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ABSTRACT

Objective: Accurate estimations of surgical case durations can lead to the cost-effective utilization of operating

rooms. We developed a novel machine learning approach, using both structured and unstructured features as

input, to predict a continuous probability distribution of surgical case durations.

Materials and Methods: The data set consisted of 53 783 surgical cases performed over 4 years at a tertiary-

care pediatric hospital. Features extracted included categorical (American Society of Anesthesiologists [ASA]

Physical Status, inpatient status, day of week), continuous (scheduled surgery duration, patient age), and un-

structured text (procedure name, surgical diagnosis) variables. A mixture density network (MDN) was trained

and compared to multiple tree-based methods and a Bayesian statistical method. A continuous ranked probabil-

ity score (CRPS), a generalized extension of mean absolute error, was the primary performance measure.

Pinball loss (PL) was calculated to assess accuracy at specific quantiles. Performance measures were addition-

ally evaluated on common and rare surgical procedures. Permutation feature importance was measured for the

best performing model.

Results: MDN had the best performance, with a CRPS of 18.1 minutes, compared to tree-based methods (19.5–

22.1 minutes) and the Bayesian method (21.2 minutes). MDN had the best PL at all quantiles, and the best CRPS

and PL for both common and rare procedures. Scheduled duration and procedure name were the most impor-

tant features in the MDN.

Conclusions: Using natural language processing of surgical descriptors, we demonstrated the use of ML

approaches to predict the continuous probability distribution of surgical case durations. The more discerning

forecast of the ML-based MDN approach affords opportunities for guiding intelligent schedule design and day-

of-surgery operational decisions.
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INTRODUCTION

Costs of surgery account for roughly a third of all health-care

spending in the United States.1 Operating room (OR) cost is a

significant contributor to high surgical costs and is estimated to

be approximately $36 per minute.2 The cost-effective utilization

of OR time is often impaired by uncertainties in the surgical case

duration. OR underutilization leads to idle staff, whose wages

are among the biggest contributor to OR costs;2 meanwhile, OR

overutilization leads to cancellations of impending surgeries,3

medical errors, fatigue and burnout,4,5 and increased staff

turnover.6

Scheduled case duration is often based on a surgeon’s estimate,

which is frequently inaccurate.7–9 Statistical and machine learning

(ML) approaches have been used for estimating case durations.

For example, a Bayesian statistical method used a weighted combi-

nation of the surgeon’s estimate with historical data to forecast the

duration of surgery.10 Similarly, ML approaches have demon-

strated improvements to prediction accuracy, compared to tradi-

tional institutional estimates.11–13 These methods have also been

applied in predicting case durations for pediatric surgeries,14,15

with 1 study showing between 75% and 85% accuracy in predict-

ing cases that overrun their scheduled time by a predefined

percentage.15

Prior studies using ML techniques for predicting case durations

have several limitations. First, studies were often small in scale,

with approximately 1000 patients.11,12 Second, studies primarily

evaluated only a favorable subset of cases, such as the 10 most

common procedures15 or procedures that were performed more

than 30 times.13 Third, most studies have used the mean surgical

case duration as the predicted outcome.11–15 Prior research sug-

gests that schedule creation informed by case duration variance,

rather than a mean case duration, may be less likely to result in

overutilization. This advantage arises from the identification of

case sequences that have high cumulative variance and are likely to

overrun their scheduled time.16 Furthermore, many operational

decisions on the day of surgery depend on knowledge of both the

mean and variance of case durations. For example, answers to the

question “what is the probability that an OR will run past 5pm?”

may motivate decisions such as releasing or retaining staff, opening

an additional room for a surgeon, or determining the placement of

an add-on case.

Finally, current prediction approaches rely on structured data

elements as input for the prediction models (ie, categorical and

continuous variables). However, such data elements are highly het-

erogenous and can vary considerably between institutions. For ex-

ample, some electronic health records (EHRs) encode procedure

name as a single category, some as multiple categories, and others

as free text. Furthermore, the categories themselves can be heterog-

enous (eg, “Adenotonsillectomy” and “Tonsillectomy and

Adenoidectomy” describe identical procedures). As such, ML

approaches that can be generalized must be able to semantically

decode a common version of heterogenous data structures, such as

free text.

We developed a novel approach for predicting surgical case

durations by training ML models that utilize both structured varia-

bles and free text. In addition, we characterized surgical case dura-

tion as a continuous probability distribution, rather than using

mean duration, to inform perioperative decision making. We discuss

the pragmatic applications of this approach for accurately predicting

surgical case durations, enabling intelligent schedule design, and

guiding day-of-surgery operational decisions.

MATERIALS AND METHODS

Study setting and data sources
Data used in this study included all cases that were performed in a

central operating location at St. Louis Children’s Hospital (Saint

Louis, MO), a free-standing, tertiary-care, pediatric hospital, be-

tween 2 April 2013 and 31 December 2017. The start date reflects

the deployment of the SIS (Surgical Information Systems, Alpha-

retta, GA) EHR at our institution. This data set included data on

surgeries performed by various surgical services, including General,

Cardiothoracic, Orthopedic, Otolaryngology, Ophthalmology, Plas-

tic, Urology, Gynecology, Transplant, and Neurosurgery. Proce-

dures performed by non-surgical services in the central operating

location, such as Gastroenterology, Hematology/Oncology, Den-

tistry, and Pain Medicine, were also included.

The institutional review board of Washington University ap-

proved this study with a waiver of consent (IRB #201910015). The

model development adhered to the “Transparent Reporting of a

Multivariate Prediction Model for Individual Prognosis or Diag-

nosis” (TRIPOD) guidelines.17

Variable definitions and feature extraction
Models in this study were trained to predict actual surgical case du-

ration, which was defined as the time between patient entry into the

OR to patient exit (“wheels-in to wheels-out”) and extracted from

SIS. This definition was chosen because of its importance to all peri-

operative stakeholders, as opposed to “skin incision to skin

closure,” or “anesthesia start time to anesthesia stop time.” Prior re-

search indicates that the actual duration follows a log-normal distri-

bution for most types of surgeries.8,18 As such, the actual duration

was log-transformed and normalized to have a mean of 0 and a stan-

dard deviation of 1 for its treatment in the ML models.

Surgeries are allocated a block of time in the OR schedule based

on their anticipated duration (henceforth “scheduled duration”). At

our institution, the scheduled duration is primarily based on the sur-

geon’s estimate. The scheduled duration is sometimes modulated by

historical data, but this is not a standardized or a consistent process.

In rare cases, a “placeholder” scheduled duration is entered for

emergent cases. Scheduled duration was extracted from SIS, then

log-transformed and normalized.

Other predictor variables extracted from SIS included the day of

the week of a surgery and the operating location. Additional predic-

tor variables were extracted from the corresponding anesthesia re-

cord in the MetaVision electronic medical record (iMDSoft, Tel

Aviv, Israel), including procedure name, surgical diagnosis, surgeon

name, patient age, inpatient status, and American Society of Anes-

thesiologists (ASA; Schaumburg, IL) Physical Status (ASA-PS). All

extracted variables were used by all predictive models.

The surgeon name, day of the week of surgery, operating loca-

tion, inpatient status, and ASA-PS were categorical variables. Sur-

geon name refers to the first attending surgeon or proceduralist

associated with the case. The day of the week of surgery was defined

relative to the time a patient entered the OR. Operating locations re-

ferred to the specific operating room or anesthetizing location in

which the procedure occurred; there were 14 general ORs, 1 dedi-

cated cardiac OR, and 1 procedure room. Inpatient status was

treated as a binary categorical variable, where “true” was assigned

to patients that were an inpatient at the time of surgery. Each ASA-

PS was treated as its own category (“1” and “1E” were treated as

separate categories). Categorical variables were encoded as a one-

hot vector after extraction.
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Procedure name and surgical diagnosis were unstructured free-text

variables. Procedure name was a short free-text description of the sur-

gery or procedure(s) intended to be performed. Billing codes (eg, Com-

mon Procedure Terminology) for procedures or diagnoses were not

utilized in this analysis, as they were not consistently available at the

time of surgery. Surgical diagnosis was a free-text description of the

principal diagnosis necessitating the surgery or procedure. After extrac-

tion from the medical record, procedure name and surgical diagnosis

were stripped of common English stop words (eg, “a,” “the”) and

punctuations. The final step of free-text preprocessing was model de-

pendent, and options are described below.

Patient age in days was recorded in the medical record and was

extracted as a continuous variable and normalized. If patient age

was missing, the mean age across all patients in the training data set

was used. Missing categorical variables were represented with an

empty vector. Missing text data was represented with an empty

string.

Model development
We developed multiple tree-based and neural network–based ML

approaches. Data between 1 January and 31 December 2017 were

sequestered and used for evaluation of predictive models (hence-

forth, “test data”). The remaining data (henceforth, “training data”)

were randomized and used for training and validation. Five-fold

cross-validation was used to tune model hyper-parameters. A de-

tailed description of the implementation of each model, hyperpara-

meters, and performance metrics on validation data can be found in

Supplementary Appendix 1. Performance metrics on test data were

evaluated only once for each finalized model.

Three tree-based models were trained: simple decision tree (DT),

random forest (RF), and gradient boosted decision tree (GBT). For all

trees, unigrams and bigrams were extracted from free-text variables

and encoded in a term frequency-inverse document frequency sparse

vector. For a given tree-based model, a pair of trees were used to predict

the mean and standard deviation of the output probability distribution.

Figure 1. Architecture of the Mixture Density Network. LSTM: long short-term memory; MLP: multilayer perceptron; ReLU: rectified linear unit.
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One neural network was trained: a mixture density network

(MDN).19 For this approach, free-text inputs were tokenized and

each word token was embedded into a vector. The tensor represent-

ing each phrase was used as input for a long short-term memory

(LSTM) recurrent neural network. The output of the LSTM was

then concatenated with the other input vectors and used as an input

for a multi-layer perceptron (MLP) with 1 hidden layer and a vector

output. Three iterations of this MLP were trained simultaneously,

with their vector outputs corresponding respectively to the means,

standard deviations, and mixing coefficients of a mixture of Gauss-

ian distributions. This mixture of Gaussian distributions was the

output of the MDN, representing a forecast of surgical case duration

as a continuous probability distribution.

The loss function used to train model parameters was the nega-

tive log likelihood of observing the actual duration. Given a training

case where x is the actual duration; n is the number of Gaussian dis-

tributions in the MDN output; and mi, ri, and ai refer to the mean,

standard deviation, and mixing coefficient of the ith distribution, re-

spectively, this loss function was formalized as:

L ¼ � log
Xn

i¼1
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The number of normal distributions contributing to the mixture

was set prior to training, and we tuned this parameter along with

other hyperparameters.

Given the propensity of MDNs to overfit, particularly for rare

combinations of input parameters,20,21 we employed a training strat-

egy to limit overfitting in which all 3 MLP components of the MDN

were trained with early stopping, the MLPs corresponding to mixing

weight and standard deviation were frozen, and the remaining MLP

corresponding to the means was trained for additional epochs. The

architecture of our MDN implementation is shown in Figure 1.

ML models were compared against a non-ML statistical method.

We chose a specific Bayesian statistical method developed by Dexter

et al10 that shared input variables with the ML models (procedure

name, surgeon name, and scheduled duration) and also predicted a

continuous probability distribution of the outcome variable. The per-

formance of the Bayesian method can be measured using the same

metrics as the ML models. This method produces a normal distribu-

tion from a weighted combination of historical case data and an em-

pirical distribution centered on the case’s scheduled duration. Three

key values—a, b, and s—were computed from the training data: a
and b are parameters of an inverse gamma function that serves as the

conjugate prior for variance and s is a weighting parameter with units

of cases. When the number of historical cases is equal to s, then the

historical distribution and empirical distribution are weighted equally.

Performance measures
The primary performance measure in this study is the accuracy of each

model, measured by the continuous ranked probability score (CRPS).

CRPS is a measure of accuracy for probabilistic forecasts of continuous

outcomes.22–24 CRPS is formalized by the following equation, where F

is the cumulative distribution function (CDF) of a forecast, H denotes

the Heaviside step function representing the CDF of the observed out-

come, and x is the observed outcome:

CRPS F;xð Þ ¼
ð1
�1

F yð Þ � H y � xf gð Þ2dy

We chose to report CRPS as our primary outcome for several

reasons. First, it is a global measure that combines all predictive

qualities into a single value. Models are rewarded for accurately rep-

resenting the hypothetical underlying distribution from which obser-

vations are sampled, and also for incorporating predictors that

enable more precise (ie, narrow) predictive distributions. Second, it

is measured in units of the predicted variable (minutes, in this study)

and has a finite ideal score of 0, making it easier to interpret as a

measure of distance from truth that has similarities to the root mean

squared error and mean absolute error (MAE). Third, it can be cal-

culated for any forecast for which the cumulative probability distri-

bution is known, including deterministic forecasts, for which it

simplifies to MAE. For these reasons, CRPS has been described as a

generalized MAE.23

We used CRPS to compare all ML algorithms against the Bayes-

ian statistical method. We also evaluated CRPS of the scheduled du-

ration, which is a deterministic forecast of actual duration, to

contextualize the performance of the statistical and ML models. Al-

though all models were trained in log space, their predictive normal

distributions were first transformed back into their corresponding

lognormal counterparts for the calculation of CRPS, so that an accu-

rate value of minutes could be reported.

CRPS does not evaluate performance at specific quantiles. As

such, as part of a secondary analysis, we computed the pinball loss

(PL) function to evaluate the performance of each model at specific

quantiles. The PL is a measure of quantile accuracy and, like CRPS,

has a numerical range of [0, inf], where 0 is the perfect score and can

only be achieved by a deterministic prediction with 0 absolute error.

It is calculated separately for any quantile (0,1).25 For each algorithm,

we compared the PL at the 0.05, 0.25, 0.50, 0.75, and 0.95 quantiles.

We also evaluated the performance of each model on common

versus rare surgeries. Subgroups of common and rare surgeries were

taken from the test data. The procedure name and surgeon were

used to determine the rarity of a surgery as follows: if p was a spe-

cific combination of a procedure name and surgeon, and np is the

number of cases by p, then the common surgical group was defined

as cases with np > 20 and a rare surgical group was defined as cases

with np ¼ 1.

Feature importance was evaluated on the best-performing model

by calculating the permutation importance (PI). PI (also known as

model class reliance) is an algorithm-agnostic measure of feature im-

portance.26,27 To calculate the PI of a feature f, PIf, the values of f in

the test data set are first randomly shuffled. Then, the performance

of the model is calculated on the test data set containing shuffled f.

If f is important to the model, then we would expect the perfor-

mance to degrade significantly when f is shuffled, whereas if f is not

important, then the performance should be preserved. PIf was calcu-

lated as CRPS (shuffled f)/CRPS (unshuffled), where a high PI

denotes high feature importance.

Python 3.7.4 was used for all feature extraction, algorithm im-

plementation, and performance testing. The sci-kit learn library

was used for the implementation of DT, RF, and GBT. Google’s

Tensorflow library28 was used to implement mixture density net-

works. The properscoring Python package was used to compute

CRPS.29

RESULTS

A total of 53 783 surgical cases were retrieved; 1048 cases were ex-

cluded either because they did not have a scheduled or actual surgi-
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cal time documented or because they did not have a corresponding

anesthesia record with case details. A total of 52 735 cases were in-

cluded in the model development and evaluation (see Figure 2).

There were 15 068 unique procedure names and 304 unique sur-

geons. Test data were comprised of 10 358 cases, or 19.6% of the

total data set. The common and rare subgroups were comprised of

2381 and 4109 cases, respectively. See Table 1 for a summary of pa-

tient and procedure characteristics for each group. For detailed char-

acteristics for each cross-validation fold, see Supplementary

Appendix 1. See Table 2 for the most common procedure names.

Model performance
The scheduled case duration had a CRPS (ie, MAE) of 32.1 minutes

in the test data. The MDN had the lowest CRPS (18.1 minutes).

This is compared to the GBT (19.5 minutes), RF (19.6 minutes),

Bayesian method (21.2 minutes), and DT (22.1 minutes; see

Table 3). Model outputs for a given set of inputs can be seen in

Figure 3.

In our secondary analysis, MDN had the lowest PL in all quan-

tiles for all subgroups. For both the common and rare subgroups,

the MDN also had the lowest CRPSs (9.1 and 24.8 minutes, respec-

tively). All algorithms except for DT outperformed the Bayesian

method at all quantiles in the overall test data and the rare sub-

group. In the common subgroup, the Bayesian method outper-

formed all ML models except for GBT and MDN (see Table 4).

Feature importance
Permutation importance (PI) was calculated for the MDN on all in-

cluded features (see Figure 4). Scheduled duration was the most im-

portant feature, with a PI of 3.38, followed by procedure name (PI

2.21). The PIs of all other predictor variables were comparatively

low.

DISCUSSION

We used a machine learning approach to predict a continuous prob-

ability distribution of actual surgical case durations from a combina-

tion of unstructured text, categorical variables, and continuous

preoperative variables. Multiple tree-based approaches and an

MDN were compared against a Bayesian statistical method. For our

primary performance metric (ie, CRPS), the MDN outperformed all

the other algorithms in the overall test data, with a 15% improve-

ment in CRPS over the Bayesian method. The MDN also had the

best performance in both the common and rare surgical groups,

where its advantages over the Bayesian method were 11% and 19%,

respectively. For our secondary outcome measure (ie, pinball loss),

the MDN had the best PL across all quantiles. Of all the models that

were evaluated, only the MDN could approximate non-parametric

probability distributions, giving it an edge in surgery types that do

not follow lognormal distributions.

These findings provide pragmatic opportunities for translation in

real-world OR settings. First, surgical descriptors in realistic opera-

tional settings are often unstructured, incomplete, and unfiltered,

and contain errors and idiosyncrasies. In addition, they are often

encoded in different data structures between different EHRs or insti-

tutions. For example, some EHRs may use only a single category to

encode the procedure description. Others use a combination of pri-

mary and secondary procedure(s). Most allow a free-text option or

allow the modulation of existing categories with free-text modifiers.

Different surgeons may have different names for procedures that are

similar or identical. We approach the imperfect nature of these data

by transforming all data structures to a free-text string and perform-

ing natural language processing techniques. As such, information

pertaining to duration can be extracted from atypically written pro-

cedure names, procedure names containing typographic errors, or

uncommon combinations of common procedures. Our methodology

can also be applied regardless of how a specific EHR encodes surgi-

cal descriptors, assuming they can be collapsed as free text. As a re-

sult, meaningful predictions can be made on all cases performed,

rather than on a favorable subset as presented by existing ML tech-

niques.13,15

Second, our approach estimates a continuous probability distri-

bution of surgical case durations. We foresee that this type of predic-

tion will have more applicability than a prediction of mean surgical

duration. Sequences of cases with higher variance in case duration

are more likely to result in under- or overutilization, compared with

cases that have identical mean durations but lower variance. Predic-

tions that account only for the mean case duration cannot avoid

combinations of cases with high variance that lead to a higher rate

of misutilization. Providing a probabilistic forecast of the duration

for each surgical procedure allows for the identification of putative

schedules at risk for misutilization, and suggests alternatives that po-

tentially minimize this risk.16

2 April 2013 to 31 December 2017

2 April 2013 to 31 December 2016

1 January to 31 December 2017

Figure 2. Construction of train and test data sets.
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In addition to the improved schedule design, knowing the variance

of a surgical case duration can aid in day-of-surgery operational deci-

sions. For example, a charge anesthesiologist or nurse manager may

want to know the probability of an OR running past a specific time

for making staffing or operational decisions, such as retaining or re-

leasing available anesthesia providers, offering a second operating lo-

cation to a surgeon to maximize OR utilization, or deciding which

room to use for an add-on procedure. Such decisions are frequently

made with limited information regarding the variance of case dura-

tions, and oftentimes are significant cognitive burdens that distract

from effective patient care. The deployment of an accurate predictive

model for surgical case duration could effectively assimilate impor-

tant information from disparate sources, aid in operational decision-

making, and ultimately lead to more efficient OR utilization and

more cognitive focus on patient care tasks. Further research is needed

to quantify such benefits for operational endpoints, such as OR utili-

zation, staff satisfaction scores, and overtime pay.

The scheduled time and procedure name were the most impor-

tant features (as measured by PI) related to surgical case duration in

the best-performing model. Conversely, surgeon identity, patient

Table 1. Patient and procedure characteristics

Feature Total Train Test Common Rare

Number of cases 52 735 42 377 10 358 2381 4109

Mean age, years 7.8 7.8 8.1 7.7 8.4

Number of inpatients 15 254 (28.9) 12 377 (29.2) 2877 (27.8) 449 (18.9) 1411 (34.3)

ASA Physical Status

1 17 707 (33.6) 14 667 (34.6) 3040 (29.3) 672 (28.2) 1139 (27.7)

1E 1456 (2.8) 1075 (25.4) 381 (3.7) 109 (4.6) 191 (4.6)

2 20 846 (39.5) 16 618 (39.2) 4228 (40.8) 1178 (49.5) 1523 (37.1)

2E 723 (1.4) 554 (1.3) 169 (1.6) 31 (1.3) 93 (2.3)

3 10 241 (19.4) 8070 (19.0) 2171 (21.0) 378 (15.9) 978 (23.8)

3E 388 (0.7) 290 (0.7) 98 (0.9) 3 (0.1) 59 (1.4)

4 1062 (2.0) 879 (2.1) 183 (1.8) 6 (0.3) 87 (2.1)

4E 254 (0.5) 184 (0.4) 70 (0.7) 1 (0) 35 (0.9)

5 12 (0) 11 (0) 1 (0) 0 (0) 1 (0)

5E 22 (0) 17 (0) 5 (0) 0 (0) 2 (0)

6 3 (0) 3 (0) 0 (0) 0 (0) 0 (0)

Unknown 21 (0) 9 (0) 12 (0.1) 3 (0.1) 1 (0)

Unique procedure names 15 068 12 470 3932 29 3612

Unique diagnoses 20 225 17 027 4738 598 2764

Number of surgeons 304 271 171 30 165

Mean actual duration, min 103.7 102.9 107.1 72.9 131.6

Mean scheduled duration, min 104.6 104.1 106.7 82 124.1

Day of week

M-F 50 702 (96.1) 40 772 (96.2) 9930 (95.9) 2325 (97.6) 3863 (94.0)

Sat 1059 (2.0) 828 (2.0) 231 (2.2) 28 (1.2) 127 (3.1)

Sun 974 (1.8) 777 (1.8) 197 (1.9) 28 (1.2) 119 (2.9)

OR location

Main OR 40 975 (77.7) 32 895 (77.6) 8080 (78.0) 1816 (76.3) 3300 (80.3)

Cardiac OR 1286 (2.4) 1001 (2.4) 285 (2.8) 0 (0) 139 (3.4)

Procedure room 3705 (7.0) 2876 (6.8) 829 (8.0) 384 (16.1) 99 (2.4)

Unknown 6769 (12.8) 5605 (13.2) 1164 (11.2) 181 (7.6) 571 (13.9)

Note: OR locations and days of the week have been grouped for readability. Individual ORs and days of the week were treated as distinct values. Counts are

expressed as: count (percentage of group number of cases).

ASA: American Society of Anesthesiologists; OR: operating room.

Table 2. Most common raw procedure names

Procedure Name Number

Bilateral myringotomy with tube insertiona 1849

Upper endoscopy 1690

Eye muscle correction/2 muscles—bilateral 1473

Dorsal rhizotomy selective 1164

Laparoscopic appendectomy 1031

Full mouth restorative dentistry 811

Colonoscopy 626

T and Ab 492

Bilateral adenotonsillectomyb 483

Bilateral myringotomy with tube insertion—bilaterala 459

Note: Procedures denoted with matching superscripts represent groups of

procedure names that are semantically equivalent.

Table 3. Continuous ranked probability score

Overall Test Data Common Subgroup Rare Subgroup

DT 22.1 10.8 30.4

GBT 19.5 9.5 26.9

RF 19.6 10.0 27.0

MDN 18.1 9.1 24.8

Bayes 21.2 10.2 30.7

SD 32.1 19.5 41.2

Note: Data are in minutes.

Bayes: Bayesian statistical method; DT: decision tree; GBT: gradient

boosted decision tree; MDN: mixture density network; RF: random forest;

SD: scheduled duration.
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age, operative diagnosis, day of the week, inpatient status, and ASA-

PS had comparatively low PIs and conferred only small benefits to

performance. The relative importance of these predictor variables is

consistent with existing literature.18 A more nuanced set of predic-

tors, such as patient factors specific to the surgery type (eg, apnea-

hypopnea index) or operationally contextual factors (eg, whether a

surgeon is running multiple ORs), may allow for a more discerning

forecast. Even with an exhaustive search of preoperative predictors,

however, error and uncertainty in the prediction model will still ex-

ist. A significant portion of the information encoding surgical case

duration is discovered intraoperatively. As such, to make a predic-

tion algorithm more useful for solving day-of-surgery operational

problems, real-time values from the EHR must be extracted and

evaluated.

Study limitations
This study had several limitations. This was a single-center, retro-

spective study. We used a large, multi-year data set that included

15 068 unique procedures, representing a wide variety of surgical

subspecialties at an academic pediatric institution. Determinants of

surgical case duration may differ for adult populations or for com-

munity hospitals. Further research is needed to ascertain whether

our models are effective in systems of hospitals with more disparate

procedure data. Although we used natural language processing to

enable semantic decoding of procedure names and surgical

diagnoses, some sophisticated techniques were not utilized, such as

typographical error detection and acronym expansion. It is possible

that in rare cases, data leakage can occur if the case is booked after

it has started or completed. This may occur in certain situations; for

Table 4. Pinball loss

Quantile

0.05 0.25 0.5 0.75 0.95

Overall test data

DT 0.049 0.139 0.174 0.147 0.055

GBT 0.043 0.124 0.155 0.128 0.046

RF 0.047 0.127 0.156 0.130 0.051

MDN 0.040 0.116 0.146 0.120 0.042

Bayes 0.049 0.134 0.169 0.143 0.059

Common subgroup

DT 0.039 0.107 0.135 0.120 0.045

GBT 0.033 0.101 0.129 0.108 0.038

RF 0.039 0.108 0.136 0.112 0.043

MDN 0.031 0.098 0.125 0.102 0.035

Bayes 0.033 0.101 0.131 0.111 0.043

Rare subgroup

DT 0.057 0.162 0.201 0.168 0.064

GBT 0.050 0.142 0.177 0.144 0.051

RF 0.054 0.143 0.176 0.147 0.057

MDN 0.047 0.132 0.164 0.133 0.046

Bayes 0.065 0.163 0.204 0.174 0.077

Note: Bayes: Bayesian statistical method; DT: decision tree; GBT: gradient

boosted decision tree; MDN: mixture density network; RF: random forest.

Figure 4. Permutation importance of mixture density network features. ASA-PS: American Society of Anesthesiologists Physical Status.

Figure 3. Sample model output. Model inputs: fProcedure Name: “Exam Un-

der Anesthesia Eye Bilateral/Glaucoma Valve w/EUA”, Surgical Diagnosis:

“Glaucoma”, Surgeon: “SurgeonID##”, Location: “OR#5”, Inpatient: false,

ASA-PS: “II”, Age: 4.3 years, Day-of-week: “Tuesday”, Scheduled Time: 60

minutesg. ASA-PS: American Society of Anesthesiologists Physical Status;

Bayes: Bayesian statistical method; DT: decision tree; GBT: gradient boosted

decision tree; MDN: mixture density network; RF: random forest.
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example, a trauma patient arriving after hours in critical condition

with little to no advance warning, and perioperative staff not having

sufficient time to create a patient record prior to the surgery. When

this occurs, the scheduled case duration may be assigned with

knowledge of the actual duration. However, we believe this to be ex-

tremely rare, and all models would be affected equally. We did not

consider concept drift in training our models. Over time, the accu-

racy of a trained model will degrade without some scheme for

retraining, as new surgeons and procedure names are introduced.

Furthermore, relationships between predictor variables may differ

between the beginning and end of the study period, particularly over

years of data. For example, surgeons may become more efficient at

performing certain procedures or become better at estimating their

duration. Turnover time was not addressed in this study. Turnover

time is an important component of OR utilization and is affected by

an array of predictor variables. As such, deployment of our model

would only allow predictions of end time to be made if the start

time is known or assumed. This reduces the accuracy of predictions

of later procedures when several procedures are serially performed.

Future directions
Opportunities for future work include the application of our meth-

odology to a generalized patient population, such as a multi-hospital

network; the incorporation of real-time variables; and the prediction

of turnover time, as well as modeling concept drift. We focused on

surgical cases in this study; however, the techniques described in this

study could potentially be extended to provide predictions for other

types of scheduled patient encounters, which include non-surgical

procedures and office visits. Potential improvements in operational

endpoints, such as percent utilization and staff overtime cost, could

be measured following the deployment of a predictive model.

Conclusions
We demonstrated a novel ML technique using unstructured text

descriptions of procedure names combined with other preoperative

variables to predict a continuous probability distribution of the sur-

gical case duration. Our approach to model input allows for the

treatment of realistically unstructured preoperative data, which

allows for surgeries of all types and rarities to be evaluated. Our ap-

proach to model output informs an intelligent schedule design and

provides actionable information for day-of-surgery operational deci-

sions. Overall, this study demonstrates a substantial advancement in

the application of machine learning techniques to an important op-

erational problem in medicine.
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