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Abstract
The presence of heterogeneity/subgroups in infants and older populations against single-domain brain or behavioral
measures has been previously characterized. However, few attempts have been made to explore heterogeneity at the
brain–behavior relationship level. Such a hypothesis posits that different subgroups of infants may possess qualitatively
different brain–behavior relationships that could ultimately contribute to divergent developmental outcomes even with
relatively similar brain phenotypes. In this study, we aimed to explore such relationship-level heterogeneity and delineate
the subgrouping structure of newborns with differential brain–behavior associations based on a typically developing
sample of 81 infants with 3-week resting-state functional magnetic resonance imaging scans and 4-year intelligence
quotient (IQ) measures. Our results not only confirmed the existence of relationship-level heterogeneity in newborns but
also revealed divergent developmental outcomes associated with two subgroups showing similar brain functional
connectivity but contrasting brain–behavior relationships. Importantly, further analyses unveiled an intriguing pattern that
the subgroup with higher 4-year IQ outcomes possessed brain–behavior relationships that were congruent to their
functional connectivity pattern in neonates while the subgroup with lower 4-year IQ not, providing potential explanations
for the observed IQ differences. The characterization of heterogeneity at the brain–behavior relationship level may not only
improve our understanding of the patterned intersubject variability during infancy but could also pave the way for future
development of heterogeneity-inspired, personalized, subgroup-specific models for better prediction.
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Introduction
One of the most important goals of human neuroscience
research lies in the delineation of robust brain–behavior
relationships to derive brain-based biomarkers for behavioral
prediction. This research is especially important for infants as
subtle brain changes during infancy may cascade into major

deviations later in life (Tau and Peterson 2010; Gao et al. 2017;
O’Donnell and Meaney 2017; Monk et al. 2019). However, the
difficulty of detecting robust brain–behavior relationships in
this population is well recognized and the reported associations
are often weak to moderate (Alcauter et al. 2014, 2015b). On
the one hand, technological limitations may partly underlie
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these difficulties and future development of more advanced
imaging/image analysis methods may help derive more sensi-
tive biomarkers with tighter behavioral associations. However,
another reason may relate to the conventional way of character-
izing brain–behavior relationships based on the homogeneity
assumption. This is because instead of homogeneity, many
recent observations suggest heterogeneity of brain–behavior
relationships across different populations or even within an
otherwise “homogeneous” population. For example, two parallel
studies conducted by Elton and colleagues found that beyond
categorical differences in brain functional connectivity, children
with attention-deficit hyperactivity disorder (ADHD) (Elton et al.
2014) and autism spectrum disorder (Elton et al. 2016) also
show contrasting brain–behavioral relationships compared with
normal controls. Moreover, sex-related differences in brain–
intelligence quotient (IQ) relationships in a cohort of control
adults (Jiang et al. 2019) and socioeconomic status-related
differences in brain-reading skills correlations in a typically
developing children sample were also reported (Noble et al.
2006). Therefore, previous reports suggest that there might be
heterogeneity at the brain–behavioral relationship level even
within an otherwise homogeneous population.

The benefits of exploring and delineating such brain–
behavior relationship heterogeneities in infants are at least
2-fold. First, it would greatly improve our understanding of
the intersubject variability pattern during this critical period of
development (Gao et al. 2014). If confirmed, the existence of such
relationship-level heterogeneity would indicate mechanistic
differences and imply that even with similar brain phenotypes,
different infants may go on to develop divergent behavioral
outcomes, given differential brain–behavioral mechanisms.
Therefore, such delineation goes beyond the conventional
single-domain characterization of heterogeneity and could offer
greater insights into potential brain mechanistic differences.
Second, a subgrouping structure could be derived based on
the detected brain–behavior relationship heterogeneity, which
may offer novel ways for brain-based predictions of later
developmental outcomes through deriving subgroup-specific
prediction models. Such heterogeneity-inspired, personalized,
subgroup-specific prediction approaches, compared with those
based on generic whole-group models, may better utilize the
enriched information embedded in the infant brain for better
prediction.

In this paper, we sought to take the first step and determine
whether there exists brain–behavior relationship heterogeneity
in a relatively “homogenous” control infant sample (i.e., all
with full-term birth, <24-h stay at a neonatal intensive care
unit (NICU), and no maternal mental disorder diagnosis,
N = 81). For each infant subject, we have a successful newborn
resting-state functional magnetic resonance imaging (rsfMRI)
scan and a 4-year cognitive outcome measure (i.e., 4YR IQ).
The correlation structures between functional connections
measured at ∼3 weeks of age and 4YR IQ scores were examined
to determine if there exist significantly different brain–behavior
relationships in different subgroups of infants at the connection
level. We further examined if a unified subgrouping structure
could be defined at the whole-brain level. We hypothesize
positive answers for both questions. Moreover, we further expect
that the derived subgroups would also show differences in
their 4-year developmental outcomes, given their differences
in brain–behavior mechanisms. Our results confirmed all three
hypotheses and provided strong support for the existence of
relationship-level heterogeneity in neonates. More interestingly,

Table 1 Summary of demographic information

Neonates

Infants with 4YR IQ measures N = 81
IQ: 110.22 ± 12.22

Gestational age at birth (days) 273.33 ± 9.43
Postnatal age at scan (days) 23.41 ± 11.37
Birth weight (grams) 3216.2 ± 558.9
Sex (male/female) N: 34/47
Twin (twin/single birth) N: 25/56

when comparing between brain–behavior relationships and
neonatal functional connectivity patterns, an intriguing pattern
emerged that the subgroup with higher 4YR IQ showed brain–
behavior relationships that were largely congruent with their
neonatal functional connectivity pattern (i.e., reflecting their
pre−/perinatal functional connectivity growth directions),
particularly within the default-mode (Raichle et al. 2001),
frontoparietal control (Vincent et al. 2008), and limbic networks,
while the subgroup with lower 4YR IQ not. These findings greatly
improved our understanding of the intersubject variability at the
brain–behavioral relationship level and lay the foundation for
future developments of subgroup-specific models for behavioral
prediction.

Materials and Methods
Participants and Imaging

The infant participants were from the University of North Car-
olina (UNC) at Chapel Hill Early Brain Development Study, char-
acterizing early childhood brain and behavior development (Gao
et al. 2017; Gilmore et al. 2018). A total of 81 neonate subjects
with passed-quality control 3-week rsfMRI scans and successful
4YR IQ measures were retrospectively identified and included
in this study. All included infants were full term (gestational
age ≥37 weeks), no maternal psychiatric disorders diagnosis,
and <24-h stay at an NICU. Note our original sample have
both twins and singletons, but the final sample only included
randomly selected one of each twin pair to minimize between-
subject correlation. This sample was chosen to demonstrate the
potential presence of brain–behavior relationship heterogeneity
within an otherwise homogenous infant sample. Demographic
information of the sample was summarized in Table 1. The
study protocols were approved by both the UNC at Chapel Hill
and Cedars-Sinai Institutional Review Boards.

The magnetic resonance imaging (MRI) data were acquired
using two scanners: a 3 T Siemens Allegra scanner with
circular polarization head coil (69 neonatal scans) and a 3 T
Siemens Tim Trio with 32-channel head coil (12 neonatal
scans) with the same MRI protocols. Different scanners
were included as a control variable in subgroup compar-
isons. Functional images were acquired with a T2

∗-weighted
echo planar imaging sequence: repetition time/echo time
(TR/TE) = 2000 ms/32 ms, 33 slices, voxel size = 4 mm3, 150
volumes. Structural images were acquired using a 3D MPRAGE
sequence: TR/TE = 1820 ms/4.38 ms, inversion time = 1100 ms,
voxel size = 1 mm3. Infant subjects were fed, swaddled, and
fitted with ear protection prior to imaging. All subjects were in
a natural sleep state during the imaging session.
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Image Preprocessing

Functional images were preprocessed using the FMRIB’s Soft-
ware Libraries (FSL) (Smith et al. 2004) and Analysis of Functional
NeuroImages (Cox 1996), including discarding the first three
volumes, slice timing and head motion correction, bandpass
filtering (0.01–0.08 Hz), and nuisance signal regression. The 24
motion-related parameters (six motion correction parameters,
derivative, and their quadratic terms), signals from the white
matter, cerebrospinal fluid (plus their derivative and quadratic
terms), and the global signal were included as nuisance signals.
All nuisance signals were band-pass filtered (0.01–0.08 Hz)
before regression to match the frequency of the blood oxygen
level-dependent signal. Despite of the already short acquisition
time (5 min), rigorous additional motion correction steps
through scrubbing were employed to mitigate the widely
reported motion-related artifacts (Power et al. 2012, 2014).
Specifically, volumes with global signal changes >0.5% and/or
frame-wise displacements (FD) >0.3 mm (Power et al. 2012) were
excluded (plus one before and two after). After this procedure,
different subjects had different numbers of volumes left and
to avoid introducing another potential variability, we chose to
uniformly cut the length of remaining data of all subjects to be
90 volumes (i.e., 3 min) as a compromise between sample size
and data length. Finally, the images were spatially smoothed
with Gaussian kernel (full width at half maximum = 6 mm).
The amount of scrubbed volumes and residual frame-wise FD
were correlated with behavior scores and gestational age at
scan. None of these tests yield significance. After functional
images preprocessing, all functional images were registered to
the age-specific anatomical template space for neonate (Shi
et al. 2011) using the combined transformation field from a
two-step registration, namely an affine transformation from
individual functional images to anatomical images and a
nonlinear registration from individual anatomical images to
the target images. Spatial transformations were performed in
FSL.

Behavioral Measures of IQ

Behavioral data of IQ were collected using the Stanford–Binet
Intelligence Scales, 5th edition (Roid 2003). The Stanford–Binet
is a series of tasks administered individually in a structured
setting. These scales were designed to assess intelligence
across the lifespan (appropriate for individuals aged 2 through
85 years), specifically focusing on five major domains, including
fluid, knowledge, quantitative, visual–spatial, and working
memory. In the current study, the abbreviated IQ (ABIQ) score
was used as an estimate of general cognitive ability. ABIQ is
calculated from performance on two scales: nonverbal fluid
reasoning and verbal knowledge. The ABIQ score provides a
quick estimate of a child’s general cognitive ability, and as it
requires the administration of only two subtests, it is easier to
obtain than the full-scale IQ, especially for 4-year-old children.
The ABIQ score has shown strong test–retest (r = 0.87) reliability.
The Stanford–Binet scales also have strong inter-rater reliability
(ranging from 0.74 to 0.97 across all scales).

Experimental Design and Statistical Analysis

Detection of Significant Brain–Behavior Relationships as a Whole
Group
To determine the existence of significant brain–behavioral rela-
tionships as a whole group (i.e., homogenous relationships),

anatomical automatic labeling (AAL)-based functional connec-
tivity matrix (Rushe et al. 2001) was calculated for each of the 81
newborns and correlations between each functional connection
and 4YR IQ scores were calculated. Gestational age at birth,
postnatal age at scan, birth weight, sex, twin status, and scanner
were included as control variables. Specifically, after imaging
preprocessing, the infant age-specific AAL atlas (Shi et al. 2011)
was used to extract reginal rsfMRI time series for the calculation
of pair-wise correlation values among 90 cortical regions (i.e.,
a 90 × 90 correlation matrix for each subject). After Fisher Z-
transform, connection strengths were correlated with 4YR IQ
scores within the full sample of 81 newborns to detect signifi-
cant one-group brain–behavioral relationships after controlling
for the six control variables as described above. To improve
robustness of this brain–behavioral correlation detection, a non-
parametric permutation test was conducted to detect significant
relationships. Specifically, 10 000 randomizations on the 4YR
behavior IQ were conducted and the probability of a randomized
squared correlation value larger than the true correlation was
defined as the P value. P < 0.05 based on this nonparametric test
was defined to be significant.

Detection of Heterogenous Brain–Behavior Relationships
To determine the existence of heterogenous brain–behavior rela-
tionships for each of the 4005 connections, we designed an
algorithm to examine if splitting the whole sample into two
subgroups could significantly improve the whole-group brain–
behavior relationship model as introduced above. The algorithm
was designed to optimize two subgroups {G1,G2} within the
original group G so that the linear relationships {l1, l2} within
each of the two subgroups explain the maximum amount of
variance. To achieve this, we designed an iterative algorithm,
minimizing the sum of absolute values of residuals from {l1, l2}
fitting of all the data points, which is conceptually similar as k-
means clustering. The linear regression model was defined as
follows: l1,2(α, β) := {(α, β)|α + βx − y = 0}, in which intercept: α

and slope: β were estimated from data (x, y) using ordinary least
squares (OLS) regression.

To start the algorithm, two lines were defined as the ini-
tialization of {l1, l2}: One fitting the whole group G and the
other orthogonal with the first one, both crossing the origin.
x, y were normalized into Z-score before fitting. Then, the point
(xi, yi)-to-line {l1, l2} distance was defined as follows: di =| α +
βxi − yi | /

√
β2 + 1. Based on the distance, point (xi, yi) could be

assigned into G1 if di1 ≤ di2 or into G2 if di1 > di2, yielding
subgroups {G1,G2}. After all points got an assignment, {l1, l2} were
refitted based on the newly assigned point memberships in each
subgroup and another iteration started. �j was defined as the
Euler distance between the updated slopes {βi+1

1 , βi+1
2 } and the

previous slopes {βi
1, βi

2} (j represented iterations). These steps
were repeated until �j < � = 4.57 × 10−4 (equivalent to that the
angular distance was <1.5◦). Final outputs resulted in optimized
subgroup {G1,G2} at individual connection. The pseudocode of
the iterative algorithm was listed below.

Algorithm Dataset Fitting

Input : G := {(
xi, yi

)
, i = 1, 2, . . . n

}

1 Initialize : j ← 0;
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2 Set
{
Gj

1, Gj
2

}
:= {G,∅} , compute the average value

(
x, y

) = 1
n

∑n

i=1

(
xi, yi

)
;

3 Fit lj1 with α̂
j
1 and β̂

j
1 by OLS;

4 Construct the orthogonal line

li2 with α̂
j
2 = −1/α̂

j
1 and β̂

j
2 = y − α̂

j
2 ∗ x;

5 Repeat :

6 Update the subgroups
{
Gj+1

1 , Gj+1
2

}
based on

the distance to the line pair
{
lj1, lj2

}
;

7 Based on subgroup
{
Gj+1

1 , Gj+1
2

}
, fit lines

{
lj+1
1 , lj+1

2

}
with

{
βi+1

1 , βi+1
2

}
by OLS separaely;

8 Expand
{
βi

1, βi
2

}
to

{
βi+1

1 , βi+1
2

}
, and �j =

√√√√ ∑
m∈{1,2}

∣∣∣βi+1
m , βi

m

∣∣∣2;

9 j ← j + 1;

10 Until : �j < �

Output : {G1, G2} s.t.G = G1 ∪ G2 and G1 ∩ G2 = ∅

Note even with a random distribution, splitting a whole sam-
ple into two subgroups may improve the linear fitting. To avoid
this “false positive” scenario and only detect those connections
that show significantly more improvement after splitting than
random distributions, we employed a consistent nonparametric
random permutation test to define significance of subgrouping
for each connection. Specifically, the nonparametric permuta-
tion test was conducted by randomly permuting the behavioral
scores of all subjects 10 000 times and rerunning the subgroup-
ing algorithm, as described above, for each random permutation.
Therefore, 10 000 pairs of “randomized” {l1, l2} were estimated
during this process to serve as the null distribution and a P
value was assigned for each connection as the percentage of
times the averaged R2 of the two randomized subgrouping lines
from the 10 000 permutations surpass the corresponding true
averaged R2 of the subgrouping based on the original data. This
testing ensured that we only detect connections that showed a
significantly better subgrouping structure than random organi-
zations. P < 0.05 based on this nonparametric test was defined
to be significant.

Subgrouping Structure of Brain–Behavior Relationship
at Whole-Brain Level
We further explored if a unified whole-brain level subgrouping
structure can be derived from the individual connection-level
subgrouping classifications. To do this, the subgrouping char-
acteristics of each subject for each of the detected connections
showing significant two-group fittings were calculated as the

difference values of dot-to-lines distances of each subject’s
data point to the two regression lines. These connection-
specific values were concatenated to form a subject-level
subgrouping profile vector across all detected connections
showing significant subgrouping as described above. This
vector thus represented each individual subject’s subgroup-
ing membership profile across all detected “heterogenous”
connections and was used to calculate an across-subject
correlation matrix reflecting the between-subject similarity of
their individual connection-level subgrouping profiles. Based
on this similarity matrix, k-means clustering was conducted
to determine if there are subgroups (i.e., cohorts showing
significantly higher within-cohort similarity than between-
cohort similarity) that possessed similar subgrouping profiles
across all heterogenous connections. The optimal k was defined
based on the “Davies–Bouldin” criterion (Davies and Bouldin
1979), which calculated the ratio of within-cluster and between-
cluster distances. In order to assess the robustness of this
optimal number, 100 repetitions of k-means clustering were
conducted.

After clustering, the defined whole-brain level subgroups
were compared against their 4YR IQ outcomes and six control
variables including gestational age at birth, postnatal age at
scan, birth weight, and ratios of male/female, twin/singleton,
and two scanners. The within-subgroup brain–behavior rela-
tionships were also calculated and compared. To further com-
pare the spatial distribution of within-subgroup connection-
level relationships at network level, the 90 AAL regions were
assigned to eight functional networks (Yeo et al. 2011) based
on spatial overlapping (i.e., winner-take-all approach to assign
each region to the network with the highest level of overlap
in volume) to group all connections as either within one (both
nodes within one network) or between two networks (each node
belonging to a different network). Finally, to test the robust-
ness of our results against the choice of brain parcellations,
the Cedars–UNC neonate-specific functional brain atlas (Shi
et al. 2018) was used and the above-mentioned comparisons
of within-subgroup functional connectivity and brain–behavior
relationships were repeated to explore if findings can be repli-
cated across different template choices. The overall workflow of
our methods is presented in Supplementary Figure S1.

Results
Heterogenous Brain–Behavioral Relationships
at the Connection Level

The group mean whole-brain correlation matrix is shown in
Figure 1a. Regions within the same functional networks were
grouped together, and it was apparent that most networks
were already well synchronized, although primary ones were
synchronized at a higher degree than high-order ones, which
is consistent with previous findings (Gao et al. 2011, 2015).
Based on the nonparametric permutation test, there were
343 connections (8.56%, Fig. 1b) detected showing significant
homogenous/one-group connectivity–IQ relationships (non-
parametric P < 0.05). These one-group relationships were
expectedly weak (i.e., average R2 = 0.072 with range between
0.046 and 0.165, Fig. 1c, upper row). On the other hand,
334 connections (8.34%, Fig. 1b) were detected to show two-
group/heterogenous brain–behavior relationships based on our
nonparametric test (nonparametric P < 0.05). As expected, the
subgroup-level linear brain–behavioral relationships for the 334

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
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Figure 1. The homogenous (one-group) and heterogenous (two-group) brain–behavior relationships between neonate functional connectivity (NEO FC) and 4-year IQ
(4YR IQ). (a) The group mean FC matrix of the 81 neonates, grouped by eight functional networks (i.e., visual [VIS], sensorimotor [SM], dorsal attention [DA], ventral
attention [VA], limbic system [LIM], frontoparietal control [FP], default-mode [DMN], and subcortical [SUB] network); (b) The number and percentage of significant

homogenous (one-group) and heterogenous (two-group) connections among all connections; (c) The mean variance explained (i.e., mean R2) of the 343 homogenous
connections by the one-group fitting (R2_1_1; upper bar), the mean variance explained of the 334 heterogenous connections by one-group fitting (R2_1_2, middle
bar), and mean variance explained of the 334 heterogenous connections by the two-subgroup fitting (R2_2_2, bottom bar); “∗∗∗∗” indicates P < 1.0 × 10−10 for group
comparison; (d) Three exemplar scatter plots of the connections showing one-group relationships in left column, two-group relationships in middle column, and

connections showing both significant one-group and two-group relationships in the right column. x-axis represents the functional connectivity (Z-scores) in neonate
and y-axis represents the 4-year IQ (Z-scores).

heterogenous connections from the two-group fittings were
much stronger (i.e., average R2 = 0.501 with range between
0.410 and 0.661, Fig. 1c, bottom row) compared with their
corresponding one-group correlations (average R2 = 0.039,
P < 1 × 10−10, Fig. 1c, middle row) and the 343 significant single-
group correlations (P < 1 × 10−10, Fig. 1c, upper row). Interest-
ingly, there were 114 connections showing both significant
one-group and two-group correlations, indicating that despite
of significant correlations with 4YR IQ as a whole group,
there were still detectable slope differences in their brain–
behavioral relationships. Consistently, when directly testing
these 114 connections, the two-group fittings significantly
outperformed one-group fittings in terms of variance explained
(P < 1 × 10−10, Supplementary Fig. S2), suggesting subgroups
were preferred to model these connections than one-group
models. Three examples of homogeneous/one-group relation-
ships, heterogenous/two-group relationships, and overlapping
relationships are shown in Figure 1d.

The spatial distributions of the two types of connections
were shown in glass brains in Figure 2a and summarized based
on their network assignments in Fig. 2b. Lists of all regions of
interest (ROI)-to-ROI connections that showed one−/two-group
relationships were presented in Supplementary Tables S1 and

S2, respectively. Overall, both the homogenous and heteroge-
nous connections featured a brain-wide distribution spreading
across all eight functional networks.

A Robust Whole-Brain Level Subgrouping
Structure Derived from the Connection-Level
Subgrouping Profiles

To explore the possibility of defining a whole-brain consistent
subgrouping structure, k-means clustering was conducted
based on individual connection-level subgrouping profiles.
Based on the Davies–Bouldin criterion (Davies and Bouldin
1979), the 81 neonatal subjects were clustered into two
subgroups (N = 27/54, Fig. 3a) at the whole-brain level. The
results demonstrated significantly higher within-subgroup
similarity than between-subgroup similarity (P < 0.001) in
their connection-level subgrouping profiles, supporting the
existence of whole-brain level subgroups (Fig. 3b,c). In fact,
subgroup 1 (S1) and subgroup 2 (S2) showed primarily pos-
itive within-group similarities, but largely negative correla-
tions between their connection-level subgrouping profiles.
In contrast, when we tried to perform similar whole-brain
clustering based on the homogenous connections as a control

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
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Figure 2. The distribution of the detected homogenous and heterogenous connections. (a) The spatial distribution of the detected homogenous (N = 343) and
heterogenous (N = 334) connections in glass brains. (b) The network-level distribution of homogenous and heterogenous connections. The connections between each

network and the rest seven networks were summarized as “between-network” in this plot. The numbers in y-axis represent the normalized number of connections
(normalized against the number of nodes within each network) showing significant relationships normalized against the total possible number of within−/between-
network connections. VIS, visual; SM, sensorimotor; DA, dorsal attention; VA, ventral attention; LIM, limbic system; FP, frontoparietal control; DMN, default-mode; and
SUB, subcortical network.

analysis, the k-means clustering was not converging and no
subgroups were detected. Examples of the connection-level
subgrouping profiles from pairs of subjects either within the
same subgroup or from different subgroups are shown in
Supplementary Figure S3.

When examined against control variables including gesta-
tional age at birth, postnatal age at scan, and birth weight,
the two subgroups did not show any significant differences
(Fig. 3d). Similarly, the ratios of male/female, twin/singleton,
motion parameters, and the number of datasets acquired
in scanner 1/scanner 2 were not different between the
two subgroups either. However, when examining behavioral
outcomes, S1 and S2 showed a significant difference in 4YR
IQ with S1 showing higher IQ than S2 (P < 0.001, Fig. 3d, left
panel).

When examining functional connections alone, the two
subgroups showed highly consistent whole-brain functional
connectivity patterns and none of the connections showed
significant difference between S1 and S2 (Fig. 4a, first column).
Therefore, as expected, the two subgroups featured similar
brain functional connectivity but different behavioral outcomes.
Subsequent examination of within-subgroup brain–behavioral
relationships revealed highly contrasting brain–behavior rela-
tionships between the two subgroups (Fig. 4a, second column).
In fact, the two sets of brain–behavior relationships from S1
and S2 showed a significant negative relationship (r = −0.116,
P < 1.0 × 10−10).

A closer look revealed that the brain–behavior relation-
ship pattern in S1 qualitatively resembled its own neonatal
functional connectivity pattern, but S2 failed to demonstrate
such similarity. Quantitatively, when correlating between
these two patterns, S1 showed highly significant positive
correlations (r = 0.240, P < 1.0 × 10−10), while S2 demonstrated
a negative correlation (r = −0.228, P < 1.0 × 10−10, Fig. 4a, third
column), suggesting that S1’s brain–behavior relationships
were more congruent with its own functional connectivity

developmental status at the neonatal stage while S2 not. When
further decomposing the whole-brain pattern into different
functional networks, the tri-network set including the limbic,
the frontoparietal control, and the default-mode networks (red
box in Fig. 4a, fourth column) stood out and showed the most
significant positive correlations in S1 (r = 0.489, P < 1.0 × 10−10,
compared with the rest showing r = 0.191), but the most negative
correlations in S2 (r = −0.424, P ≤ 1.0 × 10−10, compared with the
rest showing r = −0.203, Fig. 4b). When further examining these
patterns using a different neonate-specific functional atlas,
the observed within-group functional connectivity and brain–
behavior relationship patterns remained highly consistent
(Supplementary Fig. S4).

Finally, although the two detected subgroups did not differ in
their scanner distributions (Fig. 3d), the use of different scanners
may represent a source of potential heterogeneity. Therefore, we
repeated our analysis based only on subjects from the Allegra
scanner (N = 69) and highly consistent results were obtained
(Supplementary Fig. S6). Specifically, based on this one-scanner
sample, there were 296/243 connections showing significant
one−/two-group relationships (Supplementary Fig. S6a). After
the same whole-brain subgrouping analysis based on these
connection-level subgrouping profiles, a similar two-group
subgrouping structure was again detected to be optimal
(Supplementary Fig. S6b), and 91.3% of subjects (i.e., 63 out of
69) were detected to be within the same subgroup as they did in
the original analysis based on the 81 subjects. When the within-
subgroup brain–behavior relationship analysis was repeated,
a highly consistent pattern with that shown in Figure 4 was
observed; subjects in S1 showed brain–behavior relationships
that were largely consistent with their neonatal functional
connectivity pattern, but S2 not (Supplementary Fig. S6c).
Moreover, the tri-network set of the limbic, the frontoparietal
control, and the default-mode network also showed the
most positive/negative correlations in S1 and S2, respectively
(Supplementary Fig. S6c, red boxes).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa226#supplementary-data


The Subgrouping Structure of Newborns Chen et al. 307

Figure 3. Whole-brain level subgrouping structure based on the individual connection-level subgrouping profiles. (a) The optimal number of clusters (i.e., k = 2); (b)
Similarity of connection-level subgrouping profiles within and between the two defined whole-brain level subgroups (S1 and S2); (c) Statistical comparisons of within-
and between-subgroups (S1 and S2) similarity of connection-level subgrouping profiles; (d) Statistical comparisons of 4YR IQ and six control variables (i.e., gestational
age at birth [GA, in days], postnatal age at scan [PA, in days], birth weight [BW, in grams], percentages of two sexes, twin/singleton, and two scanners) and two motion

parameters (the residual frame-wise displacement [rFD] and the number of scrubbed TRs [nSC]) between S1 and S2. ∗∗∗P < 0.001.

Figure 4. Contrasting brain–behavior relationships between the two subgroups. (a) First column: Mean functional connectivity patterns for S1 and S2 (visual [VIS],
sensorimotor [SM], dorsal attention [DA], ventral attention [VA], limbic system [LIM], frontoparietal control [FP], default-mode [DMN] and subcortical [SUB] network);
second column: Unthresholded brain–behavior correlation patterns for S1 and S2 (thresholded matrices at P < 0.05 are shown in Supplementary Fig. S5, the left column);
third column: Scatter plots between mean functional connectivity patterns (column 1) and mean brain–behavior relationship patterns (column 2) for S1 and S2,

respectively; fourth column: Column 3 relationships in network format. Red boxes highlight the tri-network set (i.e., the LIM, FP, and DMN); (b) First column: Scatter
plots of column 3 relationships within the DMN–LIM–FP set; second column: Scatter plots of column 3 relationships outside of the DMN–LIM–FP set.
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Discussion
In this study, we demonstrated the presence of brain–behavior
relationship heterogeneity in newborns, not only at connec-
tion level but also at the whole brain level. In particular, two
subgroups of newborns were detected with similar brain func-
tional connectivity patterns but different 4YR IQ outcomes and
contrasting brain–behavior relationships. More intriguingly, the
subgroup with higher 4YR IQ showed brain–behavior relation-
ships that were largely congruent to its neonatal functional
connectivity pattern while the subgroup with lower 4YR IQ
performances not. These findings add new perspectives to our
current understanding of intersubject variability during infancy
and may inspire future developments of better brain-based pre-
diction models for behavioral outcomes.

First, the detection of 334 heterogenous brain–behavioral
relationships within a relatively homogenous neonate sample
(i.e., all full term, <24-h NICU stay, and no parental disorder
diagnosis) confirmed the presence of relational heterogeneities
in human neonates with respect to their 4YR IQ outcomes
(Fig. 1). Moreover, a robust subgrouping structure at the whole-
brain level was also detectable showing much higher within-
subgroup similarity than between-subgroup similarity based
on their connection-level subgrouping profiles (Fig. 3). In fact,
while their within-subgroup clustering profiles were positively
correlated, their between-group profiles were largely negatively
correlated, indicating highly contrasting brain–behavioral rela-
tionships. These findings suggest that infants within S1 and S2
likely employ divergent brain mechanisms for related domains
of IQ development. Importantly, when examined against differ-
ent control variables including gestation age at birth, postnatal
age at scan, birth weight, sex, twin status, motion parameters,
and scanner used to acquire data, no significant differences
were observed (Fig. 3) between the two subgroups, indicating
that the observed divergence in brain–behavioral relationships
were not driven by these control variables.

Given their early appearance with minimal environmental
exposures, the genetically driven prenatal processes likely con-
tributed to such relational predispositions (Wang et al. 2018).
However, adverse prenatal environmental risk factors, especially
those directly interacting with fetal neural development (e.g.,
prenatal drug exposure [Grewen et al. 2015; Salzwedel et al.
2015, 2016], maternal obesity [Salzwedel et al. 2019a] /depres-
sion [Graham et al. 2015; Qiu et al. 2015], etc.), may have also
influenced the emergence of such heterogeneity, either inde-
pendently or interacting with genetic factors (Gao et al. 2019).
Future studies explicitly monitoring these factors are needed
to test these interactions. Regardless, our findings of heteroge-
nous relationships between neonatal brain functional connec-
tivity measures and 4-year cognitive outcomes in a relatively
homogenous neonate sample support the critical importance
of individualized/personalized perinatal brain mechanisms in
long-term outcomes. More broadly, this finding is also consis-
tent with one of the most notorious observations in human
mental disorder research; when comparing a group of patients
with mental disorders with normal controls, the differences in
their brains, either structurally or functionally, are often subtle
and can only be detected at the group level. However, indi-
vidual patients often have dramatic and sometimes extreme
behavioral manifestations that are easily discernable at indi-
vidual level (Lombardo et al. 2015; Elton et al. 2016). Findings
in this study suggest that it is likely not only categorical dif-
ferences in brain metrics but also qualitative differences in
brain–behavioral mechanisms that may have contributed to

these mismatches. Overall, the observed heterogeneity suggests
that future efforts exploring brain–behavior relationships in
infants and older populations should not only focus on whole-
group homogenous ones but also pay attention to subgroups
with divergent relationships. Notably, pioneering previous stud-
ies have demonstrated the presence of such brain–behavior
relationship-level heterogeneity against clinical diagnosis (e.g.,
ADHD [Elton et al. 2014], autism spectrum disorder [Elton et al.
2016], Turner’s syndrome [Xie et al. 2015], cerebral small vessel
disease [Su et al. 2018]), sex (Jiang et al. 2019), and socioeco-
nomic status (Noble et al. 2006), which is conceptually con-
sistent with the current study. However, a major difference
between most previous studies and the current one relates to
the data-driven nature of the relationship-level heterogeneity
detection approach employed in this study. As a result, the
current approach does not rely on a prior hypothesis regarding
the underlying dimension of heterogeneity. Instead, it data-
drivenly detects heterogeneity within the examined population
in question and could theoretically detect heterogeneity that
either exists within an otherwise homogenous population or
cuts across different dimensions. Therefore, applications of the
currently proposed new concept and methods in future studies
may provide novel insights in either subtyping within a diag-
nosis or detecting heterogeneity/homogeneity that cuts across
different clinical diagnosis and/or other known phenotypes, a
concept in line with the Research Domain Criteria framework
(Ross and Margolis 2019).

A further analysis of the relationships between the brain–
behavior associations and the neonatal functional connectivity
patterns within S1 and S2 revealed intriguing patterns of how
different brain–behavioral mechanisms may have contributed
to the observed IQ differences. The current results revealed
that S1’s brain–behavior relationships are highly consistent with
its own functional connectivity development pattern at the
neonatal stage while S2’s not. This observation suggests that
through the employment of a set of brain–behavior mecha-
nisms that are “conforming” to their own functional connec-
tivity growth directions till the neonatal stage, infants in S1
are more likely to develop better behavioral outcomes. However,
with much weaker or even opposite relationships between the
two domains, infants in S2 would likely not be able to similarly
“take advantage of” existing pre−/perinatal functional connec-
tivity growth for better IQ outcomes later in development. There-
fore, findings in this study not only revealed brain–behavior rela-
tional heterogeneity in neonates but also revealed a potential
guiding principle for better behavioral outcomes, which under-
scores the importance of “alignment” between brain–behavior
relationships and initial brain growth directions.

At network level, the tri-network set including the default-
mode network (Raichle et al. 2001), the frontoparietal control
network (Vincent et al. 2008), and the limbic network stands out
to be the networks showing the strongest positive correlations
between brain–behavior relationships and neonatal functional
connectivity patterns in S1 (Fig. 4; Supplementary Fig. S4).
Although to a lesser extent, these three networks also seem
to show the most negative/weakest correlations in S2. Previous
reports have consistently documented the early development
and fast synchronization of the default-mode (Gao et al.
2009) and limbic networks (Alcauter et al. 2015a; Salzwedel
et al. 2019b) in neonates, suggesting their critical importance
in the early orchestration of functional circuits critical for
self-referential, arousal, salience detection, and emotional
regulations (Fransson 2005; Di Martino et al. 2008; Roy et al.
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2009). Notably, the two networks, especially the default-
mode network, are often observed to show anticorrelations
with externally driven networks, including the frontoparietal
control network, in adults studies, and this relationship
has been promoted to be one of the guiding principles in
adult brain functional organization (Fox et al. 2005; Fornito
et al. 2012). Our previous findings also revealed the fast
development of this between-network relationship during
the first year of life, which may underlie the improvement
of attention and self-awareness functions in infants (Gao
et al. 2013). Overall, the three networks, including the default-
mode, the limbic, and the frontoparietal control network,
are likely involved in the critical development of salience
detection/attention and socioemotional functions during
infancy that pave the foundation for later intellectual and
cognitive development (Atzil et al. 2018). The observation
that these three networks stand out to show most significant
brain–behavior associations and drive the positive correlations
between brain–behavior relationships and neonatal func-
tional connectivity patterns in the subgroup with superior
4YR IQ outcomes is thus not surprising and reinforces
their fundamental importance in early brain and behavioral
development.

There are several limitations in this study that deserves
further consideration. The first one relates to the predefined
number of two when delineating the subgrouping structure
at the connection level. This number was chosen considering
the relatively limited sample size (N = 81), so future studies
with larger sample sizes are needed to explore if more
subgroups exist at the connection level. As an initial try,
we did perform an additional set of analysis to explore if
more whole-brain level subgroups could be detected if we
define three subgroups at the connection level. Our results
showed that even based on the 262 connections showing
significant three-group relationships at the connection level
(Supplementary Fig. S7a), a two-subgroup whole-brain cluster-
ing structure was still optimal (Supplementary Fig. S7b). In fact,
72.8% of the subjects overlapped between the new subgrouping
structure and the original one. However, the newly detected
subgroups showed lower levels of within-group homogeneity
(especially for S2, P < 1.0 × 10−10, Supplementary Fig. S7b) and
less separation between the two subgroups (P < 1.0 × 10−10,
Supplementary Fig. S7b) compared with our original results;
thus we deemed this subgrouping results suboptimal to our
main results. Therefore, it is likely that a larger sample size
and more subjects with enhanced heterogeneity profiles (e.g.,
including preterm babies and/or other at-risk babies) are
needed to define more subgroups in this population and this
represents a future direction. Second, we chose to use the AAL
template (Shi et al. 2011) because of its wide application in
neuroimaging studies, which makes it easier for important
future replication studies. However, we do recognize that
different templates may affect the results. Therefore, we tested
a second functionally defined, neonate-specific functional atlas
(Shi et al. 2018) and highly consistent patterns between S1
and S2 were observed (Supplementary Fig. S4), supporting the
robustness of the current findings against different template
choices. Third, our sample consists of data acquired from two
scanners, although we did not observe any difference in scanner
distribution between the two detected subgroups (Fig. 3d), this
may represent a source of potential heterogeneity in our original
sample. Therefore, we repeated our analysis based only on
subjects from the Allegra scanner (N = 69) and highly consistent

results were obtained (Supplementary Fig. S6), supporting the
robustness of the reported results against potential scanner-
related differences. A fourth limitation relates to the relatively
short rsfMRI scan time (i.e., 5 min) and data included in the
analysis after motion scrubbing (i.e., 3 min). However, when we
compared the functional connectivity matrices resulting from
3- and 4-min data in a subsample of 58 subjects with at least 4-
min data remaining after scrubbing (Supplementary Fig. S8),
the two group mean matrices showed highly consistent
patterns, the individual connection values were highly cor-
related (r = 0.994, P < 1.0 × 10−10), and no connection showed
significant difference even at the uncorrected P < 0.05 level.
Nevertheless, future studies with longer rsfMRI scans are
needed to independently validate the current findings. Finally,
a general limitation in infant rsfMRI study relates to the lack
of objective sleeping stage monitoring, which prevented us
from investigating whether brain stage differences may have
contributed to the identified relationship-level heterogene-
ity and subsequent subgrouping structures. Simultaneous
electroencephalography-fMRI recordings could potentially shed
more light into this confound, but great challenges remain in
its practical applications in scanning naturally sleeping infants.
Future efforts are needed to address this limitation.

Overall, in this study, we found two subgroups of neonates
that do not differ in single-domain brain functional connectivity
measures but significantly contrast each other in their brain–
behavioral relationships and 4YR IQ outcomes, providing strong
support for the presence of relational heterogeneity even
in a relatively homogenous neonatal sample. Importantly,
the higher performance group of S1 demonstrated brain–
behavior mechanisms that were consistent with its own
pre−/perinatal functional connectivity growth directions, which
likely had contributed to the observed higher IQs while the
lower-performance group of S2 showed no such relationships.
Intriguingly, the tri-network set of the default-mode, the
limbic, and the frontoparietal control network dominated these
relationships, reinforcing the importance of these networks in
early brain development (Gao et al. 2009; Alcauter et al. 2015a;
Salzwedel et al. 2019b). These findings significantly improved
our understandings of the intersubject variability during
infancy. If validated, the finding of relational heterogeneity in
this study may inspire novel brain-based prediction approaches
through personalized, subgroup-specific prediction models,
which would likely better utilize the rich and differential mech-
anistic information embedded in the newborn brain for better
prediction.
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