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Abstract
The neural basis of perceptual decision making has typically been studied using measurements of single neuron activity,
though decisions are likely based on the activity of large neuronal ensembles. Local field potentials (LFPs) may, in some
cases, serve as a useful proxy for population activity and thus be useful for understanding the neural basis of perceptual
decision making. However, little is known about whether LFPs in sensory areas include decision-related signals. We
therefore analyzed LFPs recorded using two 48-electrode arrays implanted in primary visual cortex (V1) and area V4 of
macaque monkeys trained to perform a fine orientation discrimination task. We found significant choice information in
low (0–30 Hz) and higher (70–500 Hz) frequency components of the LFP, but little information in gamma frequencies
(30–70 Hz). Choice information was more robust in V4 than V1 and stronger in LFPs than in simultaneously measured
spiking activity. LFP-based choice information included a global component, common across electrodes within an area. Our
findings reveal the presence of robust choice-related signals in the LFPs recorded in V1 and V4 and suggest that LFPs may
be a useful complement to spike-based analyses of decision making.
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Introduction
A central question in systems neuroscience is how the activity
of sensory neuronal populations relates to our perceptual expe-
rience. One approach to answering this question is to record
from sensory neurons while animals perform a perceptual task
and to relate the measured responses to the animals’ reports
(Britten et al. 1996). Numerous studies have shown that trial-to-
trial fluctuations in individual sensory neurons are correlated
with perceptual reports (Parker and Newsome 1998: Nienborg
et al. 2012; Seidemann and Geisler 2018). However, although
percepts arise from the activity of large neuronal populations,
almost all studies exploring this relationship in macaque visual
cortex have relied on recordings from single neurons (but see
Chen et al. 2006; Bondy et al. 2018; Jasper et al. 2019).

Here, we explore the usefulness of an indirect measure of
population neuronal activity—the local field potential (LFP)—
for studying the neural basis of perceptual decision making.
LFPs are low-frequency, extracellular voltage fluctuations, which
arise from summed spiking and synaptic activity (Buzsáki et al.
2012; Einevoll et al. 2013).

Several properties of LFPs suggest that they might be use-
ful for studying perceptual decision making. First, in sensory
areas, LFPs are tuned for the attributes of a sensory stimulus
in a manner consistent with the selectivity of local spiking
activity (e.g., Henrie and Shapley 2005; Kreiman et al. 2006; Liu
and Newsome 2006; Katzner et al. 2009; Xing et al. 2009; Jia
et al. 2011; Ray and Maunsell 2011; Lashgari et al. 2012). This
tuning suggests that LFPs are a useful proxy for local neuronal
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activity. Second, LFPs can capture weak, broadly shared signals
which are difficult to detect in spiking activity (e.g., gamma-
modulation of spiking activity; Fries 2009; Jia and Kohn 2011;
Jia et al. 2013; Ray and Maunsell 2015). This sensitivity may be
important because neural correlates of perceptual decisions in
sensory cortex may involve weak but broadly shared “top-down”
signals related to expectation (Goris et al. 2017), belief about task
structure (Haefner et al. 2016; Bondy et al. 2018), or feedback
from decision areas (Nienborg and Cumming 2009). Third, LFPs
are easy to record even in chronic implants (Andersen et al.
2014), facilitating the longitudinal study of neural representa-
tions underlying perceptual decision making. Finally, different
frequency bands of the LFP have been proposed to indicate sig-
nal flow across stages of the visual system. Specifically, gamma
fluctuations have been associated with feedforward signaling
(Fries 2009), whereas either alpha (5–15 Hz; van Kerkoerle et al.
2014; Michalareas et al. 2016) or beta (14–18 Hz; Bastos et al.
2015) fluctuations have been associated with feedback. Assess-
ing decision information in different frequency bands of the LFP
provides a way to assess these proposals and, if supported, to
infer how decision information might be routed across stages of
a sensory system.

On the other hand, LFPs may aggregate signals too coarsely
to be useful. LFPs have been shown to reflect neuronal
activity within several hundred microns (Katzner et al. 2009;
Xing et al. 2009; Dubey and Ray 2016) to many millimeters
away from the electrode (Kreiman et al. 2006; Jia et al. 2011;
Kajikawa and Schroeder 2011). Since perceptual decisions
are thought to involve precise and often opposite weighting
of neuronal responses, based on their task-relevance (e.g.,
tuning curve slope for the task stimuli; Pitkow et al. 2015),
the broad spatial summation of LFPs may render them useless
for studying the representation of decision signals in sensory
cortex.

To assess whether LFPs in sensory cortex contain decision-
related information, we recorded these signals from multielec-
trode arrays implanted in primary visual cortex (V1) and area
V4, a midlevel cortical network, of monkeys performing a fine
orientation discrimination task.

Materials and Methods
Subjects

We used two adult, male cynomolgus macaques (Macaca fas-
cicularis; 7.4 and 6.8 kg). All procedures were approved by the
Institutional Animal Care and Use Committee of the Albert
Einstein College of Medicine and were in compliance with the
guidelines in the National Institutes of Health Guide for the Care
and Use of Laboratory Animals.

The subjects were first familiarized with a primate chair
(Crist Instruments) and then implanted with a titanium head-
post. Implantation was performed under isoflurane anesthesia,
following strict sterile procedures. A postoperative analgesic
(buprenorphine) and antibiotic (enrofloxacin) were provided.
Subjects recovered for at least 6 weeks before the initiation of
behavioral training.

Task

The primate chair was clamped to the floor and the subject’s
head was stabilized in front of a calibrated cathode-ray tube
monitor (Iiyama; 1024 × 768 resolution; 100 Hz refresh; 57-cm

viewing distance, so that the monitor subtended 40 × 30◦ of
the visual field). Visual stimuli were generated using custom
OpenGL software (Expo; sites.google.com/a/nyu.edu/expo),
which also controlled the task contingencies. Eye position was
recorded using a video eye-tracking system (SR Research) with
a sampling rate of 1 kHz.

Animals were trained on a two-alternative forced-choice, fine
orientation discrimination task (Fig. 1A). A trial began when sub-
jects fixated on a small bright spot (0.15 × 0.15 deg2; 80 cd/m2),
which appeared at the center of the monitor, on a gray back-
ground (40 cd/m2). After a delay of 200 ms, a drifting sinusoidal
grating was presented in the receptive field (RF) of the recorded
neurons, for 200 ms (4–5◦ diameter, full contrast, 2 cpd, 6 Hz
drift rate). After an additional delay of 200 ms, the fixation spot
was extinguished, and two choice targets were presented. When
the grating orientation was closer to vertical than horizontal
(orientation >45◦), correct decisions required a saccade to the
top target; orientations closer to horizontal were associated with
the bottom target. Subjects were positively reinforced on correct
trials with a drop of liquid reward (Crist Instruments); subjects
were rewarded randomly with a probability of 0.5 on a trial
involving the 45◦ grating. The reward was doubled when the
subject responded correctly on three consecutive trials. Incor-
rect trials were followed by a short (5 s or less) time out. Trials
in which gaze left a 1.4 × 1.4◦ window centered on the fixation
point were aborted and no reward was given.

During recording sessions, we presented gratings of nine
different orientations, centered at 45◦ and chosen to straddle
the slope of the psychometric function (35◦–55◦), plus the two
extremes (0◦ and 90◦). We varied slightly the orientations pre-
sented in each session, based on the animals’ performance in
preceding sessions. Specifically, we sought to balance our need
for trials at the decision boundary, for trials with slightly offset
orientations to estimate accurately the slope of the psycho-
metric functions, and for easy trials (0◦ and 90◦ gratings) to
maintain the animals’ motivation. The probability of presenting
a 45◦ orientation in most sessions was twice that of the other
orientations, whose presentation was equally likely.

Recording

Training continued until subjects reached asymptotic perfor-
mance, defined qualitatively as stable discrimination thresholds
over 4–5 behavioral sessions. We then implanted microelectrode
arrays (Blackrock Systems) into primary visual cortex (V1) and
area V4 (Fig. 1B). Using knowledge of the retinotopic maps in
these areas (Van Essen et al. 1984; Gattass et al. 1988), we targeted
the arrays in each area to the retinotopic representation at which
stimuli had been presented in training. Each microelectrode
array had a 6 × 8 arrangement, with 0.4-mm spacing. Electrodes
were 1 mm in length, and most had impedance near 0.3 MΩ

at 1 kHz. For LFPs, extracellular voltage signals were filtered
between 0.5 and 500 Hz and digitized at 1 kHz (Blackrock Sys-
tems). The spiking activity on each channel was also recorded,
with a band pass filter 250–7.5 kHz, followed by digitization at
30 kHz.

We mapped the spatial RFs of the sampled neuronal popula-
tion on the first days of recording, using the measured spiking
responses. While subjects performed a fixation task, we pre-
sented small gratings (0.5◦ in diameter, 2 cpd, 6 Hz drift rate, full
contrast; 350 ms duration with 50 ms interstimulus interval) at
different positions and orientations. We then placed gratings for
the behavioral task on the measured aggregate spatial RFs, with
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Figure 1. Experimental paradigm. (A) Animals were required to fixate a small

target in the center of the monitor (white square indicates fixation window;
not present on the animals’ display). After a delay of 200 ms, a drifting grating
appeared for 200 ms. After an additional period of 200 ms, the animal indicated

its decision with a saccade to one of two choice targets. (B) After behavioral
training was complete, we implanted animals with 48 channel microelectrode
arrays in V1 and V4.

a diameter sufficient to cover most of the recorded neuronal RFs
(4–5◦), without impinging on the fixation point. In Monkey 1, the
V1 aggregate RFs were at 0.7,−0.3 (elevation, azimuth in degrees
of visual angle), and V4 RFs were at 1.6,−1.6. The stimuli were
presented at 1.6,−1.6 and had a diameter of 4◦. In Monkey 2, the
V1 fields were at 2.7,−1.3 and V4 at 3.5,−3. The stimulus was 5◦ in
diameter and was centered at 2.5,−2.5. Subjects were retrained
on the behavioral task at the new stimulus location—typically
within a few degrees of visual angle of the previously trained
location—for approximately a week.

Additional details of the training and recording procedures
and the spatial RF maps can be found in Jasper et al. (2019).

Data Analysis

We analyzed only those sessions in which animals’ discrimina-
tion threshold was ≤6◦ and bias was ≤ 3◦, and in which animals

provided at least 10 trials of each choice for the 45◦ stimulus
and the two neighboring orientations (60 of 83 sessions). The
discrimination threshold was defined as the standard deviation
of a cumulative Gaussian function, fit to the behavioral data
using the maximum likelihood of a Bernoulli process. The bias
was defined as the difference between the mean of the fit
function and 45◦.

Preprocessing

On some trials, we observed large artifacts in the LFP, likely
caused by jaw movements, licking the reward tube, or small
body movements. To exclude these contaminated data, we Z-
scored the LFP on each electrode and trial and removed cases
for which the Z-score exceeded a value of 4 at any point during
the trial. We also excluded cases if the peak absolute voltage
within individual trials was not between 80 and 500 μV. To
prevent any intermittent line noise from affecting our estimates,
we also excluded trials if the power at 120 Hz (a harmonic of
60 Hz, chosen to avoid conflation with gamma frequencies)
exceeded LFP power in the 0–4 Hz range. If more than 3% of the
trials recorded on an electrode were excluded in a session by
these criteria, we discarded all data from that electrode for that
session. In one of the two animals, we recorded an additional
data set from the second hemisphere. In these recordings, the
LFP in V1 was often contaminated by artifacts, so this data set
was excluded entirely.

We observed some cross-talk between the signals recorded
on different array electrodes. This was evident by abnormally
high coherence values between high-frequency components of
the LFP, exceeding the coherence observed between most pair-
ings. To determine which electrodes were suspect, we measured
trial-to-trial LFP coherence across all pairs of electrodes in both
V1 and V4 arrays, during the 200-ms epoch before stimulus
onset. We flagged pairs of electrodes that had session-average
coherence values greater than 0.8 in the frequency range of
70–200 Hz. We then discarded all data from individual elec-
trodes, until all the suspect pairings had been eliminated. In
M1, 41.8% of V1 electrodes and 31.8% of V4 electrodes were
removed; in M2, less than <0.6% of V1 or V4 electrodes were
removed.

We measured the power spectrum and coherency of the
included LFPs using multitaper spectral estimation method of
the Chronux toolbox (Bokil et al. 2010), with three tapers. We
analyzed power for 200-ms epochs of LFP, either before stim-
ulus onset (prestimulus epoch), during stimulus presentation
(stimulus epoch), or between stimulus offset and the reporting
of choice (poststimulus epoch), unless otherwise noted.

Grand average LFP spectra for each epoch are shown in
Figure 2A, separately for each cortical area and animal. Because
we estimated power in 200-ms epoch (padded to 256), our spec-
tral resolution was 3.9 Hz. Our analyses used the raw LFP signal;
we did not subtract the trial-averaged evoked potential prior
to computing LFP power on each trial (i.e., we did not isolate
the induced signal). In separate analyses, we found similar
results using induced LFP but choice signals were slightly weaker
(Supplementary Fig. 1).

Choice Probability

To assess the strength of decision-related activity in the LFP,
we computed “choice probabilities” using receiver operator
characteristic (ROC) analysis (Britten et al. 1996, see
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Figure 2. LFP spectra and choice signals. (A) Average power spectra for the 45◦ stimulus computed for each animal and each area, in prestimulus, stimulus, and
poststimulus epochs. (B) Sample LFPs from a V1 electrode in M1. Trials with horizontal choices are indicated in black; vertical choices in gray. (C) LFP spectra for trials
with horizontal (black) and vertical (gray) choices. Thin lines show single trial spectra; thick lines show trial-averaged spectra. (D) Distributions of power derived from
trials with horizontal (dark gray) and vertical (light gray) choices in the 0–4 Hz (left) and 300–500 Hz (right) frequency band. (E–G) Same as (B–D), but for a V4 electrode

in monkey M1.

Fig. 2B–G). We first calculated LFP power for each electrode on
each trial for the 45◦ stimulus. We then performed ROC analysis
on the distributions of log power for horizontal and vertical
choices, after matching the number of trials for the two choices
by randomly subselecting trials involving the more frequent
choice. This process was repeated five times, using different
random selections of trials for the choice for which we had
more trials, and the resultant values were averaged to provide
better estimates. On average, CP estimates in M1 and M2 were
computed with 105 ± 5 and 78 ± 4 trials, respectively. We report
the resultant CP values as the absolute deviation from chance
(a CP value of 0.5) termed absCP. To assess the probability that
the observed absCP arose by chance, we randomly permuted
choices across trials and then recalculated absCP from these
data, using identical procedures as for the original data. This
was repeated 1000 times, and the rank of the measured value
in this distribution was used to define the P-value. To compare
choice information available from spiking responses, we used

an identical procedure using spike counts measured in the same
time bins.

Population Decoding

To assess the strength of decision signals available from the
pool of electrodes, we used logistic regression to predict the
monkey’s choice from LFP power on each electrode. To increase
the number of trials available for fitting, we used responses to
the 45◦ stimulus as well as the two stimuli whose orientation
was nearest to 45◦ (offset by ±1–2◦), for which the monkeys’
decisions involved a substantial fraction of both choices (at least
10 trials per choice per stimulus). We Z-scored the LFP power
for each electrode across trials, separately for each stimulus to
remove any stimulus-related signal. We then fit the regression
models to the combined data, excluding one randomly chosen
trial with a vertical choice and one with a horizontal choice, used
to test performance. Model fitting was performed, on average,
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with 143 ± 7 and 106 ± 6 trials in M1 and M2, respectively. Each
trial was used once for testing, and performance was defined as
the average over the cross-validation set. To reduce overfitting,
we used Lasso regularization (glmnet for Matlab; Qian et al.
2013), with the strength of the regularization term chosen to
minimize model deviance on cross-validation folds within the
training set. This process was repeated 10 times, using different
random selections of trials for the choice for which we had
more trials, and the resultant values were averaged to pro-
vide better estimates. We performed a complementary analysis
using linear discriminant analysis and obtained similar results
(Supplementary Fig. 2).

Similarly, to estimate stimulus-related information, we
trained logistic regression models to discriminate responses
to the 45◦ stimulus from the responses to stimuli with offset
orientations. Responses were measured in a 200-ms epoch
beginning at stimulus onset. Since the orientations presented
in each session varied slightly, we binned performance based
on the rank order of the orientation offset from the 45◦ grating:
the nearest offset orientation was on average offset by 1.5 ± 0.1◦,
followed by 3.1 ± 0.1◦, 5.5 ± 0.1◦, and 45◦. For each electrode,
we combined responses (i.e., the spectra of the LFP responses)
across pairs of stimuli (e.g., 45◦ and 47◦) and Z-scored. We
did so to eliminate differences in the power across electrodes
while maintaining the difference in power for each stimulus
pairing on a given electrode. We matched the number of trials
for each stimulus condition by randomly subselecting trials
for the stimulus that was shown more frequently. We then
used the same fitting approach (i.e., regularization and cross-
validation) as for the choice models. To compare choice and
stimulus information available from individual electrodes, we
trained logistic regression models on single-electrode data, in
the same way as for the population decoding.

Using an approach identical to that described in Jasper
et al. (2019), we found nearly indistinguishable results to those
reported here when we excluded trials in which microsaccades
were made within the fixation window during stimulus
presentation.

All indications of variance are standard error of the mean
unless specified otherwise. All statistical tests were performed
using the Wilcoxon signed-rank test, unless otherwise noted.

Results
We recorded LFPs and spiking activity simultaneously from two
48-channel microelectrode arrays implanted in areas V1 and V4
of monkeys trained to perform a fine orientation discrimination
task (Fig. 1A). An analysis of choice signals in the recorded
spiking activity is provided in Jasper et al. (2019).

The task required deciding whether the orientation of a
briefly presented grating (duration 200 ms, presented 200 ms
after fixation) was greater or less than 45◦. Decisions were
reported by a saccade to a choice target, presented 200 ms after
grating offset. Grating orientations were chosen to span the
psychometric function; its size was chosen to cover the spatial
RFs of the recorded neuronal population.

As shown for example sessions (Fig. 3A), psychometric func-
tions had a steep slope near the decision boundary of 45◦, with
negligible lapse rate and bias. We quantified subjects’ perfor-
mance in each session by fitting the psychometric function.
On average, thresholds were 3.46◦ ± 0.74◦ and 4.97◦ ± 1.23◦ for
the two animals (Fig. 3B), lapse rates were <0.5% (Fig. 3C), and
biases were <1.3◦ (Fig. 3D). Thus, subjects’ choices were strongly

Figure 3. Behavioral performance. (A) Psychometric functions for example ses-

sions, for each animal. Circles indicate the grating orientations used and cor-
responding choices. Lines indicate fits of a cumulative Gaussian function. (B)
Thresholds for all sessions analyzed, defined as the standard deviation of the
function fit to the data. (C) Biases for all sessions. Bias was defined as the offset

from 45◦ of the fit function. (D) Lapse rate, defined as the percentage of wrong
choices for the 0◦ and 90◦ stimuli.

related to the stimulus orientation, and their performance was
comparable to human observers (Mäkelä et al. 1993; Schoups
et al. 1995; Mareschal and Shapley 2004; Goris et al. 2017).

We analyzed sessions for which behavioral performance
met our inclusion criteria (see Materials and Methods), yielding
data from 34 recording sessions in one animal (M1) and 26
sessions in the other (M2). On average, we obtained usable
LFP signals from 30.4 ± 1.7 electrodes in V1 (M1: 19.1 ± 0.5, M2:
45.1 ± 0.2) and 27.4 ± 1.0 in V4 (M1: 20.5 ± 0.5, M2: 36.4 ± 0.2; see
Materials and Methods for selection criteria). In total, the data
set included 22 729 and 12 084 behavioral trials in M1 and M2,
respectively; of these, 4358 and 2418 were trials in which we
displayed the 45◦ stimulus.

Choice Signals in the LFP

To assess whether the LFP carries information about the sub-
jects’ choices, we compared the frequency composition of the
LFP on vertical- and horizontal-choice trials. We first quantified

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa218#supplementary-data
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Figure 4. LFP-based choice signals, as a function of frequency band, area, and duration of the trial. (A) V1 absCP values, as a function of frequency (ordinate) and time
(abscissa). Time label indicates the center of 200 ms bin used to compute the power spectrum, relative to stimulus onset. AbsCP values have been aggregated over
the two animals. (B) Same as (A) but for V4. (C) AbsCP values as a function of area (V1 in blue, V4 in green), task epoch (prestimulus, stimulus, and poststimulus), and

frequency band. Dotted lines correspond to the data from monkey 1; dashed lines the data from monkey 2. Solid lines indicate the aggregated data. Error bars (SEM)
are shown only for the aggregate data to reduce clutter. Black and gray lines indicate the 95th percentile value of absCP values for V1 and V4, respectively, computed
from aggregate shuffled data. Black line is obscured by the gray.

the spectral power of the LFP on each electrode and trial and
then performed choice probability (CP) analysis on the distribu-
tions of spectral power measured on trials with horizontal com-
pared with vertical decisions (see Materials and Methods and
Fig. 2B–G; Britten et al. 1996; Nienborg et al. 2012). CP measures
the probability that an ideal observer could predict the animals’
choice from the measured responses. A CP value of 0.5 indicates
chance performance. Whether the CP is greater or less than 0.5
depends on the assumed relationship between choice and signal
(i.e., whether responses should be stronger at a given site for
horizontal or vertical choices, in spike-based analysis typically
decided by the preference of the neuron). Since the orientation

tuning of the LFP can differ across frequency bands (Liu and
Newsome 2006; Berens et al. 2008; Jia et al. 2011), it is difficult
to compare raw CP values across frequencies. We thus report
the absolute deviation of CP from a value of 0.5—a measure
which quantifies the strength of decision-related signal, without
assuming a particular relationship to site preference. We refer to
this quantity as absCP.

We calculated absCP in two complementary ways. First, we
calculated absCP for each frequency bin separately, using power
measured in sliding epochs of 200 ms, with each window shifted
by 5 ms. This provided an unbiased view of how absCP depended
on frequency and time (Fig. 4A,B). Second, to quantify and assess
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choice signals statistically, we computed absCP after averaging
power in the following frequency bands: 0–4 Hz (low), 7–12.5 Hz
(a typical “alpha” range; similar to van Kerkoerle et al. 2014),
12.5–30 Hz (beta, Bastos et al. 2015), 30–70 Hz (gamma, Fries 2009;
Jia and Kohn 2011), 70–200 (high gamma; Ray and Maunsell 2011),
and 300–500 Hz (sometimes used to measure MUA; Ray and
Maunsell 2011; Zanos et al. 2011). For each band, we computed
power in three separate epochs, each 200 ms in duration—
between the establishment of fixation and the onset of the
grating, during stimulus presentation, and between stimulus
offset and the appearance of the choice targets (Fig. 4C).

Both views of the data revealed three notable features of LFP-
based choice signals.

First, in both V1 and V4, choice information grew in
magnitude during the trial. The absCP values were weakest
before stimulus onset (“pre” epoch) and strongest in the epoch
between stimulus offset and the appearance of choice targets
(“post” epoch). For V4, in every frequency bin, absCP values
were stronger in the poststimulus epoch than before or during
stimulus presentation (P < 0.001, no correction for multiple
comparisons), except for the gamma band 30–70 Hz (P = 0.03). In
V1, the poststimulus epoch also had the largest absCP values, at
least in the frequency bands with choice information (P < 0.001
for comparison to earlier epochs for the two highest frequency
bins; P > 0.05 for other frequency bins).

Second, choice signals in the LFP were frequency dependent.
For instance, in the poststimulus epoch, in V4, absCP magnitude
was greatest for frequencies below 12.5 Hz (0.094 ± 0.002 when
averaged across the two lowest bands) and above 300 Hz
(0.095 ± 0.002), although values were significantly above chance
in all frequency bands. Notably, choice-related signal in V4
was particularly weak—nearly at chance—in the gamma range
(30–70 Hz, 0.055 ± 0.001; P < 0.001 for difference with lower
and higher frequencies). In additional analyses, we quantified
choice signals in additional frequency bands, in or near the
gamma range, where the LFP power spectra showed evidence
of enhanced gamma activity (the gamma “bump” as in Jia
et al. 2011; Fig. 2). Choice signals were similarly weak in these
frequency bands (Supplementary Fig. 3). We also compared
the similarity of choice signals in different frequency bands,
by assuming a fixed relationship between power and choice
across frequencies for each electrode. This revealed that
the sign of the choice signal was similar across frequencies
(Supplementary Fig. 4).

Third, absCP values were consistently higher in V4 than
V1 (compare green and blue traces, Fig. 4). In the poststimulus
epoch, when decision signals were most evident, V1 and V4
absCP values were significantly different in every frequency
range (P < 0.001, no correction for multiple comparison), except
for 30–70 Hz (P = 0.5). For the 300–500 Hz frequency bin, the
mean absCP value in V1 in the poststimulus epoch was roughly
24% greater than the 95th percentile value of performance for
shuffled data (black line), whereas in V4, it was 93% greater
(0.095 ± 0.002 for V4 vs. 0.061 ± 0.001 for V1, with the 95th per-
centile of shuffled data being 0.049 for both V1 and V4).

We next compared the dynamics of LFP-based choice signals
in V1 and V4 in more detail. We focused on higher frequency
components of the LFP, in which choice information was more
robust and power could be estimated more accurately for brief
epochs. We calculated absCP using the average power between
70 and 500 Hz, measured in sliding 100-ms time windows with
50% overlap. To provide a fair comparison of the temporal evo-
lution of V1 and V4 choice signals, we matched the two areas

Figure 5. Dynamics of choice information in V1 and V4. absCP values as a
function of time, relative to stimulus onset at 0 ms. V1 values are shown in
blue; V4 values in green. Dotted lines indicate data from monkey 1, dashed

lines from monkey 2. Black line indicates the 95th percentile of absCP values
for the aggregate V1 shuffled data; 95th percentile for the V4 data is shown in
gray. A number of cases were matched for each monkey and area (n values in
figure refer to the number of cases in each animal and when distributions were

aggregated).

for performance. Specifically, we subselected an equal number
of electrodes in the two areas such that the absCP magnitude
distribution in the final 100-ms epoch was the same.

Choice signals were evident in V4 before V1 (green vs. blue,
Fig. 5), though the difference was only robust in M1. In V4, aver-
age absCP values were significantly greater than in the baseline
period (first three 100-ms bins), beginning in the 50–150 ms time
window and continuing until the end of the trial (permutation
test, 95% confidence interval). In V1, absCP exceeded baseline
only after the 100–200 ms time window. The choice signals in
V4 were significantly stronger than those in V1, starting in the
0–100 ms window and for all times thereafter, except the last
epoch, which was equal by definition (P < 0.001, no correction
for multiple comparisons). Thus, choice signals are not only
stronger in V4 than in V1 (Fig. 4); they are evident in V4 before
V1.

Finally, we compared decision-related signal in the LFP to
that available from spiking activity, recorded from the same
arrays (see also Jasper et al. 2019). Whereas most electrodes
had usable LFP signals, only some provided spiking activity
(mean 15 ± 8 electrodes out of 48 in each area). To ensure a fair
comparison, we only analyzed spikes and LFPs from electrodes
on which both signals were available.

On average, LFPs contained more information about choice
than spiking activity. In V4, the mean absCP value for spiking
activity was 0.051 ± 0.002, in the epoch after stimulus offset. This
was significantly smaller than the LFP-based absCP values in the
same epoch, for frequency ranges below 30 Hz and above 300 Hz
(P < 0.001). Similarly, in V1, the mean absCP of spiking activity
was 0.045 ± 0.002, which was weaker than the LFP-based absCP
in frequency ranges below 30 Hz and above 300 Hz (P < 0.003).

Furthermore, we found that the absCP values calculated from
LFPs and spiking responses were only weakly correlated. This
is illustrated for the high-frequency components of the LFP
in Figure 6, which compares the LFP and spike-based absCP
values for each electrode in the poststimulus epoch (for V1:

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa218#supplementary-data
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Figure 6. Comparison of choice information in spiking activity and LFPs. The
absCP values for spiking activity (ordinate) compared with high-frequency com-
ponents (300–500 Hz) of the LFP (abscissa), for V1 (top) and V4 (bottom). Each

symbol corresponds to data from one electrode in one session; only electrodes on
which both spiking activity and LFPs were recorded are included. Open symbols
are for data from monkey 1. Filled symbols are from monkey 2. Activity was
measured in the poststimulus epoch for both signals.

r = −0.07, P = 0.4 in M1; r = 0.07, P = 0.3 in M2; for V4: r = 0.22,
P = 0.15 in M1; r = 0.04, P = 0.4 in M2; Spearman correlation).
Across areas and frequency bins, the correlations between LFP-
and spike-based signals were similarly weak (ranging from −0.25
to 0.36, in the poststimulus epoch when both signals were most
evident).

We conclude that the LFP contains robust choice-related
information in V4 and substantially weaker information
in V1. Choice signals are evident across a broad range of
frequencies, but weakest in the gamma range (30–70 Hz).
Choice signals grow in strength during the trial, appearing
in V4 before V1, even after controlling for differences in their
strength.

Decoding Choices across Electrodes
We next evaluated how combining LFP signals from multiple
electrodes would improve our ability to predict animals’ choices.
We used a logistic regression model to predict choices using
simultaneously recorded signals from either V1 or V4 elec-
trodes. In preliminary work, we found that fitting this decoder
to data from all usable electrodes often resulted in overfitting
and poor predictions, even with regularization. We thus adopted
the alternative approach of decoding from pools of electrodes
of increasing number, beginning with the electrode for which
the LFP contained the strongest decision signal and adding
additional electrodes as determined by their individual decoding
performance (assessed separately for each frequency band and
time bin). The population size was increased until the cross-
validated performance dropped for two consecutive iterations.
We then defined the relevant population as that providing max-
imal performance.

Model performance displayed a similar dependence on area,
time epoch, and frequency (Fig. 7), as the single electrode absCP
analysis presented previously. First, performance increased
during the trial, with weakest performance in the epoch before
stimulus onset and maximal performance in the epoch between
stimulus offset and the animals’ reports. Second, choice could
be predicted from both the low- (<30 Hz) and high-frequency
(>70 Hz) components of the LFP, in V4. The maximal average
performance in V4 was 63.8% in the 300–500 Hz band, and
the highest individual session performance was 78.9%, for
the 7–12.5 Hz frequency range. Gamma band activity in V4
provided the weakest choice information (P < 0.0001, when
comparing with other frequency bands except 12.5–30 Hz,
P = 0.19). Finally, performance was consistently higher for
models fit to V4 than V1 LFPs (Fig. 7, green vs. blue; P < 0.004).
In V1, performance was weak except for the highest frequency
band.

Surprisingly, we found that there was often only sub-
tle improvement in model performance for larger pools
of electrodes. The most common outcome was that the
model performed best with just a few electrodes (see also
Supplementary Fig. 2). Information about choice might fail to
grow with electrode number because only a few sites contain
choice signals. However, our single electrode analysis showed
that choice signals were broadly distributed across electrodes
(Fig. 6). We propose instead that the choice information in the
LFP is highly redundant across electrodes, a possibility we
investigate further below.

Relationship between Stimulus and Choice Information

For spiking activity, choice signals are often strongest in neurons
that are most relevant to the task (e.g., Britten et al. 1996; Uka
and DeAngelis 2004; Purushothaman and Bradley 2005; Nienborg
and Cumming 2009; Liu et al. 2013; Pitkow et al. 2015), though
in some studies this relationship is weak or absent (Nienborg
and Cumming 2006; Price and Born 2010; Shiozaki et al. 2012;
Hass and Horwitz 2013; Jasper et al. 2019). We therefore assessed
whether choice signals were stronger in LFPs that also conveyed
more information about stimulus orientation.

We first evaluated whether V1 and V4 LFPs encoded task-
relevant information. We trained a decoder to distinguish
between the 45◦ grating and those with offset orientations,
based on the LFP power measured at each electrode during
the trial epoch when gratings were presented. We used the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa218#supplementary-data
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Figure 7. Predicting choice by decoding LFPs from multiple recording sites. Each set of lines shows decoding performance (cross-validated) in predicting animals’
choices, for a different frequency band. Blue lines indicate data from V1; green lines from V4. Dotted and dashed lines indicate data from monkeys 1 and 2, respectively;
solid lines indicate the aggregated data. Gray, black lines indicate the 95th percentile performance values of a decoder fit to the aggregate shuffled data (for V1 and V4
respectively; using 40 shuffles).

same approach for this analysis as we had to decode choice
signals.

Both V1 and V4 LFPs contained robust stimulus information
(Fig. 8). For instance, for discriminations of 5.5 ± 0.2◦, perfor-
mance ranged from 55.5% to 68.0% in V1 and 54.9% to 60.9%
in V4. V1 outperformed V4 with an average difference in the
performance of 8.2 ± 2.2 percentage points, except in gamma
and high gamma frequencies.

To determine whether the LFPs encoding the most stimulus
information were also most informative of choice, we compared
choice and stimulus information on an electrode-by-electrode
basis. We quantified choice and stimulus information as the
cross-validated decoding performance of each electrode, using
power measured during the poststimulus epoch for choice and
in the stimulus epoch for stimulus information. For the high-
frequency range 300–500 Hz, illustrated in Figure 9, we found
little relationship between performance for choice and stimulus
discrimination (Spearman’s correlation in V1: r = 0.04 P = 0.29
for M1; r = 0.07, P = 0.01 for M2; in V4: r = 0.0008, P = 0.98 for
M1; r = 0.01, P = 0.66 for M2). The relationship was also weak
or entirely absent in other frequency bands (correlation values
ranged from −0.12 to 0.07 across areas, animals, and frequency
bands).

We conclude that there is little relationship between the
stimulus- and choice-related information available in the
LFPs. Sites that were particularly informative about stim-
ulus orientation were not consistently better at predicting
the animals’ choices than sites that carried little stimulus
information.

Global and Local Choice-Related Signals in the LFP

LFPs recorded at different sites within the same cortical area
can be strongly coherent (Leopold et al. 2003; Jia et al. 2011;
Dubey and Ray 2016), suggesting that a prominent component
of the LFP is common across sites. In addition, LFPs often show
similar stimulus selectivity across recording sites. For instance,
under some conditions, LFPs recorded millimeters apart share
preference for stimulus orientation (Berens et al. 2008; Jia et al.
2011), color (Shirhatti and Ray 2018), and regions of visual space
(Mineault et al. 2013). As a result, some have suggested that
stimulus information in the LFP consists of a “local” component,
often tuned similarly to the MUA, and a more “global” compo-
nent that is common across sites (Jia et al. 2011; Mineault et al.
2013).

To assess the relative importance of global (i.e., common
across sites) and local components, we decomposed the raw
LFP into these two signals. The global component was defined
as the mean LFP across all sites on each trial. Note that this
definition is stringent: if there is a common signal with phase
differences across sites, the mean signal would have much
reduced amplitude. Indeed, we found that power in the global
LFP was reduced roughly 25–300%, depending on frequency, rel-
ative to the average power available in each electrode. The local
component was defined by subtracting the mean signal of the
other electrodes on the array (i.e., a signal nearly identical to the
global component) from each individual electrode on each trial.
The local signal effectively involves re-referencing the LFP to the
average signal across sites, similar to the average referencing
scheme of Shirhatti et al. (2016).
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Figure 8. Stimulus decoding performance using the LFP. Each set of lines shows decoding performance (cross-validated) in discriminating between pairs of stimuli
(abscissa), for a different frequency band. Conventions as in Figure 7.

We found clear choice information in the global LFP. We
calculated absCP values using global LFP power on trials with
vertical and horizontal choices. The absCP values were similar
in magnitude to those calculated from the raw LFP (Fig. 10,
compare to Fig. 4) and showed a similar dependence on epoch
(strongest at the end of the trial), frequency (weakest in the
gamma range), and area (stronger in V4 than V1). We con-
firmed that the choice information in the global LFP did not
simply reflect a common stimulus-evoked transient response
across electrodes. Similar choice information was available in
the global-induced LFP, calculated after removing the stimulus-
evoked potential (Supplementary Fig. 5).

To be sure that the global LFP did not simply reflect signal
at a few dominant electrodes, we ranked electrodes based on
their individual absCP magnitude, calculated from the raw LFP.
We then calculated an average LFP (akin to the global LFP but
not using all channels), separately for the half of channels with
the strongest choice-signals and the half with the weakest. The
magnitude of absCP for the average LFP derived from the weaker
half of sites was substantially smaller than in stronger half,
reduced by 53.6 ± 3.5% and 54.3 ± 4.0% in V1 and V4, respectively
(P < 0.01 for all cases except high gamma, P = 0.05 in V4; no
correction for multiple comparisons). If the average LFP reflected
choice information in only a small subset of electrodes, we
would expect a correlation near zero between the choice signals
in the two subsets of data, since the weaker half of electrodes
would not contain meaningful signal. However, the CP values
for the average LFPs in the two subsets of data were highly
correlated across all frequency bands (ranging between 0.85 and
0.91 for V4 and 0.65 and 0.94 for V1, in the epoch after stimulus

offset). This correlation indicates substantial consistency of the
average LFP in the two halves of the data set.

Next, we measured choice information present in the local
signal. We found robust choice information in the local compo-
nent of the LFP, evident both in the absCP values of individual
electrodes (not shown) and in the performance of a population
decoder (Fig. 11). In fact, performance was similar in most cases
to the performance evident in the raw signal. We conclude that
the LFP consists of global (common across electrodes) and local
components, both of which contain information about animals’
choices.

Discussion
We found that fluctuations in LFP power were predictive of
animals’ choices in a fine sensory discrimination task, on a
trial-by-trial basis. Choice-related signals were most prominent
in low and high frequencies and weakest in between in the
gamma band. Choice signals in V4 were stronger and appeared
sooner than in V1. LFPs were more informative of choice than
spiking activity detected by the same electrodes. Finally, pool-
ing LFP signals across electrodes provided little improvement
over single electrode decoding, in part because much of the
choice signal in the LFP appeared to be common across sites.
Our results suggest that the LFP may be a useful and sensitive
measure for assessing the relationship between neural activity
and perceptual decisions.

Numerous studies have shown a correlation between per-
ceptual decisions and neuronal spiking responses (Parker and
Newsome 1998; Nienborg et al. 2012; Seidemann and Geisler

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa218#supplementary-data
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Figure 9. Relationship between stimulus and choice information, for V1 (top)

and V4 (bottom). Each symbol indicates the performance for stimulus (abscissa)
and choice (ordinate) decoding, using high-frequency LFP power (300–500 Hz)
recorded at a single electrode. Stimulus decoding is performed for responses
to the 45◦ grating compared with gratings offset by 5.5◦. The difference in

performance with Figure 8 arises because performance here is based on single
electrodes rather than decoding all available electrodes. Open symbols show
data from monkey 1; filled symbols from monkey 2.

2018). Two aspects of our findings are consistent with these
spike-based studies of decision signals: LFP choice signals were
stronger in V4 than V1 and appeared in V4 before V1. Differences
in the magnitude of choice signals across stages of sensory
processing have been inferred in previous studies (Nienborg
et al. 2012). A similar difference in the magnitude, and in the
dynamics of V1 and V4 choice signals, was evident in the spiking
data recorded from these arrays (Jasper et al. 2019).

As in the spike-based analyses of Jasper et al. (2019), we
found that choice signals were most evident after stimulus
offset. These dynamics might indicate that our choice signals
were related to the modulation of sensory responses by motor
preparation (i.e., presaccadic modulation). However, presaccadic
modulation of spiking activity begins roughly 100 ms before

saccade onset (Tolias et al. 2001; Ibbotson and Krekelberg 2011),
whereas choice signals were evident 200–400 ms before saccade
initiation. In addition, presaccadic modulation of spiking activ-
ity is most evident when combined with visual drive (Tolias
et al. 2001) and when saccades are made toward the RF (Super
et al. 2004; Steinmetz and Moore 2010). In our study, choice
signals were strongest in the absence of visual stimulation,
and saccades were made to spatially offset targets. Thus, it
seems unlikely that the dynamics of choice signals we observed
can be ascribed to presaccadic modulation. It is worth noting
that previous studies that used a brief stimulus presentation,
as we did, also found a delay between sensory drive and the
appearance of choice signals (Price and Born 2010; Smith et al.
2011, 2015).

Although there is a rich literature on decisions signals in
spiking activity, there are only two studies, to our knowledge,
that have assessed whether LFPs in macaque visual cortex
contain decision-related information (Liu and Newsome 2006;
Smith et al. 2015). Liu and Newsome (2006) recorded LFPs in
area MT while animals performed a speed discrimination task.
Consistent with our findings, they found robust choice-related
signals across a broad range of frequencies. Unlike our study,
however, they found that LFP-based CP values were correlated
with those measured using MUA, whereas we found little
relationship between the two signals. This discrepancy may
be because the MUA used in their study aggregated signals
from many neurons (peak firing rates were ∼300 sp/s), and
thus may have been a measure of local population activity,
like the LFP. Our spiking measurements, on the other hand,
involved recordings from single units or MUA consisting of a
handful of units with clear spike waveforms (see Wissig and
Kohn 2012, for comparison of our MUA recordings with well-
isolated single units). Differences in the degree and the spatial
extent of functional clustering—speed tuning in MT compared
with orientation tuning in V1 and V4—might also contribute.

Smith et al. (2015) also studied the relationship between
LFPs recorded in MT and animals’ reports, in a motion detec-
tion task. They found robust detection-related signals in high
(>100 Hz) and low (10–30 Hz, beta) frequency bands of the
LFP. They also observed LFP-based decision signals for stimuli
presented far away from the spatial RF of the recorded loca-
tion. The authors argue that this signal might be related to
fluctuations in attention, which would likely affect LFP power
across a broad swath of MT and also alter detection perfor-
mance. Because our study involved a discrimination task, the
global component of the LFP is unlikely to be related to atten-
tional fluctuations: a broad attention signal shared across neu-
ronal preferences should not lead to more vertical or horizontal
choices.

In our study, choice-related information in LFPs was fre-
quency dependent, with several notable features. First, infor-
mation was weakest in the gamma range. Previous work has
proposed that gamma fluctuations are an integral component
of cognition (Fries 2009). Some studies have found a relationship
between trial-by-trial variations in gamma power and task per-
formance (Shin and Moore 2019), between spike-field coherence
in the gamma range and performance (Womelsdorf et al. 2008;
Lee and Lisberger 2013), and between interareal gamma phase
consistency and reaction times (Rohenkohl et al. 2018). However,
we found that gamma power carried almost no information
about the impending choice, unlike both higher and lower fre-
quency components of the LFP (see also Liu and Newsome 2006;
Smith et al. 2015). If gamma-band activity is integral to relaying
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Figure 10. Choice information in the global LFP. The global LFP is calculated by summing the LFPs recorded on each electrode, on each trial (top). Each set of lines shows

the absCP values, as a function of frequency band, area (V4 in green, V1 in blue), and task epoch (prestimulus, stimulus, and poststimulus). Dotted lines correspond to
the data from monkey 1; dashed lines the data from monkey 2; solid lines show the aggregated data. Error bars (SEM) are shown only for the aggregate data to reduce
clutter. Black line shows the 95th percentile of absCP values computed from the aggregate shuffled data for V1; gray line for the V4 data is identical.

signals to downstream areas (Fries 2009), then fluctuations in
gamma power at a given recording site should be related to the
efficacy with which local neuronal signals are relayed down-
stream (e.g., to higher visual or “decision” areas). The dissocia-
tion of gamma fluctuations from animals’ choices suggests that
gamma power is not closely related to perceptual decisions—
a central aspect of sensory-based cognition—at least for our
task (see also Rohenkohl et al. 2018). We note, however, that
some work has suggested that gamma activity is enhanced by
top-down influences, a process which may take a few hundred
milliseconds to unfold (Richter et al. 2017). Because our task
involved a brief stimulus presentation and a brief delay before
animals signaled their choices, we cannot exclude the possibility
that decision signals would be evident in gamma activity in a
lengthier task.

Second, we found that choice-related signals in the alpha and
beta components of the LFP were similar to those present in
other frequency bands (such as 0–4 Hz or >70 Hz). Several studies
have suggested that choice information in sensory cortex may
arise primarily for top-down or feedback signals (Nienborg and
Cumming 2009; Nienborg et al. 2012; Bondy et al. 2018; see also
Yang et al. 2016 for work in rodent somatosensory cortex). Feed-
back signals have recently been ascribed to specific frequency
bands, either in the alpha (5–15 Hz; van Kerkoerle et al. 2014;
Michalareas et al. 2016) or beta range (14–18 Hz; Bastos et al.
2015). If choices reflect feedback and feedback information is
especially evident in alpha or beta frequencies, one might expect
that decision signals in early cortex would be strongest in this
frequency range. This was not the case, perhaps indicating that

inferring signal flow in the cortex based on power in specific
frequency bands is excessively simplistic. Of course, we cannot
exclude the possibility that recording in other cortical layers
than those sampled by our implanted arrays would produce a
different outcome, since the spectral composition of the LFP
is layer specific (e.g., Maier et al. 2010; Xing et al. 2012; Smith
et al. 2013; van Kerkoerle et al. 2014). Furthermore, because
we estimated LFP power in relatively short epochs (200 ms)
and smoothed across frequency bands using multiple tapers,
our spectral resolution was limited. Thus, subtle differences
between nearby frequencies might have gone undetected.

Third, we found that decisions could be predicted by the
low frequency components of the LFP (0–4 Hz). Low frequency
components are often found to be non-selective for visual stim-
uli (Henrie and Shapley 2005; Liu and Newsome 2006; Jia et al.
2011; Ray and Maunsell 2011; but see Belitski et al. 2008) and
to be highly coherent across large cortical distances (Leopold
et al. 2003; Jia et al. 2011). Nevertheless, these frequency compo-
nents carried choice signals as robust as those present at high
frequencies, which are typically stimulus selective (i.e., tuned)
and often have preferences similar to local spiking activity (Liu
and Newsome 2006; Berens et al. 2008; Jia et al. 2011; Ray and
Maunsell 2011). It is unlikely that this low-frequency signal
reflects the stimulus-locked transient (evoked potential). We
found choice signals were strongest in the post-stimulus epoch,
when the evoked LFP is weakest. Furthermore, removing this
signal to isolate the induced LFP resulted in a similar pattern of
results, including robust choice information at low frequencies
(Supplementary Figs 1 and 5).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa218#supplementary-data
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Figure 11. Choice decoding using local LFPs. (A) Decoding performance in V1 for
raw LFPs (black; replotted from Fig. 7) and for local LFPs (gray; defined as the

difference between the raw LFP recorded on each electrode and the average LFP
recorded on all other electrodes). Conventions follow those of Figure 7. (B) Same
as (A), but for V4. The number of cases is as reported in Figure 7.

A final notable aspect of our findings was the existence,
particularly in V4, of a choice-related signal that was common
across LFP sites—the “global” signal. The existence of a global
decision-related LFP signal is consistent with previous work
which has shown that LFPs recorded at nearby sites (i.e., up to
several millimeters apart) can be highly coherent (Juergens et al.
1999; Frien and Eckhorn 2000; Leopold et al. 2003; Jia et al. 2011;
Dubey and Ray 2016). This high coherence indicates that LFPs
recorded millimeters apart are not independent signals and are
thus likely to share some functional properties (e.g., decision
information).

The source of this common signal is unclear. We were con-
cerned that it might arise from our referencing scheme. How-
ever, both V1 and V4 arrays were referenced to a distant elec-
trode (i.e., wire) that was placed on the surface of the brain, far
from the arrays. If the global signal were introduced by referenc-
ing, the source of the reference signal would itself need to carry
robust choice-related information, although the reference wire
was not targeted to relevant sensory networks. Furthermore,
under this explanation, the global signal in V1 and V4 should be
similar, yet in both animals, the global signal was more robust
in V4.

The global signal may instead reflect the volume conduc-
tion of either distant or locally generated signals. For instance,
previous work has shown that intracranial recordings can reflect
ocular EMG signals (Schomburg et al. 2014; Kovach et al. 2011;
see also Parabucki and Lampl 2017). Thus, the global signal may

reflect a distant activity source, strongly related to decisions,
which is conducted to all of the recording electrodes (albeit more
strongly to those in V4 than V1). Alternatively, the global signal
might reflect the average of locally generated signals, which
conduct freely between recording sites. If so, the existence of
choice information in the global signal would require a bias
in these aggregated signals so that, on average, more power
would be present for one choice than another. Such a bias could
arise from a slight imbalance (between choices) in the summed
signals (Jia et al. 2011), akin to the orientation tuning evident in
fMRI BOLD voxels which aggregate signals over a large volume of
tissue (Norman et al. 2006). Given sufficient signal-to-noise, even
a weak bias could provide substantial ability to predict decisions.

Although the use of the LFP to study perceptual decision-
making is relatively rare, LFPs have been successfully used to
read out local network representations. For instance, LFPs have
been used to decode coarse motor commands such as the direc-
tion of a reach (Pesaran et al. 2002; Mehring et al. 2003). LFPs have
also been shown to provide a correlate for the accumulation of
sensory evidence in LIP cortex (Bollimunta and Ditterich 2012).
At an even coarser scale, numerous studies have shown that
perceptual reports of humans can be predicted by the amplitude
or phase of various components of mass electrical (or magnetic)
signals, such as those recorded in EEG, MEG, or electrocorticog-
raphy (e.g., Donner et al. 2007, 2009; van Dijk et al. 2008; Busch
et al. 2009; Foxe and Snyder 2011).

In this context, the presence of choice-related signal in the
LFP in sensory cortex may not be surprising. However, we note
that our study required decoding choice in a fine discrimina-
tion task. Nearby neurons often carry opposite choice signals
(Nienborg et al. 2012): stronger responses in some neurons may
indicate an increased likelihood of one choice, whereas stronger
responses in nearby neurons are associated with a competing
choice. Since the LFP can reflect the activity of neurons many
hundreds of microns away, one might expect this spatial averag-
ing would reduce or eliminate the information available about
choice. Our results show that this is not the case. LFP power
is usually more informative of choice than the spiking activity
that we recorded. LFPs may thus be a useful and sensitive
complement to spike-based analyses of choice signals.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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