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Abstract
Human visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a
large body of functional magnetic resonance imaging research, significantly expanding our understanding of visual
processing. As studying these regions requires accurate localization of their cortical location, researchers perform
functional localizer scans to identify these regions in each individual. However, it is not always possible to conduct these
localizer scans. Here, we developed and validated a functional region of interest (ROI) atlas of early visual and
category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of
functionally defined ROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear
volumetric alignment. Furthermore, we demonstrate that 1) the atlas accurately predicts the location of an independent
dataset of ventral temporal cortex ROIs and other atlases of place selectivity, motion selectivity, and retinotopy. Next, 2) we
show that the majority of voxel within our atlas is responding mostly to the labeled category in a left-out subject
cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.co
m/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g.,
blind people, infants) in which functional localizers cannot be run.
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Introduction
Human visual cortex extends from the occipital lobe to the
posterior parietal and temporal lobes, containing more than
two dozen visual areas. Early and intermediate visual areas
are typically defined by their representation of the visual field,
where each visual area contains a topographic (retinotopic;
Engel et al. 1994; Sereno et al. 1995) representation of the entire
visual field across both hemispheres (referred to as a visual
field map; Arcaro et al. 2009; Wandell et al. 2005; Wandell and
Winawer 2011; Wang et al. 2015). Higher visual areas are typically
defined by their function and stimulus selectivity rather than

the representation of the visual field. This includes preference
to visual attributes such as motion (Sereno et al. 1995), shape
(Malach et al. 1995; Grill-Spector et al. 1998), or color (Lafer-Sousa
et al. 2016), as well as preference for certain visual stimuli over
others. A well-documented characteristic of higher-level regions
in ventral and lateral occipito-temporal cortex (LOTC) is regions
that respond preferentially to ecologically relevant stimuli such
as faces (Kanwisher et al. 1997), places (Aguirre et al. 1998;
Epstein and Kanwisher 1998), bodies (Downing et al. 2001; Peelen
and Downing 2005), and words (Cohen et al. 2000) compared to

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0003-3060-3921
download.brainvoyager.com/data/visfAtlas.zip
download.brainvoyager.com/data/visfAtlas.zip


604 Cerebral Cortex, 2021, Vol. 31, No. 1

other stimuli. These regions are referred to as category-selective
regions.

To elucidate neural mechanisms of visual processing and
perception, a central goal in neuroscience is to understand the
function and computation in each of these regions. Indeed, tens
of thousands of papers have investigated visual processing in
specific visual areas, from visual field maps to category-selective
regions. For example, according to Google Scholar, more than
7575 studies cite the study that discovered the fusiform face
area (Kanwisher et al. 1997). The first step in this scientific
endeavor is the identification of each visual region in each brain.
The standard approach is to perform an independent scan,
such as retinotopic mapping (Engel et al. 1997) or a functional
localizer scan, in each individual to identify the relevant region
of interest (ROI; Kanwisher et al. 1997; Saxe et al. 2006). Then,
the main experiment of interest is performed, and the data
are analyzed within the ROI identified using the independent
scans. The ROI approach is advantageous for four reasons: 1) it
allows hypothesis driven comparisons of signals within inde-
pendently defined ROIs across many different conditions, 2) it
increases statistical sensitivity in multisubject analyses (Nieto–
Castañón and Fedorenko 2012), 3) it reduces the number of mul-
tiple comparisons present in whole-brain analyses (Saxe et al.
2006), and 4) it identifies ROIs in each participant’s native brain
space.

Nevertheless, there are also several limitations to the inde-
pendent localizer approach. First, it is not always possible to
obtain an independent localizer scan. This is especially the case
in patient populations, for example in the congenitally blind
(Mahon et al. 2009; Bedny et al. 2011; Striem-Amit, Cohen, et al.
2012a; van den Hurk et al. 2017) or individuals with visual agnosi-
a/prosopagnosia (Schiltz and Rossion 2006; Steeves et al. 2006;
Sorger et al. 2007; Barton 2008; Gilaie-Dotan et al. 2009; Susilo
et al. 2015). Second, performing a localizer scan before each
experiment is costly in terms of scanning time, as well as mental
effort and attention resources of the participant. The latter can
result in fatigue during the main experiment of interest, leading
to lower quality data. Third, as localizer scans are typically
conducted in a subject-specific manner and researchers vary in
the manner they define the ROIs (e.g., whether smoothing was
employed, if they use anatomical constraints, what thresholding
methods were employed), it is hard to assess variability between
participants and across studies.

To overcome these limitations, progress in the field of
cognitive neuroscience has led to the development of cortical
atlases, which allow localization of visual areas in new subjects
by leveraging ROI data from an independent set of typical
participants (Frost and Goebel 2012; ventral temporal cortex
(VTC) category selectivity: Julian et al. 2012; Engell and McCarthy
2013; Zhen et al. 2017; Weiner et al. 2018; visual field maps:
Benson et al. 2012; Wang et al. 2015; motion-selective hMT:
Huang et al. 2019; multimodal parcellation: Glasser et al. 2016;
cytoarchitectonic parcellation of ventral visual cortex: Rosenke
et al. 2018). In addition to providing independent means to
identify ROIs, this approach enables quantification of between-
subject variability. Further, the process of atlas creation also
enables measuring the prevalence and robustness of each ROI
across participants. Presently, atlases for the human visual
system include atlases of visual field maps (Benson et al.
2012, 2014; Wang et al. 2015; Benson and Winawer 2018) and
atlases of cytoarchitectonically defined areas (Amunts et al.
2000; Rottschy et al. 2007; Caspers et al. 2013; Kujovic et al. 2013;
Lorenz et al. 2015; Rosenke et al. 2018). However, presently, there

is no atlas of the full extent of visual category-selective regions
in occipito-temporal cortex or atlases that include both visual
regions that are defined retinotopically as well as from stimulus
selectivity.

To fill this gap in knowledge, in the present study we 1)
develop a functional atlas of category-selective visual cortex, 2)
quantify inter-subject variability of category-selective regions in
visual cortex, and 3) validate our approach by using the same
procedure to define retinotopic regions and hMT+, which also
allows us to compare our definitions to existing atlases. To gen-
erate the visual functional atlas (visfAtlas), 19 participants (10
female) underwent the following functional scans: 1) a localizer
experiment to identify word-, body-, face-, body-, and place-
selective regions in LOTC and VTC; 2) a visual field mapping
experiment to delineate early visual cortex (V1–V3); and 3) a
motion localizer to identify hMT+. We identified each ROI in
each participant’s brain. We then used a leave-one-out cross-
validation (LOOCV) approach and two anatomical alignment
methods: 1) nonlinear volume-based alignment (NVA) and 2)
cortex-based alignment (CBA), to evaluate the accuracy of the
atlas in predicting ROIs in new participants. The resulting visfAt-
las is available with this paper in BrainVoyager (www.brainvoya
ger.com) and FreeSurfer (www.surfer.nmr.mgh.harvard.edu) file
formats for cortical surface analyses, as well as in NifTi format
for volumetric analysis (download.brainvoyager.com/data/visfA
tlas.zip).

Materials and Methods
Participants

To obtain functional data, a total number of 20 participants
(average age, 30 ± 6.61) were recruited at Maastricht University
but one subject’s functional magnetic resonance imaging (fMRI)
scans were excluded from further analysis due to self-reported
lack of attention on the stimuli and intermittent sleep. Two
participants were left-handed, and the sample consisted of 10
women and 9 men. All participants were healthy with no history
of neurological disease and had normal or corrected-to-normal
vision. Written consent was obtained from each subject prior
to scanning. All procedures were conducted with approval from
the local Ethical Committee of the Faculty of Psychology and
Neuroscience.

Data Acquisition

Participants underwent one scanning session of 1h at a 3T
Siemens Prisma Fit (Erlangen, Germany). First, a whole-brain,
high-resolution T1-weighted scan (MPRAGE) was acquired
(repetition time/echo time = 2250/2.21 ms, flip angle = 9◦, field
of view = 256 × 256 mm, number of slices = 192, 1 mm isovoxel
resolution). Following that, six functional runs were acquired
using a T2∗-weighted sequence with the following parameters:
repetition time/echo time = 2000/30 ms, flip angle = 77◦, field
of view = 200 x 200 mm, number of slices = 35, slice thick-
ness = 2 mm, in-plane resolution = 2 × 2 mm. fMRI included
1) three scans of the functional localizer (fLoc; Stigliani
et al. 2015), 2) two scans of an hMT+ localizer, and (iii)
one scan of retinotopic mapping. Maximal diameter of the
visual stimuli ranged from 30◦ to 36◦ in the fMRI experi-
ments. Details for each localizer can be found in the section
below.

www.brainvoyager.com
www.brainvoyager.com
www.surfer.nmr.mgh.harvard.edu
download.brainvoyager.com/data/visfAtlas.zip
download.brainvoyager.com/data/visfAtlas.zip
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Visual Localizers

Category-Selective Regions in VTC and LOTC
In order to identify category-selective regions that respond
preferentially to characters (pseudowords and numbers), bodies
(whole bodies and limbs), places (houses and corridors), faces
(child and adult), and objects (cars and instruments), we
used stimuli included in the fLoc functional localizer package
(Stigliani et al. 2015). Eight stimuli of one of the five categories
were presented in each miniblock design, each miniblock
holding a duration of 4 s. To assure participant’s attention, they
were asked to perform an oddball task, indicating with a button
press when they saw a scrambled image instead of one of the
categories. Each run consisted of 150 volumes, and each subject
underwent three runs.

hMT+
To localize the motion-selective area in middle temporal cortex
(hMT+; Dumoulin et al. 2000; Zeki et al. 1991), we used stimuli as
in Emmerling et al. (2016) and Zimmermann et al. (2011), which
were based on Huk et al. (2002). During the first five volumes,
participants were presented with a fixation dot in the center
of the screen. In the following blocks, moving and stationary
dot patterns alternated while the participants fixated on the
fixation dot at the center of the screen. Moving dot blocks were
18 s long, while stationary blocks had a duration of 10 s. The
active screen filled with dots was circular. In total, each run
consisted of 12 blocks of moving dots and 12 blocks of stationary
dots. Black dots on a gray background traveled towards and
away from the fixation point (speed = 1 pixel per frame, dot
size = 12 pixels, number of dots = 70). In different blocks, dots
were presented either in the center of the screen, in the left
visual hemifield, or in the right visual hemifield. Stationary
blocks were in the same three locations. The order of blocks
was fixed (center moving, center static, left moving, left static,
right moving, right static). Each subject underwent two hMT+
localizer runs.

Early Visual Cortex
We ran one visual retinotopic mapping run that consisted
of 304 volumes (time repetition (TR) = 2 s). In the first eight
volumes a fixation dot was presented, followed by a high-
contrast moving bar stimulus (1.33◦ wide) revealing a flickering
checkerboard pattern (10 Hz). The checkerboard pattern varied
in orientation and position for 288 volumes, concluding the run
with eight volumes of fixation dot presentation. The fixation
was presented during the entire run and changed color at
random time intervals. To keep participants’ motivation and
attention they were asked to count these color changes. The
bar stimulus moved across the visual field in 12 discrete
steps and remained at each position for one TR. The 12
different stimulus positions were randomized within each bar
orientation. Each combination of orientation (4) and direction
(2) represented one cycle. These eight different cycles were
repeated three times in random order throughout the run
(Senden et al. 2014).

Preprocessing

If not stated otherwise, data were preprocessed and analyzed
using BrainVoyager 20.6 (Brain Innovation). Anatomical data
were inhomogeneity corrected and transformed to Talairach
space (TAL; Talairach and Tournoux 1988) by identifying the

Table 1 Nomenclature for fROIs and number of subjects per fROI.

ROI Functional
nomenclature

N (LH) N (RH) N

mFus-faces FFA-2 13 15 18
pFus-faces FFA-1 17 15 19
IOG-faces - 15 15 18
OTS-bodies FBA 14 13 17
ITG-bodies EBA 17 17 19
MTG-bodies EBA 16 15 18
LOS-bodies EBA 15 16 19
pOTS-characters VWFA-1 16 5 17
IOS-characters - 11 1 11
TOS-places - 9 12 13
CoS-places PPA 18 19 19
hMT-motion hMT 18 16 19
V1d 19 19 19
V2d 19 19 19
V3d 14 17 17
V1v 19 19 19
V2v 19 19 19
V3v 19 19 19

Nomenclature: Each category-selective functional activation cluster can be
described by functional category or anatomical location. In this article, we
describe category-selective ROIs using the anatomical nomenclature and pro-
vide this table as a reference. Functional abbreviations are as followed: FFA:
fusiform-face area; FBA: fusiform-body area; EBA: extrastriate body area; VWFA:
visual word form area; PPA: parahippocampal place area; hMT: human middle-
temporal (cortex). Number of identified ROIs per hemisphere (N LH/N RH): Due to
individual-subject variability and using a strict statistical threshold (t > 3, vertex
level), not every fROI was identified in all participants in both hemispheres. fROIs
that were defined in more than half the participants (N ≥ 10) were included in
the atlas. Areas that were not included are indicated in gray subject counts. The
last column, N, indicates the number of subjects in which a given fROI could be
identified in at least one hemisphere. Abbreviations: LH: left hemisphere; RH:
right hemisphere

anterior commissure (AC) and posterior commissure (PC) and
fitting the data to TAL space. Functional data were slice scan
time corrected, motion corrected with intra-run alignment
to the first functional run to account for movement between
runs, and high-pass filtered (3 cycles). Next, the preprocessed
functional data were co-registered to the inhomogeneity cor-
rected anatomical image. Using the anatomical transformation
files, all functional runs were normalized to TAL space. Based
on the normalized anatomical data, we segmented the gray-
white matter boundary for each brain and created a cortical
surface. Next, the volumetric functional data were sampled
on the cortical surface incorporating data from −1 to +3 mm
along the vertex normals. Ultimately, we computed two general
linear models (GLMs), one for the three localizer runs for
category-selective regions in VTC and one for the hMT+
localization.

Regions of Interest

All ROIs where manually defined in individual subjects on their
cortical surface reconstruction in BrainVoyager. For volumetric
alignment and atlas generation, surface regions were trans-
formed to volumetric regions by expanding them (−1 to +2 mm)
along the vertex normals of the white-gray matter boundary.
The final atlas includes all regions that could be defined in
more than 50% of the subjects (N ≥ 10; see Table 1 for number
of subjects per atlas ROI).
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Retinotopic Areas in Occipital Cortex
Visual field maps were determined for each subject based on
an isotropic Gaussian population receptive field (pRF) model
(Dumoulin and Wandell 2008; Senden et al. 2014). The obtained
pRF maps estimating the location and size of a voxel pRF were
used to calculate eccentricity and polar angle maps. The polar
angle maps were projected onto inflated cortical surface recon-
structions and used to define six topographic regions in occipital
cortex (V1d, V2d, V3d and V1v, V2v, V3v, where d = dorsal and
v = ventral) by identifying the reversals in polar angle represen-
tation at the lower vertical meridian, upper vertical meridian, or
horizontal meridian (DeYoe et al. 1996; Engel et al. 1997; Sereno
et al. 1995). We did not define visual areas beyond V3d and V3v
as visual field maps using the single run retinotopic mapping
paradigm were noisy beyond V3.

Ventral and Lateral Category-Selective Areas
Each category (e.g., faces) was contrasted against the mean of all
other categories to identify vertices that displayed a preference
for the given category. Then we followed a two-step approach
to define ROIs: First, for all categories we selected a statistical
threshold of t = 3 for a whole-brain map. Based on the thresh-
olded activation map, we identified ROIs in anatomically plausi-
ble locations (see details for each region below). Furthermore, in
the case of an activation cluster transitioning into an adjacent
one of the same visual category, we divided those clusters into
separate ROIs by following the spatial gradient of t-values and
separating the two areas at the lowest t-value. Based on insuf-
ficient activation pattern found for the ‘‘objects” category, we
dismissed that category from further analysis.

Face-selective regions (faces > all others) were identified
in the mid-lateral fusiform gyrus (mFus) and posterior lateral
fusiform gyrus (pFus), which correspond to the fusiform face
area (Kanwisher et al. 1997), as well as on the inferior occipital
gyrus (IOG). Body-selective regions (bodies > all others) were
observed in VTC on the occipital temporal sulcus (OTS),
also known as fusiform body area (FBA; Peelen et al. 2009;
Schwarzlose et al. 2005) and in lateral occipital cortex. There,
we identified three different regions (Weiner and Grill-Spector
2011) together forming the extrastriate body area (Downing et al.
2001), one anterior of hMT+ on the middle temporal gyrus (MTG),
one posterior of hMT+ on the lateral occipital sulcus (LOS), and
one ventral to hMT+, on the inferior temporal gyrus (ITG). Place-
selective regions (places > all others) were observed in VTC on
the collateral sulcus (CoS), corresponding to the parahippocam-
pal place area (PPA; Epstein and Kanwisher 1998), and on the
transverse occipital sulcus (TOS; Hasson et al. 2003). Character-
selective regions (characters > all others) were identified in
the posterior OTS (pOTS) and a left-lateralized region in the
mid-OTS. Furthermore, we identified one character-selective
region in the inferior occipital sulcus (IOS). In the following,
we will refer to each ROI by its anatomical nomenclature, as
described in Stigliani et al. (2015). For reference, Table 1 provides
an overview about each ROI’s anatomical as well as functional
name.

hMT+
Motion-selective regions were identified by contrasting left,
right, and central visual field motion conditions versus the
equivalent stationary conditions and using a thresholded
statistical map with a minimum t-value of 3. Two subjects only
showed functional activation for the contrasts at a t-value of 2.5

in one hemisphere, which we allowed for these subjects. hMT+
was consistently located in the posterior inferior-temporal
sulcus.

visfAtlas Generation

After ROIs were defined for each subject in each subject’s space,
we utilized two normalization techniques to bring the data
into a common space: 1) nonlinear volumetric alignment (NVA)
for volume and 2) CBA for surface space. Furthermore, as it is
common that not every ROI can be identified in each of the
subjects, we decided that an ROI had to be present in more than
50% of the subjects (N > 10) to be considered for a group atlas.
The ROIs that were ultimately used for the group atlases and in
how many subjects they were defined can be found in Table 1.

Nonlinear Volumetric Alignment
First, surface regions that were defined on each subject’s cortical
surface were mapped to volumetric regions by expanding them
(−1 to +2 mm) along each vertex normal of the white-gray mat-
ter boundary. Second, the volumetric regions were transformed
back to native ACPC space. Next, the individual brains were reg-
istered to the MNI152 group average brain using the Advanced
Normalization Tools (ANTS; https://sourceforge.net/projects/a
dvants/). Finally, the resulting nonlinear transformation matri-
ces were used to warp the functionally defined ROIs (fROIs) into
the same orientation and reference frame. The specific code
for the affine volume registration and nonlinear transformation
can be found here: download.brainvoyager.com/data/visfAtlas.
zip. The resulting NVA-aligned regions were further processed
in NifTi format using MATLAB 2014b and 2019a (www.mathwo
rks.com), see details below.

Cortex-Based Alignment
To generate a surface group average brain of the subjects, we
used CBA to generate a dynamic average (subsequently called
BVaverage, publicly available at download.brainvoyager.com/da
ta/visfAtlas.zip and usable as surface template for future stud-
ies). CBA was performed for both hemispheres separately after
inflation to a sphere with overlaid curvature information at
various levels of resolution (Goebel et al. 2006; Frost and Goebel
2012). First, during a rigid alignment, the spheres of each sub-
ject’s hemisphere were rotated along three dimensions to best
match the curvature pattern of a randomly chosen target hemi-
sphere. The lower the variability between the two folding cur-
vature patterns, the better the fit after rigid sphere rotation.
Following the rigid alignment for all subjects, a nonrigid CBA
was performed. Curvature patterns of each subject were used
in four different levels of anatomical detail. Starting from low
anatomical detail, each subject’s hemisphere was aligned to
a group average out of all subjects. During this process, the
group average was dynamically updated to most accurately
average all hemispheres. This sequence was repeated for all
levels of curvature detail, until the group average was updated
based on the highest level of anatomical detail per subject.
During the alignment, we 1) derived a group average for each
hemisphere (BVaverage), as well as 2) a transformation indicat-
ing for each vertex on a single-subject cortical surface where
it maps to on the group average. These transformation files
were then used to map each individual subject’s fROIs to the
BVaverage.

https://sourceforge.net/projects/advants/
https://sourceforge.net/projects/advants/
download.brainvoyager.com/data/visfAtlas.zip
download.brainvoyager.com/data/visfAtlas.zip
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download.brainvoyager.com/data/visfAtlas.zip
download.brainvoyager.com/data/visfAtlas.zip
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Figure 1. Example probabilistic group maps in the left hemisphere after two brain

alignments. (A) Three example ROIs are displayed where the most left column,
v1d, shows an early visual cortex map, and the middle and right columns display
two higher-order visual category-selective regions in VTC, Cos-places, and mFus-
faces. Probability values range from 0 to 1 where 0 indicates no subject at a given

vertex and 1 that all subjects in the probabilistic maps shared the given vertex.
mFus-faces reveals less consistency as shown by a lower percentage of yellow-
colored vertices. Bottom inset displays zoomed in location of the main figure. (B)
Same ROIs as in A but after NVA. Bottom inset for CoS-places and mFus-faces

indicates the location of the axial slice in the volume.

Probabilistic Maps for Occipito-temporal Cortex in Volume and
Surface Space
We generated probabilistic maps of all regions after NVA as
well as CBA, where each of the following was done in both
group spaces: After individual subject fROIs were projected to
the MNI152 and BVaverage, respectively, each group fROI was
defined. For each voxel/vertex of a group fROI, the number of
subjects sharing that voxel/vertex in the fROI was divided by
the total number of subjects of the fROI (voxel probability =
number of subjects sharing voxel/vertex

total number of subjects in fROI

)
. Thus, a value of 0 at a vertex in

the group fROI indicates a vertex did not belong to that fROI in
any subject, a value of 0.5 means that it belonged to the fROI in
half the subjects, a value of 1 indicates that it belonged to that
functional region in the entire study population (Fig. 1).

Cross-Validated Predictability Estimation and Atlas Generation
One interesting feature of those fROIs is the possibility to serve
as a prior to estimate the localization of corresponding ROIs
in a new subject’s brain, eliminating the need for a dedicated
localizer run in the new subject. To allow for a probabilistic
estimate to find this region in a new subject, we performed an
exhaustive LOOCV analysis after the volumetric (NVA) as well
as surface (CBA) alignment to establish how well our atlas can
predict fROIs in new subjects. For each fold of the LOOCV, we
generated a group probabilistic fROI (G) and a left-out subject’s
individual fROI (I). We estimated the predictability of the group

probabilistic fROI by calculating the Dice coefficient (DSC), a
measure of similarity of two samples:

dsc = 2 | I ∩ G |
| I | + | G | .

A Dice coefficient of zero indicates no predictability and a
Dice coefficient of 1 indicates perfect predictability. As we did
in previous work (Rosenke et al. 2018), we applied different
threshold levels to the group probabilistic fROI (G) to predict the
location of the left-out subject (Fig. 2). That means we created
a liberal group probabilistic fROI including each vertex that was
present in at least 1 subject. Then we sequentially increased the
threshold up to the most conservative threshold where all sub-
jects had to share a voxel/vertex for it to be included in the group
map. For statistical assessment, we compared Dice coefficients
across the two alignment methods using a repeated measures
analysis of variance with individual regions as different entries,
alignment method (CBA vs. NVA) as within-subject factor, and
hemisphere as between-subject factor. We ran this comparison
on two different thresholds: once on unthresholded group maps,
and once on a threshold that produced—across regions and
methods—the highest predictability. To determine this thresh-
old, we averaged Dice coefficient values across alignment meth-
ods, hemispheres, and ROIs, resulting in one Dice coefficient
per threshold level (as previously done in Rosenke et al. 2018).
Comparison across thresholds revealed that a threshold of 0.2
produced the highest predictability. Additionally, we ran paired
permutation tests within each region on Dice coefficient results
at threshold 0.2 to establish whether the specific region showed
a significant Dice coefficient for either alignment (NVA or CBA).
Finally, we calculated the mean ROI surface area (in mm2) for
each hemisphere and ROI (Fig. 3) and used a paired t-statistic to
assess whether there was a systematic hemispheric difference
in size across ROIs.

Generating a visfAtlas by Assigning Each Voxel and Vertex to a
Unique fROI
The processes described below provide a non-overlapping tiling
of the functionally defined regions in occipito-temporal cortex
in surface as well as volume space (Fig. 5).

Cortex-Based Alignment. The probability maps determine the
probability that each vertex belongs to a given fROI. However,
it is possible that a point on the brain may belong to more
than one probabilistic fROI. This overlap is more likely to occur
along boundaries of neighboring functional regions. In order
to assign a unique functional label to each vertex in the atlas,
we generated a maximum probability map (MPM) of each area,
once in volume space (NVA) and once in surface space (CBA).
Using the probabilistic fROIs, we determined which vertices
were shared by more than one probabilistic fROI and assigned
these vertices to a single fROI based on the area that showed
the highest probability at that vertex (Eickhoff et al. 2005). In
cases where two areas held the same probability value for one
vertex, we averaged the probabilistic values of neighbors of that
vertex for each of the fROIs. The degree of neighbors averaged
was increased until the vertex had a higher probability value
in one of the areas. Lastly, after all vertices were assigned in
each of the MPM areas, we searched for individual vertices that
were not connected to other vertices of the same ROI. We used
a decision threshold where a minimum of at least one third-
degree neighbor for each vertex had to be in the same group ROI
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Figure 2. LOOCV predictability analysis using the Dice coefficient (DSC) for retinotopic regions (A) and category-selective regions (B). x-axis: threshold of the probability

map generated using N-1 subjects; y-axis: DSC. A DSC value of 1 indicates perfect overlap between the N-1 group map and the left-out subject; 0 indicates no overlap.
Blue lines: DSC after CBA; red lines: DSC after NVA. Dark colors/top rows correspond to left hemisphere data, light colors/bottom rows to right hemisphere data.
Red: face-selective ROIs; green: body-selective ROIs; yellow: character-selective ROIs; gray: motion-selective ROI; error bars: standard error (SE) across the N-fold
cross-validation.
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Figure 3. fROI size across occipito-temporal cortex. Average ROI size in surface space separately for the left hemisphere (LH, light gray) and right hemisphere (RH, dark

gray). Error bars: SE across subjects. Regions of x-axis are organized by category.

for that vertex to be part of the group ROI. In cases where single
vertices where detected, they were assigned to the ROI with the
second highest probabilistic value and same ROI vertices in the
immediate neighborhood.

Nonlinear Volume Alignment. The creation of an MPM in vol-
ume space was identical to that for CBA as described above,
except for the neighborhood search. The neighborhood search
was implemented differently as the 3D nature of the volume
atlas would lead to inevitable differences in the MPM creation
when compared to the surface atlas. Neighborhood search was
only performed for one immediately adjacent voxel in all three
dimensions.

A visfAtlas Available in Volume and Surface Space

The unique tiling of functionally defined visual regions provides
a functional atlas (visfAtlas) which we make available 1) in
volume space and 2) in surface space. In addition, we make this
atlas available in multiple file formats. Volume: We publish the
volumetric visfAtlas in MNI space in BrainVoyager file format
(VOI file) and NifTi format, which can be read by a variety
of software packages. Surface: We publish the visfAtlas in file
formats compatible with Brain Voyager as well as FreeSurfer.
Note, however, that the surface atlases are generated slightly
differently for each software. For BrainVoyager, we generated
a publicly available dynamic group average brain (BVaverage,
Fig. 5C) that will be available with the distributed atlas, details
are described above. Since FreeSurfer (https://surfer.nmr.mgh.
harvard.edu/) is commonly used with the fsaverage brain, an
average surface of 39 individuals, we converted the individu-
ally defined fROIs from each subject to cortical surface space
in FreeSurfer after running each subject through the recon-all
pipeline. Then, we used the FreeSurfer CBA algorithm to bring
each subject’s fROIs to the fsaverage space. Further processing
was done as described above and the same for both software
packages. All files can be downloaded here: download.brainvo
yager.com/data/visfAtlas.zip.

Evaluating Whether fROI Size and Reproducibility
are Related to Inter-subject Consistency

There are several factors that can influence consistency
across subjects. First, ROI size has been shown to influence
across-subject consistency measures using the Dice coefficient
(Rosenke et al. 2018). Therefore, we determined if there is a
correlation between the cross-validated Dice coefficient and
average fROI surface area. Second, we established whether
categories differ in reproducibility of cortical responses within
a subject. We reasoned that across-subject variability cannot
be expected to be lower than within-subject variability over
time (reproducibility); hence, it can be used as a proxy for
noise ceiling. To measure reproducibility, we first defined two
ROIs, VTC and LOTC. VTC was manually defined by tracing
well known anatomical: the OTS, posterior transverse CoS,
parahippocampal gyrus and the anterior tip of the mid-fusiform
sulcus (MFS). LOTC was defined as previously described in
Weiner and Grill-Spector (2013). Posteriorly, the LOTC ROI was
defined at the convergence of the intraparietal sulcus and the
descending limb of the superior temporal sulcus (STS). The
superior boundary was defined at the dorsal lip of the STS and
inferior boundary at the OTS. We then computed GLMs for all
three individual fLoc localizer runs we acquired and computed
t-statistic contrast maps identical to those used for our ROI
definitions (e.g., faces vs all other categories, see ROI definition
section for details), resulting in three contrast maps for each
subject for each of the four categories: characters, bodies, faces,
and places. Consequently, we computed the Dice coefficient
between each pair of runs for each subject, hemisphere, and
ROI, separately (run 1 and 2, 1 and 3, and 2 and 3 within VTC and
LOTC). We then took the average across those three splits as the
Dice coefficient for that subject. Ultimately, we performed this
analysis with a liberal statistical threshold of t > 0 (any vertex
holding a positive t-value is included) and once with a threshold
of t = 2.2 (P < 0.01) for vertices to be included in the contrast map
(Fig. 4). Together, these measures result in a lower and upper
bound estimation of our Dice coefficient noise ceiling.

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
download.brainvoyager.com/data/visfAtlas.zip
download.brainvoyager.com/data/visfAtlas.zip
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Figure 4. Reproducibility of category-selectivity responses. For the two cortical expanses that contain the category-selective regions of the visfAtlas, VTC and LOTC,

the reproducibility of category responses was computed across the t-contrast maps of single runs for each respective category (see Materials and Methods for details).
Dark gray bars represent the Dice coefficient results based on t-contrast maps that were thresholded with t > 2.2, which equals P < 0.01, while light gray bars were
based on t-contrast maps that were thresholded at t > 0. Error bars represent SEs across subjects.

Validation of the visfAtlas with an Independent Dataset
of Category-Selectivity in VTC and With an Increasing
Number of Subjects

Common consideration in building atlases are 1) the number
of subjects that are used to build the atlas and 2) how well it
can predict new datasets. To address whether our sample size is
sufficient to achieve generalizability to new data, we tested how
well the visfAtlas predicts fROIs of 12 new subjects. These data
were acquired using a similar localizer in a different scanning
facility, identified by independent experiments, and have been
published previously (Stigliani et al. 2015; Weiner et al. 2017).
We compared their fROI definitions of mFus-faces, pFus-faces,
OTS-bodies, pOTS-characters, and CoS-places to our visfAtlas
definitions in the following ways: 1) We visualized our visfAtlas
MPMs in relation to their probability maps of each of the fROIs
(Fig. 6), and 2) we calculated how well our visfAtlas predicted
each of their individual subjects’ fROIs using the Dice coefficient.

Lastly, to address how the number of subjects affects the
accuracy of our visfAtlas, we calculated the Dice coefficient for
different iterations of the visfAtlas in which we incrementally
increased the number of subjects from 2 to 19; specifics are in
the Supplemental Materials.

Functional Responses of Atlas fROIs in Left-Out Data

When using a probabilistic atlas, it is of great interest not only
to know how likely one would find a new subject’s fROI in
the same location, but also what signals would be picked up
for that subject within an atlas-fROI. For example, are voxel in
face-selective atlas fROIs responding mostly to faces? To test
the generalizability of our atlas, we performed a leave-subject-
out maximum responsivity analysis. The analysis calculates the
percentage of voxel responding highest to each condition within
a given fROI, where the fROI is defined on all subject’s data
except the one dataset used for the responsivity computation.
This was repeated for all possible leave-subject-out combina-
tions. First, for each subject individually we created an MPM
based on the other N-1 subjects (leaving the target subject out).
Then, for each individual voxel within each fROI in this MPM,
we estimated the average response amplitude to each category
across trials using the optimized least squares—separate (LS-S)
trial estimation approach as described by Mumford et al. (2012).
Then, we created a ‘‘winner map” for each fROI per subject, in

which the condition index that yielded the strongest response
was assigned to each voxel within the fROI. Per condition, we
counted the number of winning voxels within the ROI, which
we expressed as a percentage of the total number of voxels in
the fROI. This procedure was repeated for each subject (Fig. 7).

Comparison of Our visfAtlas to Existing Publicly
Available Atlases and Relevant fROIs

How does the visfAtlas compare to published atlases? While
there is no complete occipito-temporal atlas of visual areas
yet, atlases of retinotopic areas have been published by Wang
et al. (2015) and Benson et al. (2012, 2014). To compare our
atlas to the Benson atlas where there is no separation between
ventral and dorsal quarterfields, we merged our dorsal and
ventral V1–V3. Additionally, there is a published probabilistic
atlas of CoS-places (Weiner et al. 2018), and motion-selective
hMT+ (Huang et al. 2019). We compared our surface visfAtlas
to the existing surface maps by assessing their correspondence
in the FreeSurfer fsaverage space. For each published atlas we 1)
qualitatively assessed the spatial correspondence by visualizing
the atlas definitions on a common brain space of the FreeSurfer
average brain (Fig. 8) and 2) quantitatively assessed the corre-
spondence by calculating the Dice coefficient between each of
our individual subject’s fROIs and the respective other atlas as
we do not have access to the individual subject data in the Wang,
Benson, or Huang atlases.

Results
Using data from 19 healthy participants, we aimed at generating
a probabilistic atlas of occipito-temporal and VTC. Individually
defined regions were normalized to group space using either 1)
CBA or 2) NVA.

Superior Spatial Overlap After CBA for Retinotopic
and Category-Selective Regions

In order to determine whether NVA or CBA result in higher accu-
racy and predictibility of our atlas, we aimed at comparing both
alignment techniques across all fROIs. Figure 1 displays three
example regions, one early visual retinotopic region in occipi-
tal cortex (V1d), as well as two higher-order category-selective
regions in VTC (CoS-bodies and mFus-faces). Qualitatively, a

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa246#supplementary-data
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higher degree of consistency across subjects is observable when
group maps were normalized using CBA as compared to NVA.
Both V1d and Cos-places display a high consistency in the group
map center as indicated by yellow colored vertices, while centers
are more variable after NVA alignment, most evident in V1d.
For mFus-faces, both group maps display a greater degree of
variability across subjects than the other two regions.

To quantify which group alignment resulted in higher consis-
tency and therewith predictability, we used the Dice coefficent
(DSC) and an LOOCV procedure to determine the predictability
of finding the same region in a new subject. Moreover, we
calculated the Dice coefficient using different thresholds for the
probabilistic group map, ranging from a liberal unthreshold (one
subject at a given voxel/vertex is enough to assign it to the group
map) map to a conservative threshold where all N-1 subjects
had to share a voxel/vertex to be assigned to the group map
(Fig. 2). For retinotopically defined regions, DSC’s varied between
0.35 and 0.59 for peak probability after CBA, and between 0.30
and 0.42 after NVA. Especially regions with a lower predictability
overall tended to show higher predictability after NVA for more
conservative group thresholds (e.g., Fig. 2B, mFus-faces, TOS-
bodies). For CBA, peak predictibility (DSC) for each region ranged
from 0.1 to 0.60, while it ranged from 0.1 to 0.42 for NVA, with
character-selective regions showing the lowest consistency for
both alignments, closely followed by mFus- and IOG-faces.

Quantitatively, CBA displayed an overall greater predictability
across regions and thresholds (except for V3d LH, see Fig. 2A),
which was confirmed by a significant difference in alignment for
both unthresholded (F(1,34) = 20.12, P < 0.001) and thresholded
(0.2; F(1,34) = 174.84, P < 0.001) probability maps, see Methods
for details on threshold selection. Additionally, there was no
significant main effect for hemisphere (unthresholded: P = 0.90;
thresholded: P = 0.56) and no interaction between alignment and
hemisphere (unthresholded: F(1,34) = 0.85, P = 0.36, thresholded:
F(1,34) = 0.35, P = 0.56). We followed up with a paired permutation
test (across alignments) for the unthresholded DSC within each
fROI. As there was no main effect for hemisphere (see above)
and no significant difference in region size across hemispheres
(t(17) = −0.48, P = 0.64, Fig. 3), permutation tests were performed
on Dice coefficients using an unthresholded group map predic-
tion and averaged across hemispheres. Results show that CBA
alignment has a higher predictability than NVA for all regions
(P < 0.05), except for unthresholded: pOTS-characters (P = 1), IOS-
characters (P = 0.81), v3d (P = 0.05), IOG-faces (P = 0.05) and thresh-
olded: V3d (P = 0.05), mFus (P = 0.70), IOG (P = 0.55), pOTS (P = 1),
IOS (P = 1), OTS (P = 0.14).

As shown in the previous section and displayed in Figure 2,
different category-selective regions in VTC and LOTC show dif-
ferent levels of Dice coefficients. One factor that may contribute
to this variability is the region’s size, which also varies across
fROIs (Fig. 3). To test if this relationship is significant, we mea-
sured the correlatation between the Dice coefficient and surface
area of the fROIs. Results indicate a significant correaltion (left
hemisphere: r = 0.83, P < 0.01; right hemisphere: r = 0.85, P < 0.01),
suggesting that larger regions have higher Dice coefficients.
We also examined if differences in Dice coefficient are related
to differences in noise ceiling across ROIs. As a measure of
noise ceiling, we calculated the within-subject Dice coefficient
across the three runs of the fLoc. We reasoned that if there
are between-ROI differences in the noise ceiling estimated from
within-subject Dice coefficients, they would also translate to
the between-subject Dice coeffient. When using a lenient t-
map threshold, results (Fig. 4) indicate that within-subject Dice

coefficient for a lenient t-map threshold (t > 0) range from 0.4
to 0.77 across categories. We find a higher Dice coefficient for
bodies and faces in left VTC and a higher Dice coefficient for
places in the right VTC. In LOTC, the highest within-subject
Dice coefficient is for place selectivity in the left LOTC and body
selectivity in the right LOTC. Given that within- and between-
subject Dice coefficients are in the same range and vary similarly
across fROIs, we believe that the precision of the visfAtlas will
allow to identify fROIs in individual participants.

A Functional Atlas of Occipito-Temporal Cortex
in Volume and Surface Space

By systematically varying the group map threshold for predict-
ing a left-out subject’s fROI, we established that a group map
threshold of 0.2 allows for greatest predictability across regions.
Using the 0.2 threshold, we generated a functional atlas of
occipito-temporal cortex by generating an MPM (see Methods for
details). Figure 5 displays the resulting unique tiling of category-
selective regions in stereotaxic space for surface (Fig. 5A) and
volume (Fig. 5B) space. The visfAtlas is publicly available in both
surface as well as volume space to allow usage in a variety of
analyses and in file formats for BrainVoyager and FreeSurfer for
surface space as well as in volume space using the NifTi format.
In addition, we publish a BrainVoyager average brain (BVaverage,
Fig. 5C; download.brainvoyager.com/data/visfAtlas.zip).

Atlas Validation Using an Independent Dataset
and an Increasing Number of Subjects

How well does the visfAtlas localize regions in new subjects
scanned at a different scanner and facility? To answer this
question, we compared the ventral visfAtlas ROIs with a dataset
acquired at Stanford University (Stigliani et al. 2015; Weiner et al.
2017) using different subjects and a functional localizer experi-
ment similar to ours. Figure 6 shows unthresholded probabilistic
maps of Weiner’s MPMs (across 12 participants) and our respec-
tive visfAtlas MPMs. Qualitatively, the location of their proba-
bilistic maps, especially peak probabilities, correspond to our
respective visfAtlas ROIs. To quantify the similarity, we tested
how well our data predict the fROIs of these 12 independent
subjects by calculating the Dice coefficient between our MPM
fROIs and each of the independent subjects’ fROIs (Fig. 6B). The
mean Dice coefficients (+/− SE) for left and right hemispheres,
respectively, are in a similar range as the Dice coefficient of the
LOOCV results of our data (compare Fig. 2 threshold 0.2 with
Fig. 6B).

Additionally, we explored how the number of subjects used
for generating our atlas affects its accuracy (Supplementary Fig. 1).
Results indicate that in general, having more participants
generates better accuracy in the LOOCV, but the number of
requireed subjects varies across ROIs. Overall, across all ROIs,
the highest Dice coefficient plateaus between 12 and 14 subjects,
suggesting that our atlas based on an average of 16 subjects per
ROI (see Table 1 for details) is sufficient.

Generalizability of Functional Atlas: Functional
Responsivity in Left-Out Data

One of the advantages of a probabilistic atlas is the ability to
locate an ROI with a degree of certainty (as established using
the Dice coefficient analysis) in a new subject without the need

download.brainvoyager.com/data/visfAtlas.zip
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa246#supplementary-data
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Figure 5. MPM of occipito-temporal cortex fROIs. (A) visfAtlas in surface space after CBA. Each color displays a unique fROI group map thresholded at 0.2 of all subjects
in which the given fROI could be identified. (B) Volume atlas using the same color coding as in surface space. Inset between coronal and axial view displays the slice
location for coronal and axial slices, respectively. LH: left hemisphere; RH: right hemisphere. (C) A new group average brain (BVaverage) published in BrainVoyager,

based on 20 adults. This average brain can be used for future studies as a common reference brain.
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Figure 6. Correspondence between the visfAtlas and five VTC probabilistic maps from independent data. (A) We compared visfAtlas MPM fROIs (white outlines) in VTC

with probabilistic maps (colored regions) of six functional regions from an independent dataset that used a similar localizer, which has been published previously
(Stigliani et al. 2015; Weiner et al. 2017). Top: left hemisphere; bottom: right hemisphere. (B) Average Dice coefficient between fROIs of the individual subjects from
Stigliani and Weiner and colleagues and the MPMs of our visfAtlas fROIs. Error bars: SEs across subjects. LH: left hemisphere; RH: right hemisphere.

to run a localizer itself. In order to quantify the atlas’ generaliz-
ability, the category responsivity of the category-selective areas
in new participants is a crucial metric. Therefore, we performed
a leave-subject-out responsivity analysis in volume space to
assess category responsivity. For each fROI, we established the
percentage of voxel that showed the strongest response to each
available category (Fig. 7, see Methods for details of responsivity
estimation). For all category-selective regions, we confirmed
that the category it is selective for indeed yields the highest per-
centage of maximum voxel responsivity across subjects. Face-
selective fROIs (Fig. 7, top left) contain 52–72% (lowest to highest
fROI) face-selective voxel responses (‘’red”). The second high-
est maximum responsivity is body selective (“green”) with 10–
43% on average across subjects, followed by character-selective
regions (“gray”) with 2–25%. Body-selective regions (Fig. 7, top
right) contain the highest proportion of body as maximum voxel
responsivity for lateral body-selective regions (80–94%), with
lowest proportions for ventral OTS-bodies in left and right hemi-
sphere (46–55%). The second largest number of voxel maximum
responsivity is faces (1–40%). Place-selective fROIs (Fig. 7, bottom
left) show a large proportion of voxels with their preferred
place responses (“purple”, 77–82%), followed by up to 21% body-
maximum voxel responsivity. Character-selective ROIs (Fig. 5,
bottom right) on the other hand contain 41–52% character-
response voxel, followed by up to 38% body-response voxels.

Similarities Between Previously Published Atlas Areas
and Our visfAtlas

In order to establish the correspondence of our probabilistic
functional atlas to other atlases, we made quantitative com-
parisons to existing atlases of one or multiple regions localized
with comparable stimuli. As retinotopic atlases are frequently
used to define early visual cortices in new subjects, we wanted
to compare our retinotopic areas V1–V3 dorsal and ventral to
a group atlas of retinotopic visual areas aligned to the fsaver-
age brain by Wang et al. (2015). To assess the correspondence
between the two atlases we computed the Dice coefficient (see
Methods for details) between the existing group atlas and each

of our visfAtlas subjects (Fig. 8) separately. Qualitatively, V1d
and V1v from both atlases show a high degree of overlap and
correspondence decreases when moving to the dorsal and ven-
tral V2 and V3 (Fig. 8A). However, for each of the probabilistic
maps of our visfAtlas regions, the peak probability location falls
within the MPM published by Wang et al. (2015). This observa-
tion is confirmed by high Dice coefficients for V1d and V1v in
the left and right hemisphere (average Dice coefficient 0.4–0.5,
see Fig. 8E) and lower Dice coefficients in V2 and V3 (average
Dice coefficient 0.15–0.4, Fig. 8E). Next, we also compared our
visfAtlas retinotopic regions to an anatomical prediction of V1–
V3 by Benson et al. (2012), which shows a similar pattern of
correspondence with a greater overlap in V1 (0.4–0.42) and a
decrease in V2 and V3 (0.2–0.29).

Similar to the retinotopic regions, we compared a category-
selective region—the CoS-places fROI—to a published proba-
bilistic version by Weiner et al. (2018), which used a very sim-
ilar localizer for their study. Both atlases display a high corre-
spondence, with a slightly higher Dice coefficient in the left
hemisphere than in the right hemisphere (Fig. 8E). On lateral
occipito-temporal cortex, we compared a recently published
motion-selective group area of hMT+ that has been defined
using data from 509 adults (Huang et al. 2019). As Huang’s
et al. (2019) group fROI was not bounded by body-selective
regions but ours was defined by MPM that takes into account
the neighboring face and body part areas, the visfAtlas is smaller
than Huang’s definition. Nonetheless, also here, the locus of
our hMT+ probabilistic map is within the hMT+ atlas published
by Huang et al. (2019).

Discussion
In the present study, we generated a cross-validated functional
atlas of occipito-temporal visual cortex, including early visual
cortex retinotopic regions as well as category-selective regions.
Additionally, we evaluated how accurately this atlas predicts
category selectivity in left-out subjects. We found that CBA
outperforms NVA for most ROIs. Importantly, using CBA our
probabilistic category-selective ROIs accurately identify 40–94%
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Figure 7. Proportion of voxels that show maximum responsivity in left-out subjects are largely their own category. Using our volumetric atlas data, we generated a
cross-validated estimate of voxel maximum responsivity in a left-out subject. N-1 times, we generated a volumetric MPM and calculated the proportion of voxel that
were maximally responsive for the ROI’s category, e.g., face response voxel in mFus-faces. This gives an estimate for the expected specificity of the atlas. For each
major category—faces, bodies, places, and characters—proportions of category responsivity are displayed with each region’s preferred category as the bottom bar of

each stacked bar graph. Error bars: proportion own category selectivity across all left-out subjects.

of category-selective voxels in left-out subjects (Fig. 7). We make
this functional atlas (visfAtlas) of occipito-temporal cortex avail-
able on cortical surfaces of the fsaverage (FreeSurfer) and BVav-
erage (BrainVoyager), and volume formats in MNI space compat-
ible with the majority of software tools.

In the following, we will discuss the implications of our
results for theories of anatomical and functional coupling in
visual cortex, how our atlas relates to other atlases in the field,
whether it can be validated by independent data, and how future
research can expand on our atlas with new methodological
approaches.

CBA Improves the Consistency of Group fROIs:
Implications

Spatial consistency in both retinotopic and category-selective
regions was on average higher after CBA as compared to NVA
(Fig. 2). The higher performance of CBA is in agreement with
previous studies that reported that CBA results in atlases with
higher accuracy than volumetric atlases (Frost and Goebel 2012;
Coalson et al. 2018) and specifically of retinotopic visual areas
(Wang et al., 2015; Benson et al. 2012) and cytoarchitectonic
regions (Rosenke et al. 2017, 2018). Since CBA specifically
aligns macroanatomical landmarks, the higher accuracy of
CBA suggests a coupling between macroanatomical landmarks
and functional regions. These results are consistent with
prior research showing striking functional-macroanatomical
coupling in visual cortex including: 1) V1 with the calcarine
sulcus (Hinds et al. 2008), 2) V3A and the TOS (Nasr et al. 2011;
Tootell et al. 1997), 3) hV4 and the posterior transverse CoS
(Witthoft et al. 2014), 4) motion-selective hMT+ and the posterior
inferior temporal sulcus (Dumoulin et al. 2000; Weiner and
Grill-Spector 2011), 5) mFus-faces and the MFS (Grill-Spector
and Weiner 2014), and 6) CoS-places and the intersection of
the anterior lingual sulcus with the CoS (Weiner et al. 2018).

One interesting observation regarding the Dice coefficient
results (Fig. 2) is that in some fROIs, NVA produces a higher
Dice coefficient than CBA for high threshold values (e.g., pOTS-
characters LH and mFus-faces RH). We hypothesize that since
NVA is operating in 3D volume space and CBA in cortical surface
space, shifts around crowns of gyri or fundi of sulci may produce
a large impact on CBA than NVA. This hypothesis can be tested
in future research.

Historically, the prevailing view (Glasser and Van Essen 2011;
Haxby et al. 2011; Orban et al. 2014; Osher et al. 2016) was that
higher-level functional visual regions have greater variability
across participants as well as relative to macroanatomical
landmarks compared to early visual areas such as V2 and
V3. However, as we summarize in the prior paragraph,
improvements in measurements and analysis methods argue
against this prevailing view. In fact, our LOOCV procedure
shows that five high-level visual regions (pFus-faces, LOS-
bodies, ITG-bodies, CoS-places, and motion-selective hMT+)
have similar correspondence across subjects comparable to
early visual cortex. However, some functional regions (mFus-
faces, pOTS-characters, and MTG-bodies; Fig. 2; see also Frost
and Goebel 2012) show more variability across participants.
This diversity suggests that other factors may affect our ability
to predict high-level visual regions. First, the shape and size
of the ROI may impact across-subject alignment. Indeed, we
found that larger and more convex ROIs tend to align better
across participants than smaller ROIs, reflected in the finding
of a positive correlation between the Dice coefficient and
the size of the fROI. Second, the degree of macroanatomical
variability differs across anatomical landmarks. In other words,
stable macroanatomical landmarks may be better predictors of
functional ROIs than variable ones. For example, the anterior
tip of the MFS is a more stable anatomical landmark than its
posterior tip, as the length of the MFS substantially varies across
people. Consequently, the anterior tip of the MFS better predicts
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Figure 8. Comparison of the visfAtlas to other probabilistic atlases. In A–D each red-yellow map is the probabilistic map of unthresholded individual regions of the

visfAtlas ROI and the outline is the fROI of the relevant atlas; all images are show in the fsaverage brain. (A) Comparison of V1-V3 dorsal and ventral of the retinotopic
atlas published by Wang et al. (2015) and our respective visfAtlas regions. Regions are presented on a medial-occipital view of the fsaverage group brain. (B) Comparison
of V1–V3 dorsal and ventral to the anatomically estimated V1–V3 (Benson et al. 2012). (C) Comparison of motion-selective hMT+ published by Huang et al. (2019) to

visfAtlas hMT+ probabilistic map. (D) Comparison of CoS-places published by Weiner et al. (2018) to the visfAtlas CoS-places map. (E) Dice coefficient between the
visfAtlas fROI and the same fROI defined by other atlases. Error bars: SE across 19 visfAtlas subjects. LH: left hemisphere; RH: right hemisphere.
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face-selective mFus-faces than the posterior tip predicts pFus-
faces (Weiner et al. 2014). Third, the quality of CBA may vary
across cortical locations (see Frost and Goebel 2012, 2013).
Thus, more fragmented and less salient macroanatomical
landmarks, such as the partially fragmented OTS, may align
less well across participants with CBA. This in turn impacts
the registration of functional ROIs that are associated with
these landmarks. Fourth, the reliability of functional ROIs across
sessions within an individual, which indicates a noise ceiling,
may vary across ROIs. To evaluate the latter, we performed a
reproducibility analysis for our category-selective regions by
analyzing all three localizer runs independently (Fig. 4). This
analysis highlights that running the same experiment multiple
times within the same subject will not result in the exact same
cortical activation pattern. Here, reproducibility estimates (Dice
coefficients) ranged between 0.4 and 0.75 in VTC as well as
LOTC, similar to Dice coefficient estimates by other studies
(Weiner and Grill-Spector 2010; Weiner et al. 2016; Bugatus et al.
2017). Notably, the reproducibility analysis together with the
analysis of an independent dataset indicates that reproducibility
and variability of our Dice coefficient are within the range
expected by previous studies (Weiner et al. 2018). However, one
has to note that our reproducibility estimation is conservative
since we used the three runs that comprised our category-
selectivity localizer individually, which means that each split
had less trials and a lower signal-to-noise ratio (SNR) than the
analysis used to establish between-subject variability (three
runs per subject each). Future work should run the same
experiment for an additional full three runs to establish a
noise ceiling that is not impacted by SNR and trial number
differences.

Future research can also improve the inter-subject alignment
by improving CBA methods. For example, CBA may be improved
by weighting microanatomical landmarks by their consistency
and saliency. Other directions for improving the predictions of
the model may include incorporating additional features, such
as spatial relationships between ROIs, or adding some functional
data (Frost and Goebel 2013) to improve predictions. For exam-
ple, adding one retinotopic run improves predicting early visual
areas relative to macroanatomical landmarks alone (Benson and
Winawer 2018).

Category-Preferred Responses Within visfAtlas Regions
and Reasons for Variability Across Areas

As the main purpose of a functional atlas is to allow generaliza-
tion to new individuals, confirmation and validation of the func-
tional responses of the predicted regions are crucial. We used
an LOOCV approach to quantify the generalizability of our MPM
and demonstrate that voxels within the predicted ROI are dis-
playing maximum responsivity to the preferred category of that
ROI (Fig. 7). The highest proportion of own category-responsive
voxels was in lateral body-selective regions and the lowest own
category response was in character-selective regions. One pos-
sible explanation for this variability is the proximity of ROIs to
regions selective for other categories. For example, in VTC, the
body-selective region on the OTS is small and located between
two larger face-selective regions, but in lateral occipito-temporal
cortex, body-selective ROIs are larger and some of them distant
from the face-selective regions on the IOG. Close proximity
between ROIs selective for different categories increases the
likelihood of overlapping atlas boundaries, which may reduce
the predictions of category-selectivity in a new subject.

Another reason for variability across areas could be that
areas are differentially affected by the number of subjects they
require to reach a stable prediction. To test this, for each ROI,
we calculated Dice coefficients with N = 2 to max N for that ROI
and evaluated how the overlap changed with increasing num-
ber of subjects (Supplementary Fig. 1). Interestingly, our analysis
suggests that not all ROIs benefit from an increasing number of
subjects equally. More specifically, only 5 of the 18 ROIs displayed
such an increase, and those suggest to plateau between 12 and
16 subjects. For other ROIs, the number of subjects did not
impact the Dice coefficient. Generally, the assumption is that as
the number of subjects increases, the level of noise decreases
and one gets closer to the true between-subject variability. One
interesting note is that using the data of our visfAtlas, none
of the ROIs displayed a positive trend in Dice coefficient that
continues past the number of subjects included in our atlas.
Follow up work should evaluate whether this is local plateau or
the global maximum Dice coefficient for each region.

Additionally, our approach can be extended to generate
atlases of additional high-level visual regions that have other
selectivities by including stimuli and contrasts for 1) dynamic
versus still biological stimuli to identify regions selective for
biological motion in the superior temporal sulcus (Puce et al.
1996; Grossman and Blake 2002; Beauchamp et al. 2003; Pitcher
et al. 2011), 2) objects versus scrambled objects to identify
object-selective regions of the lateral occipital complex (Malach
et al. 1995; Grill-Spector et al. 1998; Vinberg and Grill-Spector
2008), and 3) colored versus black and white stimuli to identify
color-selective regions in medial VTC (Beauchamp et al. 1999;
Lafer-Sousa et al. 2016). Furthermore, future studies may explore
the possibility to generate more sophisticated atlases, which
contain not only a unique tiling of cortical regions but also
allow for multiple functional clusters to occupy overlapping
areas and indicate probabilities for multiple categories at each
voxel, perhaps building a hybrid of probabilistic maps of single
regions and an MPM.

Consistent Definitions of Visual Areas Across Different
Atlases

In generating our visfAtlas, it was important for us to include
early visual areas and hMT+ in addition to category-selective
regions for two reasons: 1) it allowed us to benchmark and test
our approach to atlases of retinotopic areas (e.g., Wang et al.
2015) and 2) it allowed us to generate a more comprehensive
atlas of the visual system that includes the most studied visual
regions spanning early and higher-level visual regions.

Finding that our approach generates similar ROIs to other
atlases (e.g., V1–V3 in the Wang et al. 2015 atlas and Benson
et al. 2012 atlas) and hMT+ (Huang et al. 2019) is important as
it illustrates that these ROIs are robust to experimental design,
stimuli type, and number of subjects that were used for gener-
ating atlases, all of which varied across studies. For example,
we defined hMT+ by contrasting responses to expanding and
contracting low contrast concentric rings to stationary ones
in 19 subjects but Huang et al. (2019) defined hMT+ by con-
trasting responses to dots moving in several directions versus
stationary dots in 509 subjects. Despite these differences, where
hMT+ is predicted to be, largely corresponds across both stud-
ies (Fig. 8C), even as the predicted spatial extend of hMT+ is
substantially smaller in our atlas as compared to Huang’s. For
retinotopic regions, we found the best correspondence between
our data and Wang et al. (2015) for V1d and V1v, especially in the
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left hemisphere (Fig. 8A). Right hemisphere V1 of our visfAtlas
extends more dorsally compared to Wang’s atlas, consequently
shifting right hemisphere V2d and V3d further compared to
Wang et al. (2015). For both, the comparison to Benson et al.
(2012) and Wang et al. (2015), we observe a reduction in overlap
that corresponds to a reduction in Dice coefficient when quan-
tifying V1 versus V2 and V3 (see Fig. 2 for details), indicating
that these may be individual differences across subjects that
are independent of anatomical coupling, but still display less
individual variability than previously assumed (see Discussion
section, CBA Improves the Consistency of Group fROIs: Implica-
tions).

Ultimately, the visfAtlas showed close correspondence to the
comparison atlases, highlighting the robustness of our approach
and the utility of functional atlases for future neuroimaging
studies.

Conclusion and Future Uses
To this date, no probabilistic atlas has been published that
contains such an extensive set of functional regions in occipito-
temporal cortex. The present study shows that most of the
category-selective regions can be predicted in new subjects.

This functional atlas of occipito-temporal cortex is available
in both surface and volume space and can be used in commonly
used data formats such as BrainVoyager and FreeSurfer. We hope
that this atlas may prove especially useful for 1) predicting an
ROI when no localizer data is available, saving scanning time
and expenses, 2) comparisons across modalities and 3) patient
populations, such as patients who have a brain lesion (Schiltz
and Rossion 2006; Steeves et al. 2006; Sorger et al. 2007; Barton
2008; Gilaie-Dotan et al. 2009; de Heering and Rossion 2015) or
are blind (Mahon et al. 2009; Bedny et al. 2011; Striem-Amit,
Dakwar, et al. 2012b; van den Hurk et al. 2017).

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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