CDP-choline), and lipid metabolites such as
arachidonic acid and carnitine were downregulated.
The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis (Figure 5) showed that important

Figure 3. Effects of valine supplementation on glucose and insulin tolerance in mice. Glucose tolerance test (GTT) and insulin tolerance test (ITT)
were performed at the 11th and 12th weeks of valine intervention. Before the GTT and ITT tests, the mice were fasted for 16 or 9 h, respectively.
Glucose and insulin were intraperitoneally injected with a final concentration of 2 g/kg or 0.75 U/kg body weight. (A) Glucose tolerance test (GTT)
and (B) corresponding area under curve (AUC). (C) Insulin tolerance test (ITT), and (D) corresponding AUC (n = 8/group). Values are means ±
SEM (n = 8), and columns accompanied by the same letter are not significantly different from each other. Abbreviations: chow diet + water (CW);
chow diet + valine (CV); high-fat diet + water (HW); and high-fat diet + valine (HV).
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pathways such as ATP-binding cassette (ABC) transporters,
protein digestion and absorption, central carbon metabolism in

cancer, aminoacyl-tRNA biosynthesis, and alanine, aspartate,
and glutamate metabolism were significantly altered.

Liver Transcriptomics. Volcano plot provided a quick look
at the differences in gene expressions (Figure S2A). Some genes
were upregulated butmore genes were downregulated in theHV
group compared toHW. In total, we analyzed 54 769 transcripts.
Genes (352) were differentially expressed with 254 down-
regulated and 98 upregulated genes in the liver (Figure S2B).
The top 30 enriched gene ontology (GO) terms are illustrated in
Figure S3. Biological processes including epoxygenase P450
pathway and arachidonic acid metabolic process were highly
enriched, and arachidonic acid activity was highly enriched in
molecular functions. Several genes related to lipolysis, including
peroxisome proliferator-activated receptor beta (Pparβ),
carnitine palmitoyltransferase 1 (Cpt1), adiponectin, C1Q and
collagen domain containing (Adipoq), and fibroblast growth
factor 21 (Fgf 21), were significantly downregulated in the HV
group. Subsequent real-time PCR further validated the tran-
scriptomics results. In addition, the HV group significantly
decreased the mRNA expression of peroxisome proliferator-
activated receptor alpha (Pparα), peroxisome proliferator-
activated receptor gamma (Pparγ), and adenosine mono-
phosphate-activated protein kinase (Ampk) and increased the
mRNA expression of fatty acid synthase (Fas) compared with
the HW group (Figure 6).

Combined Analysis of Metabolomics and Transcrip-
tomics. All differentially expressed genes and metabolites were

Figure 4. The hierarchical clustering of significant differences between metabolites for HV vs HW. Red indicates the upregulated metabolites in HV,
and blue indicates the downregulated metabolites in HV. Scaled expression values are color-coded according to the legend on the bottom.
Abbreviations: high-fat diet + valine (HV); and high-fat diet + water (HW).

Figure 5. KEGG pathway enrichment results based on metabolite
alteration. The size of the dots represents the number of significant
metabolites; and the smaller P value indicates that KEGG pathway
enrichment is more significant.
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queried and mapped to pathways based on the online KEGG.
Correlation analysis measures the degree of association between
genes and metabolites. There were 52 marked pathways of gene
expression, 104 significant pathways of metabolite expression,
and the number of metabolic pathways involved in both omics
was 10 (Figure S4A). The top 10 pathways with the highest
number of genes and metabolites were statistically identified
(Figure S4B). Lipid metabolism pathways such as arachidonic
acid and linoleic acid metabolism are in the top five. Hierarchical
clustering heat maps showed that both the differential genes and
metabolites are clustered and may be in close step in biological
processes (Figure S5).

■ DISCUSSION

In the context of continuous attention to BCAAs’ antiobesity
activity, we explored the effects of valine, a less well-studied
BCAA, on lipid metabolism. The results showed that valine
supplementation by drinking water aggravated fat deposition
and increased serum triglyceride accompanied with worse
glucose and insulin tolerance.
This is not the first report that BCAAs were invalid or even

worsened toward fat accumulation. For example, in a study
where BCAAs (109 mmol/L of each) or leucine (150 mmol/L)
was supplemented in the drinking water for at least 14 weeks,
body weight, body composition, insulin tolerance, and total
cholesterol were not altered.15 Notably, valine supplementation

under HFD resulted in an increase in body weight and WAT
weight but a decrease in energy intake, suggesting that valine
participates in the repartition of lipid metabolism. There are two
key factors that often influence the trend of the results: the diet
energy percentage supplied by fat and the duration of nutrient
treatment. For instance, BCAAs significantly reduced the body
weight, WAT weight, and liver triglyceride content in mice fed
diet containing 43% fat calories,16 but has no effect in mice fed
diet containing 60% fat calories.15 Under the diet with similar fat
supply, body weight and fat deposition were markedly reduced
by leucine treatment for 14 weeks,17 and in contrast, were
increased by leucine supplementation for 24 weeks.18 This
suggests that there may be the threshold for both, beyond of
which the use of valine is not beneficial for controlling the
obesity. Furthermore, valine supplementation led to insulin
resistance, which is consistent with the previous study about
other amino acids.19,20

Metabolomic analysis revealed that the aggravation of obesity
symptoms by valine supplementation is closely related to the
abundance of polyunsaturated fatty acids (PUFA), the decrease
of which has been observed in high-fat or high-sugar diet-fed
animals.21,22 Moreover, PUFA, especially arachidonic acid, was
positively correlated with insulin sensitivity.23 Insulin secretion
was stimulated by arachidonic acid through the lipoxygenase
pathway.24

Figure 6. The liver mRNA expression of genes related to lipid metabolism. (A) Liver mRNA expression of Cpt1, Fgf 21, Adipoq, Pparα, Pparβ, Pparγ,
Ampk, and Fas in chow diet groups. *p < 0.05 vs CW and **p < 0.01 vs CW; (B) liver mRNA expression of Cpt1, Fgf 21, Adipoq, Pparα, Pparβ, Pparγ,
Ampk, and Fas in high-fat diet groups. *p < 0.05 vs HW and **p < 0.01 vs HW. Abbreviations: chow diet + water (CW); high-fat diet + water (HW);
Cpt1: carnitine palmitoyltransferase 1; Fgf 21: fibroblast growth factor 21; Adipoq: adiponectin, C1Q and collagen domain containing; Pparα:
peroxisome proliferator-activated receptor alpha; Pparβ: peroxisome proliferator-activated receptor beta; Pparγ: peroxisome proliferator-activated
receptor gamma; Ampk: adenosine monophosphate-activated protein kinase; and Fas: fatty acid synthase.
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Transcriptional analysis screened a cluster of lipid metabo-
lism-related genes that was responsible for promoting fat mass.
Pparβ is a ligand-activated transcription factor related to the
glycemic and lipid metabolism,25 and activation of this factor
could ameliorate hepatic steatosis by accelerating fatty acid
oxidation.26,27 Pparβ also upregulates the expression of Cpt1,28

which is the rate-limiting enzyme in β-oxidation of long-chain
fatty acid in hepatocyte. Fgf 21 is a metabolic regulator with
broad effects on carbohydrate and lipid metabolism.29 Fgf 21
could stimulate hepatic fatty acid oxidation, improve insulin
resistance and steatosis in obese mice, and regulate liver
glycogen synthesis and ketone body formation.30−32 Fgf 21
activates the expression and secretion of adiponectin,33 thereby
regulating the balance of glycolipid metabolism and further
improving the insulin sensitivity of the body. Adiponectin is a
downstream effector of Fgf 21. In obese mice with adiponectin
knockout, the improvement effect of Fgf 21 on plasma
triglycerides, liver steatosis, and liver injury disappeared.33

Hence, it was speculated that valine supplementation caused the
disorder of lipid metabolism by the downregulation of Fgf 21-
adiponectin axis.
A threefold increase of valine level could explain the decrease

of leucine because BCAAs are transported by the same carrier.
Previous studies found that additional dietary leucine reduced
valine and isoleucine concentrations in serum and tissues.34,35

One of the BCAAs at high concentrations could compete with
the others via their common transport carriers.36 Therefore,
unbalanced BCAAs supply lead to antagonism of BCAAs,37

which may explain the decrease of leucine. Our results observed
the significant decrease of metabolites related with a methyl
donor including betaine, dimethylglycine (the product of
betaine metabolism), and glycerophosphocholine. In particular,
betaine is not only a methyl donor and involved in the
methionine cycle but also a lipotrope that inhibits hepatic fat
deposition.38 Inadequate dietary intake of methyl groups causes
hypomethylation, which results in steatosis (fat deposition) and
plasma dyslipidemia.38 Higher serum betaine is associated with a
more favorable lower body fat status.39−41Moreover, carnitine is
a conditionally essential nutrient that allows mitochondrial
import and oxidation of long chain fatty acids.42 Carnitine
deficiencies may occur due to certain disorders (such as liver
disease).43 It is assumed that the transport competition may
inhibit the intestine absorption and transmembrane transport of
betaine and choline by valine supplementation, ultimately
leading to dyslipidemia.
In conclusion, valine supplementation for 15 weeks leads to

increased fat deposition and decreased insulin sensitivity. The
antagonism between leucine and valine may lead to adverse
effects of valine supplementation. Therefore, the balance of
BCAAs in dietary supply may act a dominated role in
participating lipid homeostasis. Further experiments are needed
to evaluate the influence of valine supplementation on lipid
metabolism in already established mouse model.

■ MATERIALS AND METHODS
Experimental Animals and Diets. Six-week old C57BL/6

J male mice were purchased from HFK Biotechnology Co., Ltd.
(Beijing, China). Mice were kept in a room at 23 °C on a 12:12
light−dark cycle. After a 7 d period of adaptation, the mice were
randomly divided into four groups (n = 10): chow diet + water
(CW), chow diet + valine (CV), high-fat diet (HFD) + water
(HW), and HFD + valine (HV). Mice were caged separately
with free access to water and food. Valine (3% (w/v) was

supplemented in the drinking water. The valine solutions were
made freshly each day. HFD provided 60% calories from fat
(5.24 kcal/g, HFK Biotechnology Co., Ltd., Beijing, China).
The dietary formula used in the experiment is shown in Table
S3. Body weight and food intake were determined once a week.
The study was approved by the Institutional Animal Care and
Use Committee of Northeast Agricultural University.

Glucose and Insulin Tolerance Tests.GTT and ITT were
tested at the 11th and 12th weeks of valine intervention. Before
the GTT and ITT tests, the mice were fasted for 16 or 9 h,
respectively. Glucose and insulin were injected intraperitoneally
with a final concentration of 2 g/kg or 0.75 U/kg body weight.
Blood was sampled from a tail vein, and glucose concentrations
of mice weremeasured at 0, 30, 60, and 120min after injection of
glucose or insulin using a glucose meter (On Call, Hangzhou,
China).

Sample Collection. At the 15th week of valine treatment,
mice sank into a coma by inhaling ether after overnight fasting.
Blood samples were collected from the eye pit and centrifuged at
3000 × g for 15 min. All mice were executed by cervical
dislocation. The white adipose tissue and liver were quickly
removed and weighed. Part of the tissues was stored in 4%
paraformaldehyde for morphology analysis, and the rest was
snap frozen in liquid nitrogen and stored at −80 °C until
analysis.

Serum Parameter Determination. Serum glucose, total
triglycerides, and total cholesterol were determined by
enzymatic methods using commercial diagnostics kits (Biosino
Biotechnology and Science Inc., Beijing, China). Insulin was
determined using an enzyme-linked immunosorbent assay
(ELISA) kit (Sangon Biotech Company, Shanghai, China).

Histological Analysis.Mouse liver tissue was embedded in
paraffin and cut into 4 μm-thick slices. Histological morphology
of slices was examined under a microscope after staining with
hematoxylin and eosin.

Metabolomics. Sample Preparation. The liver homoge-
nates were mixed with cold methanol/acetonitrile (1:1, v/v) by
vortex for 60 s and ultrasonically processed twice and half an
hour each time. The samples were centrifuged for 20 min (14
000 g, 4 °C). The samples were redissolved for liquid
chromatography tandem−mass spectrometry (LC−MS) anal-
ysis.

LC−MS/MS Analysis. Analyses were performed using an
ultrahigh performance liquid chromatography (UHPLC)
system in Shanghai Applied Protein Technology Co., Ltd.
Samples were separated using a hydrophilic interaction liquid
chromatography (HILIC) column (Agilent 1290 Infinity). The
column temperature was 25 °C, and the flow rate was 0.3 mL/
min. The mobile phase consisted of A (25 mM ammonium
acetate and 25 mM ammonium hydroxide in water) and B
(acetonitrile). The gradient was 95% B for 0.5 min, was linearly
declined to 65% in 7 min, was decreased to 40% in 1 min, kept
for 1 min, then changed to 95% in 0.1 min, and kept for 3 min.
During the whole process, the samples were placed in a 4 °C
automatic sampler. After the sample detection, the first and
second grade spectra of the sample were collected by a mass
spectrometer (AB TripleTOF 6600). The ESI source conditions
were set after separation of HILIC chromatography. The
product ion scan is acquired using information dependent
acquisition (IDA) with high sensitivity mode selected.

Data Handling. The original data is converted into .mzXML
format by ProteoWizard, and XCMS program was used to
perform peak alignment, retention time correction, and
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extraction of peak area. Structure identification of metabolites
was carried out by the method of matching accuracy m/z value
(<25 ppm) and MS/MS spectra and searched by an in-house
database.
Transcriptomics. RNA quantification and qualification:

RNA degradation and contamination was examined by 1%
agarose gel electrophoresis. RNA purity (OD260/280),
concentration, and absorption peak of nucleic acid were
detected using Nanodrop. RNA integrity and concentration
were measured accurately using an Agilent 2100 RNA Nano
6000 Assay Kit (Agilent Technologies, CA, USA).
Library construction and quality control: a total amount of 3

μg RNA per sample was used as an input material for the RNA
sample preparations. mRNA of eukaryon was enriched using
magnetic beads with oligo. Adding fragmentation buffer broke
randomly mRNA. First-strand cDNA was synthesized using
random hexamer. Second-strand cDNA synthesis was synthe-
sized using buffer, dNTPs, RNase H, and DNA polymerase I.
Then, cDNA was purified by AMPure XP beads.44 The purified
double-stranded cDNA was performed by terminal repair, with
adding A tail and connecting the sequencing connector, and
then the fragment size was selected with AMPure XP beads.
Finally, cDNA libraries were obtained via PCR enrichment. The
library was initially quantified using Qubit 2.0, diluted to 1 ng/
μL, and then insert size was detected using Agilent 2100. At last,
library quality was assessed using an Agilent Bioanalyzer 2100
system.
Quantitative Real-Time PCR. Total liver RNA was

extracted using Trizol reagent (Ambion). The purity and
concentration of RNA were assessed by absorbance at 260/280
nm before cDNA synthesis. For reverse transcription, 1 μg of
mRNA was converted to first-strand complementary DNA in 20
μL reactions using a PrimeScript RT reagent Kit with gDNA
Eraser (TaKaRa, Dalian, China). Relative gene expression levels
were determined using real-time PCR detection system with TB
Green Premix Ex Taq (TaKaRa, Dalian, China). Calculations
were made by method of 2−ΔΔCt using β-actin as an internal
control. Primer sequences used are listed in Table 1.
Treatment of Animals. The agreement used in the study

was approved by the Northeast Agricultural University Institu-
tional Animal Care and Use Committee, and the ethical
treatment of animals used in this experiment complied with the
Animal Welfare Committee protocol (#NEAU-[2013]-9) in
Northeast Agricultural University.
Statistical Analysis. All the data were expressed as mean ±

SEM.One-way analysis of variance (ANOVA) was conducted to
evaluate the significance of differences between the means of

groups. Duncan’s post hoc test was used for multiple group
comparisons. In all analyses, p < 0.05 was considered significant.
The analysis was performed using SPSS Statistics (Chicago,
USA).
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Table 1. Mice RT-PCR Primer Sequencesa

gene forward sequence (5′−3′) reverse sequence (5′−3′)
β-Actin CAGGCATTGCTGACAGGATG TGCTGATCCACATCTGCTGG
Cpt1 CCCAGTCAGATTCCAACC TCACCAAAATGACCTAGCC
Fgf 21 GCTGGAGGACGGTTACAA GTCAGAGGAGCCCACATC
Adipoq GGCCACTTTCTCCTCATTT GTAACGTCATCTTCGGCAT
Pparα CATTTCTCCTTGGCGTGT CCTCAGACCTTGCTTTGG
Pparβ CCACGAGTTCTTGCGAAGT GATGAAGAGCGCCAGGTC
Pparγ CGAGAAGGAGAAGCTGTTG TCAGCGGGAAGGACTTTA
Ampk CTACCTAGCAACCAGCCCAC ACGTCTGAGGGCTTTCCTTG
Fas TGCTTGCTGGCTCACAGTTA ATCAGTTTCACGAACCCGCC

aAbbreviations: Cpt1: carnitine palmitoyltransferase 1; Fgf 21: fibroblast growth factor 21; Adipoq: adiponectin, C1Q and collagen domain
containing; Pparα: peroxisome proliferator-activated receptor alpha; Pparβ: peroxisome proliferator-activated receptor beta; Pparγ: peroxisome
proliferator-activated receptor gamma; Ampk: adenosine monophosphate-activated protein kinase; and Fas: fatty acid synthase.
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