Table 2.
Model | Variables | Lag | Estimate | SE | t | P-value | |
---|---|---|---|---|---|---|---|
[A] | Monthly patients | Constant | 1.96 | 0.40 | 4.81 | < 0.001 | |
MA | Lag 1 | 0.26 | 0.09 | 2.75 | 0.007 | ||
Lag 2 | 0.26 | 0.09 | 2.77 | 0.006 | |||
[B] | MA | Lag 1 | −0.89 | 0.04 | −18.57 | < 0.001 | |
MA, seasonal | Lag 1 | −0.34 | 0.17 | −1.95 | 0.05 | ||
[C] | MA | Lag 1 | −0.87 | 0.05 | − 14.82 | < 0.001 | |
Seasonal difference | 1 | ||||||
MA, seasonal | Lag 1 | −0.37 | 0.19 | −1.95 | 0.054 | ||
Maximum temperature | 0.023 | 0.14 | 0.16 | 0.86 | |||
Minimum temperature | 0.26 | 0.24 | 1.09 | 0.27 | |||
Mean temperature | −0.24 | 0.18 | −1.33 | 0.18 | |||
Rain fall | 0.02 | 0.04 | 0.57 | 0.56 | |||
Maximum Humidity | −0.01 | 0.02 | − 0.76 | 0.44 | |||
Minimum Humidity | −0.19 | 0.13 | −1.46 | 0.14 | |||
Mean Humidity | 0.06 | 0.06 | 0.92 | 0.35 | |||
Sunshine | 0.02 | 0.01 | −1.33 | 0.18 |
[A]: MA (2), [B]: univariate SARIMA (0,1,1) (0,1,1), [C]: multivariate SARIMA (0,1,1) (0,1,1), SARIMA: seasonal auto-regressive integrated moving average
A) AIC: 4.84, AICc: 4.84, BIC: 4.94, log likelihood = − 228.45
B) AIC: 4.34, AICc: 4.34, BIC: 4.42, log likelihood = − 201.34
C) AIC: 4.43, AICc: 4.46, BIC: 4.71, log likelihood = − 197.43