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ABSTRACT

Objective: The goal of this study is to explore transformer-based models (eg, Bidirectional Encoder Representa-

tions from Transformers [BERT]) for clinical concept extraction and develop an open-source package with pre-

trained clinical models to facilitate concept extraction and other downstream natural language processing

(NLP) tasks in the medical domain.

Methods: We systematically explored 4 widely used transformer-based architectures, including BERT, RoB-

ERTa, ALBERT, and ELECTRA, for extracting various types of clinical concepts using 3 public datasets from the

2010 and 2012 i2b2 challenges and the 2018 n2c2 challenge. We examined general transformer models pre-

trained using general English corpora as well as clinical transformer models pretrained using a clinical corpus

and compared them with a long short-term memory conditional random fields (LSTM-CRFs) mode as a base-

line. Furthermore, we integrated the 4 clinical transformer-based models into an open-source package.

Results and Conclusion: The RoBERTa-MIMIC model achieved state-of-the-art performance on 3 public clinical

concept extraction datasets with F1-scores of 0.8994, 0.8053, and 0.8907, respectively. Compared to the baseline

LSTM-CRFs model, RoBERTa-MIMIC remarkably improved the F1-score by approximately 4% and 6% on the

2010 and 2012 i2b2 datasets. This study demonstrated the efficiency of transformer-based models for clinical

concept extraction. Our methods and systems can be applied to other clinical tasks. The clinical transformer

package with 4 pretrained clinical models is publicly available at https://github.com/uf-hobi-informatics-lab/Clin-

icalTransformerNER. We believe this package will improve current practice on clinical concept extraction and

other tasks in the medical domain.
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INTRODUCTION

Electronic health records (EHRs), which contain both structured,

coded data and unstructured clinical text, have now been widely

used for research and various clinical applications. A critical chal-

lenge of using EHRs is to unlock patient information from the un-

structured clinical text.1 Much of the critical information of

patients, such as family history, drug adverse events, and social, be-

havioral, and environmental determinants of health, is often only

well-documented in narrative clinical text.2–5 Therefore, researchers

have invested significant effort into developing natural language

processing (NLP) methods and tools to extract important clinical

concepts from narrative clinical text.6 Various NLP architectures—

including rule-based, machine learning-based, and hybrid models—

have been developed and studied to enhance the accuracy of clinical

concept extraction.7 With the emergence of deep learning models,

research on clinical concept extraction has shifted from traditional

machine learning models that rely heavily on semantic and lexical
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features manually crafted by domain experts to deep learning mod-

els that can automatically learn feature representations (eg, word

embeddings) from large volumes of unlabeled clinical text.8–10 Re-

cently, studies have reported that a new deep learning-based archi-

tecture, named “transformers,” achieved state-of-the-art

performance for a number of benchmark tasks11–16 in the general

English domain. Although several studies have examined

transformer-based models for clinical individually,17–21 there is no

study that has systematically explored and compared their perfor-

mance in the biomedical domain. In addition, there is a lack of pack-

age with pretrained clinical transformers that could facilitate

researchers and other users adopting these state-of-the-art NLP

models in various downstream clinical NLP tasks.

The goal of this study is to explore transformer-based models for

clinical concept extraction and develop a software package with pre-

trained clinical models to facilitate clinical concept extraction and

other downstream clinical NLP tasks. Here, we systematically ex-

plored 4 widely used transformer models (or encoders)—including

bidirectional encoder representations from transformers (BERT),12

RoBERTa,15 ALBERT,14 and ELECTRA22—to extract various

types of clinical concepts and benchmarked them against 3 public

datasets developed by the 2010 i2b2 challenge,23 the 2012 i2b2

challenge,24 and the 2018 n2c2 challenge.25 We evaluated and com-

pared the 4 models for clinical concept extraction with standard pre-

cision, recall, and F1-score metrics calculated using official

evaluation scripts from the i2b2 and n2c2 challenges. In addition,

we integrated the 4 transformers with pretrained clinical models

into an open-source software package (available at https://github.

com/uf-hobi-informatics-lab/ClinicalTransformerNER) to facilitate

clinical concept extraction and other downstream NLP tasks. To the

best of our knowledge, this is the first comprehensive study to sys-

tematically explore the 4 widely used transformer-based models for

clinical concept extraction.

BACKGROUND

Clinical concept extraction is a fundamental task to support down-

stream clinical applications such as computable phenotyping, clini-

cal decision support, and question-answering.1 Many clinical NLP

systems have been developed to extract various clinical concepts

from clinical narratives, such as MedLEE,26,27 MetaMap,28

cTAKES,29 and CLAMP.30 The clinical NLP community has orga-

nized a series of open challenges with a focus on clinical concept ex-

traction, including Informatics for Integrating Biology & the

Bedside (i2b2),23,31,32 National NLP Clinical Challenges (n2c2),25

SemEval,33–35 and ShARe/CLEF36,37 in the past decade. Researchers

have explored rule-based, machine learning-based methods, and hy-

brid approaches. Rule-based methods (eg, MedLEE, MetaMap,

cTAKES) heavily depend on domain experts to identify patterns and

design rules manually to capture clinical concepts based on medical

dictionaries. The machine learning-based methods (eg, CLAMP)

typically approach clinical concept extraction as a named entity rec-

ognition (NER) task—to identify the boundaries (ie, the start and

end positions in the document) of concepts and classify the semantic

categories of the identified concepts (eg, disease, medication). Most

state-of-the-art NLP methods for clinical concept extraction are

based on supervised machine learning models. Examples include the

winning systems in the 2010 and 2012 i2b2 challenges, the 2014

and 2015 SemEval challenges, and the 2018 n2c2 challenge, which

are all built using various supervised machine learning models.32,38–

41 Both traditional machine learning models (eg, conditional ran-

dom fields [CRFs], structured support vector machines [SSVMs])

and deep learning models (eg, convolutional neural networks

[CNN], recurrent neural networks [RNN]) have been explored.

Early studies of clinical concept extraction mainly focused on

traditional machine learning algorithms (eg, SVMs, CRFs, and

SSVMs) and various linguistic features (eg, part of speech, depen-

dency parsing, and n-grams). CRFs is 1 of the commonly used NER

methods as it achieved the best performance in several clinical NLP

challenges (eg, the 2010 and 2012 i2b2 challenge). Then, researchers

explored several unsupervised machine learning algorithms (eg, the

Brown clustering algorithm42 and the random indexing algo-

rithm43,44) to generate clusters of words with similar meanings as

novel unsupervised features. The experimental results from Tang et

al45 showed that the unsupervised semantic clusters could improve

the performance of NER in addition to the features manually identi-

fied by domain experts. We also have examined word embeddings

as features in a traditional CRFs model and demonstrated improved

performance.46

Subsequently, with the development of deep learning models, the

focus of concept extraction research shifted to algorithms for auto-

mated word-representation learning.47 Several deep learning meth-

ods such as CNNs and RNNs demonstrated better performance

than traditional machine learning methods. Compared with tradi-

tional machine learning methods, deep learning methods usually ap-

ply word embedding algorithms (eg, word2vec,48 GloVe,49 and

FastText50) to learn vector representation of words (ie, word embed-

dings) to achieve better performance and avoid time-consuming,

manual feature identification by domain experts. The RNN-based

neural NER model implemented using bidirectional long-short term

memory (LSTM) with a CRFs layer (LSTM-CRFs), first proposed

by Lample et al,51 achieved state-of-the-art performance in several

clinical NER challenges (eg, i2b2, n2c2, SemEval, and ShARe/

CLEF). Based on the LSTM-CRFs architecture, we also explored

algorithms to combine factual medical knowledge embeddings with

word embeddings to better handle medical terminologies not com-

monly used in general domain corpora.52

Inspired by the idea of representing words as vectors,48,53 NLP

researchers continued to explore new representations with rich

architectures using technologies such as the attention mechanism

and position embeddings. In 2017, Vaswani et al first used the word

“transformer” to name a novel language model architecture that

was solely constructed from self-attention blocks.54 Typically, the

training of transformer-based models (eg, BERT) consists of a pre-

training stage and a fine-tuning stage. Pretraining is a procedure for

optimizing the transformer-based models using large volumes of

unlabeled text data by language-modeling methods (eg, statistical

language modeling55 and masked language modeling56) which are

independent of any specific downstream NLP tasks—that is why it

is called “pretraining.” Fine-tuning is a procedure to further opti-

mize the pretrained transformer-based models towards a specific

NLP task (eg, clinical concept extraction) using annotated corpora.

The transformer-based models only need to be pretrained once and

then they can be applied to various downstream NLP tasks through

fine-tuning. Several transformer-based models with different archi-

tectures and pretraining strategies have been proposed in the past 2

years including BERT, ALBERT, RoBERTa, and ELECTRA. These

models demonstrated improvements on most NLP benchmarking

tasks and outperformed the LSTM-CRFs model as the new state-of-

the-art. Compared with CNNs and RNNs based on word-level

embeddings, transformer-based models further break down words

into sublevel tokens (as shown in Figure 1) to learn fine-grained
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structured representations of words or subwords. Several stud-

ies12,57 from the general domain have reported that transformers

achieved better performance for NER, outperforming the LSTM-

CRFs model even without a traditional CRFs layer. In the clinical

domain, Alsentzer et al21 and Si et al18 explored the BERT model

for clinical concept extraction.

However, there is no study that has systematically explored

transformers in the medical domain even though studies from the

general English domain have reported several transformers outper-

formed BERT on many benchmarks (eg, GLUE,58 MultiNLI,59 and

SQuAD60) There is also a lack of publicly available software pack-

ages to facilitate researchers adopting transformers in clinical NLP

tasks. In this study, we systematically examined 4 widely used trans-

former models for clinical concept extraction and developed an

open-source clinical transformer package.

MATERIALS AND METHODS

Dataset
This study used 3 public clinical concept extraction datasets devel-

oped by the 2010 i2b2 challenge, 2012 i2b2 challenge, and 2018

n2c2 challenge, respectively. Table 1 shows the descriptive statistics

of these 3 datasets. In the 2010 i2b2 dataset, there are 3 types of

clinical concepts including PROBLEM, TREATMENT, and TEST.

The 2012 i2b2 challenge has 6 types of clinical concepts including

PROBLEM, TREATMENT, TEST, CLINICAL_DEPT, EVIDEN-

TIAL, and OCCURRENCE. The 2018 n2c2 challenge focused on

concepts related to drug adverse events, including drugs, drug asso-

ciated attributes (ie, Dosage, Strength, Form, Frequency, Duration),

drug related reasons, and drug-induced adverse events (ADE).

Transformer models
This study systematically explored 4 widely used transformer-based

models including BERT, ALBERT, RoBERTa, and ELECTRA.

BERT: a bidirectional transformer-based encoder model pre-

trained using masked language modeling and optimized using next

sentence prediction. The base model architecture has 12 transformer

blocks with a hidden size of 768 and 8 attention heads. The total

number of parameters is �110 million.

ALBERT: a “lite” version of BERT. ALBERT simplified the ar-

chitecture of BERT to reduce the total number of parameters to op-

timize large-scale configurations and memory efficiency. More

specifically, the ALBERT model reduced the token-embedding layer

size from 768 to 128. Parameters are shared across all layers. AL-

BERT is pretrained using masked language modeling but optimized

using sentence-order prediction instead of next sentence prediction.

Therefore, the ALBERT is significantly smaller than BERT. The

base model of ALBERT has 12 transformer blocks with an embed-

ding size of 128 and the hidden size of 768 with 8 attention heads.

The total number of parameters is �12 million, which is only ap-

proximately one-tenth the number of parameters in BERT.

RoBERTa: a transformer-based model with the same architec-

ture as BERT but pretrained using a dynamic masked language

modeling and optimized using different strategies (eg, removing the

next sentence prediction).

ELECTRA: another transformer-based model with the same ar-

chitecture as BERT but pretrained using a novel strategy called

replaced token detection. The central idea of pretraining ELECTRA

is detecting replaced tokens in the input sentences. Specifically,

ELECTRA consists of 2 transformer models with 1 as a generator,

to create tokens to replace some of the original tokens, and the other

as a discriminator, to predict whether input tokens are original or

replaced by the generator.

Workflow of a transformer-based NER pipeline
Similar to other machine learning-based NER methods,

transformer-based models use NER tags such as the B-I-O tags to la-

bel the tokens, where “B” indicates the first token of a concept, “I”

indicates tokens inside of a concept, and “O” indicates tokens that

do not belong to any concepts. Thus, the clinical concept extraction

task can be formulated as a classification problem—classify a prede-

fined NER tag for each token. Different from the previous deep

learning models (eg, LSTM-CRFs) using word-level embeddings,

transformer-based models further break down words into pieces of

subtokens (pieces of tokens that are frequently used to form words).

A special tag, “X,” is introduced to indicate the subtokens. Figure 1

shows an overview of the workflow for transformer-based NER

methods.

Figure 1. An overview of the workflow for a transformer-based NER pipeline using BERT as an example.

Table 1. Distribution of notes and clinical concepts in the 3 datasets

Challenge

dataset

Subset Number

of notes

Number of

clinical concepts

2010 i2b2 Training 349 27 837

Test 477 45 009

2012 i2b2 Training 190 16 468

Test 120 13 594

2018 n2c2 Training 303 50 951

Test 202 32 918
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Preprocessing and postprocessing for transformer models

Transformer-based models used various word segmentation algo-

rithms61 to break words into subtokens to alleviate out-of-

vocabulary issue and learn contextual representations at the subto-

ken level. For example, BERT and ELECTRA used the WordPiece,62

RoBERTa adopted the Byte Pair Encoding,63 and ALBERT

employed the SentencePiece.64 To integrate the 4 transformer-based

models into a unified package, we developed a preprocessing mod-

ule to dynamically select a word segmentation algorithm. The pre-

processing module also aligns the word-level NER tags to the

subtoken NER tags. More specifically, it will: 1) assign the original

word-level tag if the subtoken is the first token split from a word; 2)

assign a special label “X” to other subtokens after the first 1. After

preprocessing, the system applies a transformer to predict subtoken

level NER tags. Then, a postprocessing module was developed to de-

code the token-level predictions back to word-level NER tags.

Pretraining and fine-tuning of transformer models
Pretraining

For each of the 4 transformer-based models, we explored general

models pretrained using general English corpora and clinical models

pretrained with clinical corpora, as previous studies17,18 showed

that pretraining on a clinical corpus improved the performance of

clinical concept extraction. For the general models, we adopted the

existing benchmark transformer-based models pretrained using

general English domain corpora including bert-base-uncased

(BERT-general), roberta-base (RoBERTa-general), albert-base-v2

(ALBERT-general), and electra-base (ELECTRA-general). Based on

the general models, we further pretrained them using clinical notes

from the Medical Information Mart for Intensive Care III (MIMIC-

III) database.65 We denote the clinical transformer-based models

pretrained using MIMIC-III corpus as BERT-MIMIC, ALBERT-

MIMIC, RoBERTa-MIMIC, and the ELECTRA-MIMIC, respec-

tively.

Fine-tuning

Based on the transformer models pretrained using the MIMIC data

(an unsupervised training procedure that doesn’t require labels), we

further added a linear classification layer to predict NER tags using

clinical concepts labeled in the training corpora. At this stage, both

the parameters of transformer models and the parameters of the

classification layer will be optimized for clinical concept extraction.

Experiments and evaluation
Experiment set up

We developed a clinical concept extraction package on top of exist-

ing transformer architectures implemented in the Transformers li-

brary developed by the HuggingFace team11 using PyTorch.66 The

default parameters were used to pretrain the transformer models us-

ing the MIMIC-III corpus. To measure the perplexity scores, we

held out 5% of the MIMIC-III corpus as an evaluation set. The de-

tailed pretraining hyperparameters are available in Supplementary

Material Table S1. To fine-tune transformer models for clinical con-

cept extraction, we split 10% of annotated notes from the training

dataset as a validation set and used the rest of the notes as a (short)

training set. The best model was selected according to the validation

performance measured by strict F1-scores on the validation set. We

adopted an early stop strategy to stop the training when there were

no improvements observed in 5 consecutive epochs. We conducted

all experiments using 2 Nvidia P6000 GPUs. An LSTM-CRFs model

developed in our previous study52 was used as the baseline.

Evaluation metrics

Following the standard evaluation of clinical concept extraction, we

compared the performance of transformer-based NER models using

the strict microaveraged precision, recall, and F1-score aggregated

from all entity categories. The official evaluation scripts provided by

the 2010 i2b2 and the 2018 n2c2 challenges were used to calculate

the scores.

RESULTS

Table 2 compares the 4 transformer models for clinical concept ex-

traction on 3 public clinical NER datasets developed by the 2010

i2b2 challenge, 2012 i2b2 challenge, and 2018 n2c2 challenge. For

each transformer model, we compared a general model pretrained

using general English domain corpora and a clinical model pre-

trained using the clinical notes from the MIMIC III database.

Among all models, the RoBERTa-MIMIC achieved the best perfor-

mance on the 3 datasets with F1-scores of 0.8994, 0.8053, and

0.8907, respectively. Compared to the baseline LSTM-CRFs model,

the RoBERTa-MIMIC significantly improved the F1-scores by �4%

and 6% on the 2010 and 2012 i2b2 datasets. Compared with the

general transformer models, the clinical transformer models im-

proved the performance for clinical concept extraction. For exam-

ple, on the 2010 i2b2 dataset, the RoBERTa-MIMIC outperformed

the RoBERTa-general by �2% in terms of F1-score (0.8994 vs

0.8822). The BERT and ALBERT-based models achieved similar

performances on the 3 datasets, indicating that the lightweight

BERT model, ALBERT, works as well as the full BERT model. Since

ELECTRA shared the same model architecture as the BERT, the

ELECTRA models achieved similar performances as the BERT mod-

els on all 3 datasets. Notably, the RoBERTa-general model matched

or exceeded the performance of our original LSTM-CRFs and the

RoBERTa-MIMIC model consistently outperformed it.

DISCUSSION

Accurate identification of clinical concepts from clinical narratives

is a fundamental task to enable many downstream research and clin-

ical applications leveraging patient information documented in un-

structured clinical text. This study systematically explored 4 widely

used transformer architectures for clinical concept extraction and

compared them with the LSTM-CRFs model as a strong baseline (ie,

the previous state-of-the-art model). Our evaluation using 3 public

clinical NER datasets showed that 2 transformer models, RoBERTa

and BERT, outperformed the previous widely used LSTM-CRFs

deep learning model for clinical concept extraction. Among the 4

transformer models, RoBERTa achieved the best performance on all

3 public datasets. Compared with the baseline performance of

LSTM-CRFs, RoBERTa remarkably improved the F1-score by ap-

proximately 4% and 6% on the 2010 and 2012 i2b2 datasets. The

ALBERT and ELECTRA based models achieved performances com-

parable to the BERT based models on all 3 clinical NER datasets.

Our study demonstrated that it is necessary to pretrain

transformer-based models using clinical text when applying them in

the medical domain. The 4 clinical transformer models outper-

formed their corresponding general models for clinical concept ex-

traction. For example, the RoBERTa-MIMIC model outperformed
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the RoBERTa-general by approximately 1.7%, 2%, and 1% on the

3 datasets, respectively (Table 2). The same trend was observed for

other transformer models. The general RoBERTa transformer never-

theless performed comparably to LSTM-CRFs. We further exam-

ined the training loss and perplexity scores for the top 2 transformer

models (ie, BERT and RoBERTa), using 5% notes held out from the

MIMIC-III corpus. Supplementary Material Table S10 compares the

detailed perplexity scores and associated F1-scores of the 2 models

during the pretraining. Without pretraining using clinical corpora,

the perplexities for the general (ie, pretrained using general English

corpora only) BERT and RoBERTa were 41.6099 and 32.5643, re-

spectively. Both of their perplexities decreased along with the pre-

training using clinical notes from MIMIC-III. After pretraining for

10 epochs, the perplexities for BERT and RoBERTa dropped to

2.1818 and 2.0823, respectively. Figure 2 compares the pretraining

loss between BERT and RoBERTa.

We also compared the precision and recall of the RoBERTa-

MIMIC with the baseline LSTM-CRFs model and found that the im-

provement on F1-score mainly from the recall. For example, the

recalls of RoBERTa-MIMIC are 2.95% (0.8888 vs 0.8593), 9.66%

(0.8181 vs 0.7215), and 2.95% (0.8888 vs 0.8593) higher than the

recalls of the LSTM-CRFs on the 3 datasets, respectively, demon-

strating the efficiency of transformer models for clinical concept ex-

traction.

The performance of the best model, RoBERTa-MIMIC, is com-

parable with state-of-the-art models reported in the medical domain.

Si et al reported that a BERT-large model achieved F1-score of

0.9025 on the 2010 i2b2 dataset.18 Although our RoBERTa-

MIMIC model (here we adopted the RoBERTa base model) is only

�1/3 of the BERT-large model, our performances are comparable to

the BERT-large model with the advantage of a short training time.

We compared our RoBERTa-MIMIC model with the BERT-large

model reported by Si et al18 on the concept level using the 2010 i2b2

dataset. Our RoBERTa-MIMIC model achieved better F1-scores for

PROBLEM and TEST (0.9084 vs 0.8926 on PROBLEM; 0.8955 vs

0.8880 on TEST) compared to the BERT-large model. For TREAT-

MENT, the F1-score achieved by our RoBERTa-MIMIC was only

0.0008 lower than the BERT-large model (0.8906 vs 0.8914). Sup-

pementary Table S9 compares the training time of the 4 transformer

models examined in this study with the BERT-large model

previously reported. The average training time per epoch was 922

seconds for our RoBERTa-MIMIC, which is about 1/3 of the BERT-

large model of 2,804 seconds. The Alibaba team reported a hybrid

system that achieved the best strict F1-score of 0.8956 in the 2018

n2c2 challenge focusing on extracting adverse drug events (ADE).25

Here, the single RoBERTa-MIMIC model achieved comparable per-

formance (F1 score of 0.8907) on the 2018 n2c2 dataset. A key diffi-

culty in the 2018 n2c2 challenge is that the performance of

Table 2. The strict level performances on the 2010 i2b2, 2012 i2b2 and 2018 n2c2 test set

Model 2010 i2b2 test set 2012 i2b2 test set 2018 n2c2 test set

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

LSTM-CRFsa 0.8737 0.8509 0.8621 0.7742 0.7215 0.7469 0.9016 0.8593 0.8849

BERT-general 0.8636 0.8752 0.8694 0.7353 0.7748 0.7546 0.8887 0.8728 0.8807

BERT-MIMIC 0.8847 0.8965 0.8905 0.7682 0.8184 0.7925 0.8835 0.8871 0.8853

RoBERTa-general 0.8777 0.8867 0.8822 0.7649 0.8007 0.7824 0.8821 0.8804 0.8812

RoBERTa-MIMIC 0.8963 0.9026 0.8994 0.7930 0.8181 0.8053 0.8927 0.8888 0.8907

ALBERT-general 0.8619 0.8758 0.8688 0.7561 0.7766 0.7662 0.8772 0.8766 0.8769

ALBERT-MIMIC 0.8937 0.8893 0.8915 0.7836 0.8210 0.8019 0.8776 0.8909 0.8842

ELECTRA-general 0.8689 0.8781 0.8735 0.7512 0.7983 0.7740 0.8797 0.8805 0.8801

ELECTRA-MIMIC 0.8801 0.8955 0.8877 0.7851 0.8146 0.7996 0.8814 0.8857 0.8836

aThe LSTM-CRFs results for 2010 i2b2 and 2018 n2c2 were originally reported in our previous works.52,67 Best precision, recall, and F1-score are highlighted

in bold.

(a) (b)

Figure 2. Comparison of pretraining loss for BERT and RoBERTa.
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extracting ADEs is relatively low compared with other tasks in the

challenge across all participants. Our RoBERTa-MIMIC model

achieved a better lenient F1-score (see Supplementary Material Ta-

ble S8) than the best system in the 2018 n2c2 challenge (0.5936 vs

0.5731) for extraction of ADEs.

Clinical concept extraction is 1 of the well-established clinical

NLP tasks that have been extensively explored in recent decades.

Thanks to the open challenges organized by the NLP research com-

munity, we can see how breakthroughs in general NLP algorithms

can improve the accuracy of clinical concept extraction, thus reduc-

ing the noise passed to the downstream components. Compared

with the best system reported in the 2010 i2b2 challenge (deBruijn

et al38) the proposed RoBERTa-MIMIC model improved the strict

F1-score from 0.8520 to 0.8994.

This study has limitations. We mainly focused on clinical con-

cept extraction, which is a word-level NLP task. Recent studies from

the general English domain have explored BERT for sentence-level

NLP tasks and reported promising results for semantic textual simi-

larity,68 clinical records classification,69 relation extraction,70,71 and

question-answering.72 Further studies should examine the

transformer-based models for sentence-level and document-level

NLP tasks.

CONCLUSION

In this study, we systematically evaluated 4 transformer models us-

ing 3 public clinical datasets and developed an open-source clinical

transformer package for clinical concept extraction. Our study dem-

onstrated the efficiency of transformers for the extraction of various

types of clinical concepts from clinical narratives. Our methods and

systems can be applied to other clinical NLP tasks through fine-

tuning. The transformer package with 4 pretrained clinical trans-

former models is publicly available at https://github.com/uf-hobi-in-

formatics-lab/ClinicalTransformerNER. We believe this package

will improve current practice on clinical concept extraction and ben-

efit other related clinical NLP tasks.
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