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Abstract
The neural systems that underlie reinforcement learning (RL) allow animals to adapt to changes in their environment. In
the present study, we examined the hypothesis that the amygdala would have a preferential role in learning the values of
visual objects. We compared a group of monkeys (Macaca mulatta) with amygdala lesions to a group of unoperated controls
on a two-armed bandit reversal learning task. The task had two conditions. In the What condition, the animals had to learn
to select a visual object, independent of its location. And in the Where condition, the animals had to learn to saccade to a
location, independent of the object at the location. In both conditions choice-outcome mappings reversed in the middle of
the block. We found that monkeys with amygdala lesions had learning deficits in both conditions. Monkeys with amygdala
lesions did not have deficits in learning to reverse choice-outcome mappings. Rather, amygdala lesions caused the
monkeys to become overly sensitive to negative feedback which impaired their ability to consistently select the more highly
valued action or object. These results imply that the amygdala is generally necessary for RL.
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Introduction
Learning to execute actions or select objects that lead to rewards
is critical for survival. While formal models of reinforcement
learning (RL) do not distinguish between these (Averbeck and
Costa 2017), there is considerable evidence to support the view
that separate neural circuits mediate learning about the value
of actions versus objects. Starting in the visual system, there
is a distinction between spatial vision and object vision, that
has been referred to as the dorsal (spatial) and ventral (object)
visual streams hypothesis (Ungerleider and Mishkin 1982). A
related view suggests that the distinction between the two
systems involves processing information for action versus per-
ception (Goodale and Milner 1992). The anatomical separation
between these systems continues into prefrontal cortex (Bar-
bas 1988; Webster et al. 1994) and also through the frontal-
basal ganglia-thalamo-cortical loops (Haber et al. 2006; Averbeck
et al. 2014). There is also interaction between these circuits

(Sereno and Maunsell 1998), especially when object information
is required to select spatially directed actions (Bussey et al. 2002).
But to some extent these processing streams are segregated. The
anatomy, therefore, suggests that learning to associate rewards
with actions may rely more on dorsal circuitry, and learning
to associate rewards with objects may rely more on ventral
circuitry (Neftci and Averbeck 2019).

RL has often been linked to the ventral striatum (VS). This
suggests that the VS underlies both learning to associate
rewards with actions and stimuli. There is considerable evidence
for the role of the VS in object-based RL (O’Doherty et al. 2004;
Costa et al. 2016), particularly when it comes to learning to
choose between two positive outcomes that vary in magnitude
(Taswell et al. 2018). There has been less evidence for the role of
the VS in action selection. When action and object learning
have been studied in the same experiment, monkeys with

https://academic.oup.com/
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lesions to the VS had deficits in object but not action-based
RL (Rothenhoefer et al. 2017). Other work has shown that the
dorsal striatum (DS) plays a role in learning to associate actions
(Samejima et al. 2005; Lau and Glimcher 2008; Parker et al. 2016)
and action sequences (Seo et al. 2012; Lee et al. 2015) with
rewards. This suggests that different neural circuits underlie
these two different types of learning, at least in the striatum.

The amygdala has also been shown to play an important
role in visual object-based RL (Cardinal et al. 2002; Paton et al.
2006; Hampton et al. 2007; Belova et al. 2008; Costa et al. 2016;
Rudebeck, Ripple, et al. 2017) and other forms of reward learning
(Baxter and Murray 2002; Salzman and Fusi 2010). Studies in
monkeys have shown that lesions of the amygdala lead to learn-
ing deficits in a probabilistic reversal learning task (Costa et al.
2016) and a reward magnitude learning task (Rudebeck, Ripple,
et al. 2017). And, amygdala lesions lead to a decrease in the
information about stimuli associated with rewards, relative to
prelesion recordings, in the orbital prefrontal cortex (Rudebeck
et al. 2013; Rudebeck, Ripple, et al. 2017). Therefore, there is
considerable evidence that supports a role for the amygdala
in learning to associate objects with rewards. Furthermore, the
amygdala has strong anatomical connections with the ventral
visual pathway, and less pronounced connections with dorsal
pathway structures (Amaral and Price 1984; Amaral et al. 1992;
Neftci and Averbeck 2019). Although the amygdala contributes
to object reward learning, and has strong links to the ventral
visual pathway, it also has links to the dorsal pathway. For
example, single neurons in the amygdala code the locations of
chosen objects independent of reward expectation (Peck et al.
2014; Costa et al. 2019). In addition, the amygdala projects to
cingulate motor areas (Morecraft et al. 2007), which provides a
potential route for the amygdala to influence action learning.
Whether the amygdala makes a causal contribution to learning
to choose rewarded locations, however, has not been directly
examined.

To determine the amygdala’s role in action- versus object-
based RL, we tested four monkeys with excitotoxic lesions of the
amygdala on a two-arm bandit reversal learning task used pre-
viously to examine learning following VS lesions (Rothenhoefer
et al. 2017). This task involved two different types of learning,
carried out in blocks of trials. In one block type, the monkeys
had to learn to pick the location (action based) that yielded the
most rewards, and in the other block type monkeys had to learn
to choose the stimuli (object based) that led to the most rewards.
We found that the amygdala plays a role in both action- and
object-based RL.

Materials and Methods
Subjects

The subjects included 10 male rhesus macaques with weights
ranging from 6 to 11 kg. Four of the male monkeys received
bilateral excitotoxic lesions of the amygdala. The remaining six
monkeys served as unoperated controls. Four out of the six
unoperated control monkeys were the same monkeys used in a
previous study (Costa et al. 2016). Five out of the six unoperated
control monkeys were the same monkeys from an additional
study (Rothenhoefer et al. 2017). All remaining monkeys were
not previously used in the studies mentioned above. In particu-
lar, none of the amygdala lesion monkeys (n = 4) were previously
used in the studies mentioned above. For the duration of the
study, monkeys were placed on water control. On testing days,

monkeys earned their fluid from their performance on the
task. Experimental procedures for all aspects of the study were
performed in accordance with the Guide for the Care and Use of
Laboratory Animals and were approved by the National Institute
of Mental Health Animal Care and Use Committee.

Surgery

Four monkeys received two separate stereotaxic surgeries, one
for each hemisphere, which targeted the amygdala using the
excitotoxin ibotenic acid (for details, see Costa et al. 2016). Injec-
tion sites were determined based on structural magnetic reso-
nance (MR) scans obtained from each monkey prior to surgery.
After both lesion surgeries had been completed, each monkey
received a cranial implant of a titanium head post to facilitate
head restraint. Unoperated controls received the same cranial
implant. Behavioral testing for all monkeys began after they had
recovered from the implant surgery.

Lesion Assessment

Lesion volume estimates were taken by first transforming each
subject’s T2-weighted scan acquired 1 week postoperatively to
the standard NMT (NIMH macaque template; Seidlitz et al. 2018)
using AFNI’s 3dAllineate function (Cox 1996). We then applied
thresholding to identify the area of hyperintensity on the trans-
formed T2-weighted object to isolate a binary mask that cor-
responded to the area of damage. The masks were visually
inspected and manually edited to ensure that they fully captured
the areas of hyperintensity on the T2-weighted object. A lesion
overlap map was created by summing the binary masks for each
hemisphere and displaying the output on the NMT (Fig. 1C).

As intended, all operated monkeys sustained extensive
damage to the amygdala, bilaterally; the estimated percent
damage ranged from 86% to 95% (Supplementary Table 1,
Fig. 1C). Surrounding structures, mainly the entorhinal cortex,
sustained inadvertent damage that varied widely in extent
(Supplementary Table 1). Based on prior work, the percent
damage to entorhinal cortex as estimated from the T2-weighted
scans is almost certainly an overestimate (Basile et al. 2017).

Task and Apparatus

We tested rhesus macaques (Macaca mulatta) on a probabilis-
tic two-arm bandit reversal learning task. During the experi-
ment, animals were seated in a primate chair facing a computer
screen. Eye movements were used as behavioral readouts. In
each trial, monkeys first acquired central fixation (Fig. 1A,B).
After a fixation hold period of 500 ms, we presented two objects,
left and right of fixation. Monkeys made saccades to one of the
two objects to indicate their choice. After holding their choice
for 500 ms, a reward was stochastically delivered according to
one of three reward schedules: 80%/20%, 70%/30%, and 60%/40%.
In an 80%/20% reward schedule, one of the choices led to a
reward 80% of the time and the other choice led to a reward
20% of the time. The reward schedule and stimuli were used
for a total of 80 trials, which constituted one training block. At
the beginning of each block, two novel objects were introduced
and the block was randomly assigned a reward schedule; this
assignment remained constant throughout the entire block. In
addition, on each trial the location of “best” object, left or right
of fixation, was randomized.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa241#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa241#supplementary-data
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Figure 1. Task and lesion extent. (A, B) What and Where Task. The task was divided into 80-trial blocks. At the beginning of each 80-trial block, we introduced two
new objects that the animal had never seen before. Each block of trials was either a What block or a Where block. If it was a What block, we assigned a high-reward
probability to one object and a low-reward probability to the other. If it was a Where block, we assigned a high-reward probability to one of the locations and a low-

reward probability to the other. We used three different reward schedules (80/20, 70/30, and 60/40). The reward schedules were randomly assigned to the block and
remained fixed for the block. The block type was also randomized and remained fixed for the entire block. There was no cue to indicate block type. Therefore, the
animals had to infer the block type. In addition, on a randomly chosen trial between 30 and 50, we reversed the choice-outcome mapping, such that the better choice
became the worse choice and vice-versa. (C) Extent of lesion and number of animals with shown extent, overlaid on a standardized macaque brain template.



532 Cerebral Cortex, 2021, Vol. 31, No. 1

There were two different block types: What and Where. In
“what” blocks, the higher probability option was one of the
two objects independent of which side it was presented on.
In “where” blocks, the higher probability option was one of
the two saccade directions independent of the object that was
selected. There was no cue to indicate block type; monkeys
determined block type by making choices and getting feedback.
As with the reward schedule, the block type remained constant
throughout the entire 80-trial block. In each block, on a randomly
selected trial between 30 and 50, inclusive, the reward mapping
was reversed, making the previously lower probability option
the higher probability option. The reversal trial was not cued;
monkeys had to learn through trial and error that the reward
mapping switched.

Task Training

All animals were trained on the task using the same proce-
dure. Eight out of 10 monkeys (5 of the 6 controls and 3 of
the 4 lesion monkeys) had a more extensive training history.
These monkeys completed other tasks before beginning train-
ing for the current task. In the previous tasks, they learned
only object-based reward associations. After the remaining two
monkeys (1 control and 1 lesion) learned to make saccades
to fixate on targets, they were trained on a simple two arm
bandit RL task in which they learned only object-based reward
associations.

Next, all monkeys were trained with a deterministic schedule
(100/0) in both the What and Where conditions. Monkeys were
first introduced to one block type, either What or Where, with
block type randomly assigned and balanced across the group.
Once monkeys could successfully perform 15–24 blocks per ses-
sion, we introduced the other block type by itself, and then upon
stabilized performance in that block type, we mixed the two
block types. Once the monkeys reached stable performance in
the deterministic setting, we gradually introduced probabilistic
outcomes; probabilities were lowered until the final schedules
of 80/20, 70/30, 60/40 were reached.

Objects and Eye Tracking

Objects provided as choice options were normalized for lumi-
nance and spatial frequency using the SHINE toolbox for MAT-
LAB (Willenbockel et al. 2010). All objects were converted to
grayscale and subjected to a 2D FFT to control spatial frequency.
To obtain a goal amplitude spectrum, the amplitude at each
spatial frequency was summed across the two object dimen-
sions and then averaged across objects. Next, all objects were
normalized to have this amplitude spectrum. Using luminance
histogram matching, we normalized the luminance histogram
of each color channel in each object so it matched the mean
luminance histogram of the corresponding color channel, aver-
aged across all objects. Spatial frequency normalization always
preceded the luminance histogram matching. Each day before
the monkeys began the task, we manually screened each object
to verify its integrity. Any object that was unrecognizable after
processing was replaced with an object that remained recog-
nizable. Eye movements were monitored and the object pre-
sentation was controlled by PC computers running the Mon-
keylogic (version 1.1) toolbox for MATLAB (Asaad and Eskandar
2008) and Arrington Viewpoint eye-tracking system (Arrington
Research).

Bayesian Model of Reversal Learning

We fit a Bayesian model to estimate probability distributions
over several features of the animals’ behavior as well as ideal
observer estimates over these features (Costa et al. 2015, 2016;
Jang et al. 2015; Rothenhoefer et al. 2017). The Bayesian ideal
observer model inverts the causal model for the task, so it is the
optimal model. Using the ideal model, we estimated probability
distributions over reversal points to estimate when a reversal
occurred.

To estimate the Bayesian model, we fit a likelihood function
given by:

f
(
x, y|r, p, h, b

) =
∏T

k=1
q(k) (1)

where r is the trial on which the reward mapping is reversed
(r ε 0–81) and p is the probability of reward of the high reward
option. The variable h encodes whether option 1 or option 2 is
the high reward option at the start of the block (h ε 1, 2) and b
encodes the block type (b ε 1, 2—What or Where). The variable
k indexes trial number in the block and T is the current trial.
The variable k indexes over the trials up to the current trial so,
for example, if T = 10, then k = 1, 2, 3, . . . 10. The variable r
ranges from 0 to 81 because we allow the model to assume that a
reversal may not have happened within the block, and that the
reversal occurred before the block started or after it ended. In
either scenario where the model assumes the reversal occurs
before or after the block, the posterior probability of reversal
would be equally weighted for r equal to 0 or 81. The choice data
are given in terms of x and y, where elements of x are the rewards
(xi ε 0, 1) and elements of y are the choices (yiε 1, 2) in trial, i. The
variable p is varied from 0.51 to 0.99 in steps of 0.01. It can also
be indexed over just the exact reward schedules (i.e., 0.8, 0.7, and
0.6), although this makes little difference as we marginalize over
p for all analyses.

For the ideal observer model used to estimate the blocktype
in the Bayesian analysis, we estimated the blocktype probability
at the current trial T, based on the outcomes from the previous
trials. Thus, the estimate is based on the information that the
monkey had when it made its choice in the current trial. For each
schedule, the following mappings from choices to outcomes
gave us q(k). For estimates of What (i.e., b = 1), targets 1 and 2
refer to the individual objects and saccade direction is ignored;
whereas for Where (i.e., b= 2), targets 1 and 2 refer to the saccade
direction and the object is ignored. For k < r and h = 1, (when
target 1 is the high-probability target and the trial is prior to
the reversal) choose 1 and get rewarded q(k) = p, choose 1
and receive no reward q(k) = 1 − p, choose 2 and get rewarded
q(k) = 1−p, choose 2 and have no reward q(k) = p. For k ≥ r, these
probabilities are flipped. For k < r and h = 2, the probabilities are
complementary to the values where k < r and h = 1. To estimate
reversal, all values were filled in up to the current trial T.

For the animal’s choice behavior, used to estimate the pos-
terior over b for each group, the model is similar, except the
inference is only over the animal’s choices, and not whether it
is rewarded. This model assumes that the animal had a stable
choice preference, which switched at some point in the block
from one object to the other. Given the choice preference, the
animals chose the wrong object (i.e., the object inconsistent
with their choice preference) at some lapse rate 1 − p. Thus, for
k < r and h = 1 choosing option 1: q(k) = p, choosing option 2:
q(k) = 1 − p. For k ≥ r and h = 1, choosing option 1: q(k) = 1 − p,
choosing option 2: q(k) = p. Correspondingly for k < r and h = 2,
choosing option 2: q(k) = p, etc. The choice behavior model is
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therefore similar to the ideal observer, except p indexes reward
probability in the ideal observer model and 1 − p indexes the
lapse rate in the behavioral model. The reward outcome also
does not factor into the behavior model.

Using these mappings for q(k), we then calculated the likeli-
hood as a function of r, p, h, and b for each block of trials. The
posterior is given by:

p
(
r, p, h, b|x, y

) = f
(
x, y|r, p, h, b

)
p(r)p

(
p, h, b

)
/p

(
x, y

)
(2)

For r, p, h, and b, the priors were flat. There is general
agreement between the ideal observer estimate of the reversal
point and the actual programmed reversal point (Costa et al.
2015, 2016).

With these priors, we calculated the posterior over the rever-
sal trial by marginalizing over p, h, and b.

p
(
r|x, y, M

) =
∑

p,h,b
p

(
r, p, h, b|x, y

)
(3)

The posterior over block type could correspondingly be cal-
culated by marginalizing over r, p, and h.

Reinforcement Learning Model of Choice Behavior

We fit six different RL models that varied in the number of
parameters used to model the data. In the results, we focus on
the two models that most often accounted for the behavior. All
models were based on a Rescorla-Wagner (RW), or stateless RL
value update equation given by:

vi
(
k + 1

) = vi(k) + αf
(
R − vi(k)

)
(4)

We then passed these value estimates through a logistic
function to generate choice probability estimates:

dj(k) =
(

1 + e
β
(
vi(k)−vj(k)+hi(k)−hj(k)

))−1

, di(k) = 1 − dj(k) (5)

The variable viis the value estimate for option i, R is the
reward feedback for the current choice for trial k, and αf is the
learning rate parameter, where f indexes whether the current

choice was rewarded
(
R = 1

)
or not

(
R = 0

)
. For each trial, αf is

one of two-fitted values used to scale prediction errors based
on the type of reward feedback for the current choice. Note that
models M1, M2, and M3 described below do not have the hj

factors. The variable hj(k) implemented a choice autocorrelation
function, which increased the value of a cue that had occurred
in the same location, recently. This allows us to model a ten-
dency to repeat a given choice, independent of whether it was
rewarded. Because we wanted to use the same model across
both What and Where, we implemented the choice autocorre-
lation functions as repetitions of choices when the same object
occurs in the same location, which results in autocorrelations
across four terms (i.e., stim 1 left, stim 1 right, stim 2 left,
and stim 2 right). A model which used only choice repetition
across location could not be fit to the Where condition, since
the animals should “perseverate” on location. Thus, the use of
object-location terms for the autocorrelation allows us to use
the same model in both tasks.

The autocorrelation function was defined as follows:

hi(k) = κe
−λ

(
k−kl(i)

)
(6)

where the variable κ and λ were free parameters scaling the size
of the effect and the decay rate, respectively. The variable kl(i)

indicates the last trial on which a given object was chosen in
a given location, i. There were four separate values for kl(i) as it
tracked two cues across locations. The values entered into equa-
tion (5) were the two (of the 4) that corresponded to the object/lo-
cation pairs actually presented in the current trial. These param-
eters allowed us to characterize choice-perseveration across the
interaction of object and action choices.

The likelihood was given by:

f
(
x, y|β, a, κ, λ

) =
∏

k
[d1(k)c1(k) + d2(k)c2(k)] (7)

where c1(k) had a value of 1 if option 1 was chosen on trial k and
c2(k) had a value of 1 if option 2 was chosen. Conversely, c1(k)
had a value of 0 if option 2 was chosen, and c2(k) had a value of
0 if option 1 was chosen for trialk. We used standard function
optimization methods to maximize the likelihood of the data
given the parameters. Note, not all parameters were present in
all models.

Three of the models (M1, M2, and M3) had different num-
bers of learning rate and inverse temperature parameters. M1
had one inverse temperature and two learning rate parameters
(indexed by the subscript f on α), one for positive feedback and
one for negative feedback. M2 had one inverse temperature and
one learning rate parameter. M3 had two inverse temperatures,
one for the acquisition phase and one for the reversal phase,
and four learning rates, two for the acquisition phase (one
for positive feedback and one for negative feedback), and two
for the reversal phase(one for positive feedback and one for
negative feedback). The remaining three models are the plus
versions of the models discussed above (M1+, M2+, and M3+).
The plus models have the same number of parameters as the
basic (i.e., M1, M2, and M3) model with the addition of two more
parameters, one for the coefficient on the autocorrelation factor,
κ, and one for the decay factor on the autocorrelation, λ. Models
M2 and M2+ predicted behavior most often across groups, so to
simplify presentation we show results for these two models only,
and the plots for these models show only the number of times
these were the best model.

ANOVA Models

To quantify the difference between choice behavior in each
group, we first flipped the data following the reversal when we
entered it into the ANOVA. Data are plotted unflipped. Next,
we performed an arcsine transformation on the choice accuracy
values from each session, as this transformation normalizes the
data (Zar 1999). Data were then averaged across sessions within
monkey. We then carried out an N-way ANOVA (ANOVAN). Mon-
key was included as a random factor. All other factors were fixed
effects. For all reported ANOVAs, we always ran an omnibus
model with all factors and interactions of all order. Nonreported
interactions were not significant. The ANOVA on win-stay lose-
switch, entropy, and reversal trial difference were done in the
same way as above without the arcsine transformation. For the
choice strategy model, we entered both win-stay and lose-switch
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as dependent variables and included a factor in the model for
choice-strategy (i.e., either win-stay or lose-switch). Effect size
is reported using ω2 (Olejnik and Algina 2000).

Results
We tested rhesus macaques on a two-armed bandit reversal
learning task with three different stochastic reward schedules:
80%/20%, 70%/30%, and 60%/40%. In addition to the three differ-
ent reward schedules, there were two different block types: What
and Where. In “what” blocks, the higher probability option was
one of the two objects independent of the chosen location. In
“where” blocks, the higher probability option was one of the two
saccade directions independent of the chosen object. There was
no cue to indicate block type. Therefore, monkeys determined
block type by making choices and getting feedback. In each
block, on a randomly selected trial between 30 and 50 (inclusive),
the reward mapping was reversed, making the previously lower
probability option the higher probability option and vice versa.
The reversal trial was not cued and therefore monkeys had to
learn through trial and error that the reward mapping switched.

Choice Behavior

We began by analyzing the monkeys’ choice behavior. Because
the reversal trial differed across blocks, we first aligned each
block to the true reversal point and interpolated the trials in
the acquisition and reversal phases so there were 40 “trials”
in each. We then carried out ANOVAs on this data, where the
dependent variable was the fraction of times the animals chose
the best initial option (Fig. 2). We first carried out an ANOVA
across both block types (What and Where). There was no average
difference in performance across block type (block type; F(1,
8) = 0.05, P = 0.83, ω2 = 0). We did however, find differences in
reward schedule (schedule; F(2, 16) = 107, P < 0.001, ω2 = 0.171)
on choices. There were also differences in these factors by
trial (Block type × Trial; F(78, 624) = 4.1, P < 0.001, ω2 = 0.007 and
Schedule × Trial; F(156, 1248) = 23.4, P < 0.001, ω2 = 0.026), which
reflects both the initial learning, and the reversal of choices after
the reversal in reward mapping. We also found that control mon-
keys performed better than amygdala monkeys and this varied
by trial (Group × Trial; F(79, 632) = 2.3, P < 0.001, ω2 = 0.014), and
by schedule (Group × Schedule × Trial; F(156, 1248) = 1.3, P = 0.01,
ω2 = 0.001). The groups did not, however, differ by block type
(Group × Block Type × Trial; F(79, 632) = 0.6, P = 0.99, ω2 = 0.001).

Although there were no group differences by block type,
we carried out planned comparisons on the data from each
condition. In What blocks, both groups chose more accurately in
the richer reward schedules (Schedule × Trial; F(156, 1248) = 16.3,
P < 0.001, ω2 = 0.027). We also found that control monkeys
performed better than the amygdala lesioned monkeys and
this varied by trial (Group × Trial; F(78, 624) = 2.1, P < 0.001,
ω2 = 0.013), and by schedule (Group × Schedule × Trial; F(156,
1248) = 1.4, P = 0.003, ω2 = 0.002). Similarly, in Where blocks, both
groups chose more accurately in the richer reward schedules
(Schedule × Trial; F(156, 1248) = 8.9, P < 0.001, ω2 = 0.029).
Control monkeys performed better than the amygdala monkeys
which varied by trial (Group × Trial; F(79, 632) = 1.6, P < 0.001,
ω2 = 0.018), but there was no difference across schedule
(Group × Schedule × Trial; F(156, 1248) = 1.1, P = 0.27, ω2 = 0.003).

To further characterize the learning behavior, we analyzed
the win-stay, lose-switch performance (Fig. 3). Win-stay is the
probability that the animals chose the same option after a

positive outcome in the previous trial and lose-switch is the
probability that they chose the other option after a negative
outcome in the previous trial. For purposes of the ANOVA,
we analyzed only win-stay and lose-switch probabilities. The
difference between win-stay and lose-switch was coded as a
choice-strategy effect. We found differences across block types
(Block type; F(1, 8) = 23.7, P = 0.001, ω2 = 0.006). Consistent with
the decreased overall accuracy of the lesioned animals, they
also had lower win-stay strategies relative to higher lose-switch
than controls (Group × Choice Strategy; F(1, 8) = 6.4, P = 0.036,
ω2 = 0.035). These group strategies did not differ by block type
(Group × Choice Strategy × Block type; F(1, 8) = 1.8, P = 0.217,
ω2 = 0.004). We then ran the analysis separately for win-stay
and lose-switch strategies and found that there were no group
differences for win-stay (Group; F(1, 8) = 3.6, P = 0.095,ω2 = 0.101).
However, lesioned animals more often switched following a
negative outcome (Group; F(1, 8) = 11.1, P = 0.010, ω2 = 0.393).
Therefore, across block types, lesioned animals switched after a
negative outcome more frequently than the control animals.
The groups also differed by block type (Group × Block type;
F(1, 8) = 16.3, P = 0.004, ω2 = 0.004). When we ran the analysis
separately for each group, controls did not differ by block type
(Block type; F(1, 5) = 0.6, P = 0.46, ω2 = 0) but the lesioned animals
did (Block type; F(1, 3) = 21.7, P = 0.018, ω2 = 0.37).

Next, we looked at the probability that while animals were
in one block type they were making choices consistent with
the other block type (Fig. 4). For What blocks, we quantified the
probability of choosing the most frequently chosen location and
for Where blocks we quantified the probability of choosing the
most frequently chosen object. On average, monkeys should be
choosing each action at chance levels in What blocks, and each
object at chance levels in Where blocks. However, even if they
infer the correct block type, at the beginning of the block, they
may make choices consistent with the wrong block type for
several trials, and this can persist into the block.

We started by analyzing both block types together and found
that animals were closer to chance, and therefore were making
choices more consistent with the appropriate block type in
easier schedules (Schedule; F(2, 16) = 2.6, P < 0.001, ω2 = 0.009).
In addition, we found that the groups differed across schedule
and block type (Group × Schedule × Block type; F(2, 16) = 11.2,
P < 0.001, ω2 = 0.018). The amygdala-lesioned animals were mak-
ing relatively more location choices in What blocks than control
animals, when compared with object choices in Where blocks
and this differed by schedule. To examine this in more detail,
we analyzed each block type separately. In What blocks (Fig. 4A),
we found that animals performed better in easier schedules
(Schedule; F(2, 16) = 37.5, P < 0.001, ω2 = 0.35). We also found
that the groups differed across schedule (Group × Schedule; F(2,
16) = 8.2, P = 0.003, ω2 = 0.039). In Where blocks (Fig. 4B), we again
found that animals performed better in easier schedules (Sched-
ule; F(2, 16) = 19.6, P < 0.001, ω2 = 0.042). There were, however,
no group differences across schedules (Group × Schedule; F(2,
16) = 2.9, P = 0.081, ω2 = 0.006).

Reinforcement Learning Model

To further investigate why the monkeys with amygdala lesions
behave differently, we fit several RL models which varied in the
number of free parameters used to model the choice behavior
(see Methods). We used the Bayesian Information Criterion (BIC)
to assess which model fit best in each session for each animal
(Fig. 5). Across monkeys, the model which most frequently fit
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Figure 2. Behavioral performance in What and Where conditions. (A) Fraction of times the animals chose the best initial cue in the What condition. Shaded region
indicates ±1 standard error mean (SEM), where the N = the number of animals in each group (4 lesion, 6 control). (B) Same as A for the Where condition.

best had four parameters (M2+). The M2+ model had one learn-
ing rate, one inverse temperature, one autocorrelation parame-
ter, and one decay parameter which decays the autocorrelation
perseveration effects. The autocorrelation and decay parameters
characterized the tendency to perseverate on choices, indepen-
dent of whether they were appropriate to the current block. The
model which fit second most frequently had two parameters
(M2). The M2 model had one learning rate and one inverse tem-
perature parameter but no perseveration parameters. The M2+
model captures perseverative choice biases driven by choices
consistent with the opposite block type. Therefore, a preference
for the plus model suggests the monkeys choices are not driven
by the choice-outcome effects for the current blocktype, to the
same extent.

The relative preference for the M2+ model was larger in
amygdala animals than controls in the What condition than the
Where condition (Fig. 5; Group × Block type × Model; F(1, 8) = 6,
P = 0.040, ω2 = 0.083). Next, we split the analysis by block type. In
the What condition, there was a preference for the M2+ model

(Model; F(1, 8) = 21.5, P = 0.001), but there was no preference in
the Where condition (Model; F(1, 8) = 0.7, P = 0.434). However,
there were no group effects or interactions with group in either
the What or the Where conditions (P > 0.05). Therefore, there
was a shift towards the M2 model, relative to the M2+ model, in
the amygdala animals in the Where conditions. Since the plus
model captures a tendency to repeat a response to an object at a
specific location, independent of reward, this suggests that there
is a shift towards a less object dependent strategy in the Where
condition, relative to a location dependent strategy in the What
condition, in the amygdala animals.

Next, we examined the parameters for the M2+ model. The
only parameter that the groups differed on was the autocorre-
lation coefficient, κ (Fig. 6), which was larger in controls across
both conditions (Group; F(1, 8) = 15.6, P = 0.004, ω2 = 0.582). The
autocorrelation factor captures the tendency to repeat choices
of objects at specific locations, and therefore captures perse-
veration across actions and objects (Lau and Glimcher 2005;
Gershman et al. 2009).
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Figure 3. Win-stay, Lose-switch. (A) Win-stay, lose switch performance for the two groups in the What condition, averaged across schedules. (B) Win-stay, lose-switch

performance for the two groups in the Where condition, averaged across schedules. Error bars are ±1 SEM (N = 6 control, 4 lesion).

Figure 4. Cross condition choice frequencies. (A) Probability of choosing the most frequently chosen location in the What condition, averaged across reversals (with
reversal data flipped). (B) Probability of choosing the most frequently chosen object in the Where condition. Error bars are ±1 SEM, where the N = the number of animals
in each group (4 lesion, 6 control).

Reversals

Learning in this task is governed by three processes, which may
or may not map onto different neural systems. Monkeys have to
infer the block type, they have to infer the correct option within
each block type, and they have to reverse this preference when
the outcome mapping reverses. The animals have extensive
experience on the task before we collect behavioral data and, at
least control animals, learn that reversals happen in the middle
of the block (Costa et al. 2015). The monkeys use the acquired
task knowledge to improve performance on the task. The results
above show that monkeys with amygdala lesions have deficits
in both the What and Where conditions. However, it is not clear

whether animals with amygdala lesions have general deficits in
forming associations between actions or objects and rewards,
or whether they have deficits in reversing these preferences.
Therefore, we next addressed the reversal performance directly.

We used a Bayesian model to analyze the reversal behavior.
The model assumes that the animals develop an initial prefer-
ence for one option, and then reverse this preference at some
point in the block. Because behavior is stochastic, the animals
do not pick one option exclusively, and then switch at some
point in the middle of the block to picking the other option.
However, they tend to pick one of the options more often and this
tendency switches in the middle of the block (Fig. 2). The model
generates the probability that the animal reversed its choice
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Figure 5. BIC model selection. (A) Percentage of sessions BIC selected models M2 and M2+ (out of all 6 models) in the What condition. Error bars are ±1 SEM, where

the N = the number of animals in each group (4 lesion, 6 control). (B) Same as A for the Where condition.

behavior on each trial of the block—a probability distribution
over reversal trial (p(r), Fig. 7). On average, these probability
distributions were better centered around the actual reversal
points for the easier than harder reward schedules (Fig. 7A,B,D,E).
We tested this by taking the value of the probability distribution
on the average expected reversal trial (40). When we compared
these values across both block types, we found that animals
had higher values in easier schedules (Schedule; F(2, 16) = 11.4,
P < 0.001, ω2 = 0.127).

To characterize the distributions and examine group differ-
ences, we calculated the entropy (i.e., ĥ = −∑

r=0.81p(r)logp(r)) of
the posterior distribution over reversals in each block (Fig. 7C,F).
The entropy generalizes the concept of variance to non-
Gaussian distributions. It is a measure of how concentrated
the distribution is around the mean or mode. Higher entropy
indicates broader reversal distributions and therefore noisier,
less precise reversals. When we compared the entropy across
both block types, we found an overall effect of schedule
on entropy (Schedule; F(2, 16) = 47.5, P < 0.001, ω2 = 0.107).
Therefore, the switch in choice preference was more clearly
defined for the easy than hard schedules. We also found that the
entropy for control monkeys was significantly lower than for the
monkeys with amygdala lesions (Group; F(1, 14) = 9.4, P = 0.015,
ω2 = 0.197). Next, we analyzed the What and Where blocks
separately. In What blocks, we found an overall effect of schedule

(Schedule; F(2, 16) = 25.2, P < 0.001, ω2 = 0.07) and a group effect
(Group; F(1, 8) = 9, P = 0.017, ω2 = 0.252). In Where blocks, we also
found effects of schedule (Schedule; F(2, 16) = 31.1, P < 0.001,
ω2 = 0.157) and group (Group; F(1, 8) = 6.9, P = 0.030, ω2 = 0.147).

Two distributions can have different entropy but the same
mean. Therefore, we next examined whether the estimated
reversal trial differed between lesion and control groups, to see
if the groups tended to reverse on the same trial. To do this,
we calculated the expected value (i.e., the mean) of the reversal
distribution in each block (i.e., r̂ = ∑

r=0.81rp(r)). This gives us
a single number for each block, estimating the trial on which
the animal reversed its choice preference. This number can be
compared with where the actual reversal occurred, which we
refer to as the reversal trial difference (i.e., r̂ − ractual; Fig. 8A,B).
The variable r̂ characterizes our estimate of where the monkey
reversed and ractual is the programmed reversal trial. When we
analyzed both block types together, we found no effect of block
type on the difference between the reversal trial of the animals
and the actual reversal trial (Block Type; F(1, 8) = 0.01, P = 0.92,
ω2 = 0). However, there was an effect of schedule (Schedule; F(2,
16) = 17.1, P < 0.001, ω2 = 0.24), with animals reversing before the
actual reversal trial in the harder conditions, consistent with
previous work (Costa et al. 2015; Rothenhoefer et al. 2017). There
were no group differences (Group; F(1, 8) = 1.2, P = 0.3, ω2 = 0.033).
When we analyzed the where block by itself, we found that the
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Figure 6. Autocorrelation parameter for model M2+. (A) Autocorrelation parameter in the What condition. Error bars are ±1 SEM, where the N = the number of animals
in each group (4 lesion, 6 control). (B) Same as A for the Where condition.

groups differed in reversal behavior across schedule, reflecting
the difference in the 60/40 condition (Group × Schedule; F(2,
16) = 5.2, P = 0.018, ω2 = 0.121).

Following this, we looked at the absolute value of the differ-
ence between the monkey reversal and the actual reversal (i.e.,
| r̂ − ractual |; Fig. 8A,B). Unlike the difference in reversal trials
(Fig. 8A,B), the absolute value of the difference (Fig. 8C,D) charac-
terizes how close the animals were to the actual reversal, either
before or after. As above we found an effect of schedule (Sched-
ule; F(2, 16) = 64.0, P < 0.001, ω2 = 0.35). There were, however, no
differences across block type (Block Type; F(1, 8) = 0.03, P = 0.87,
ω2 = 0) and there were no differences between groups (Group;
F(1, 8) = 0.15, P = 0.71, ω2 = 0.01). Overall, therefore, despite their
generally noisier behavior, the monkeys with amygdala lesions
tended to reverse on the same trial as the controls, and they were
as close to the actual reversal, in absolute value.

The increased entropy of the reversal distribution may be
driven by noisy choice behavior. The algorithm assumes that
any choice not consistent with the dominant choice in a phase is
possibly a reversal. Therefore, noisy choices broaden the reversal
distribution. To characterize this in more detail, we first cal-
culated the average fraction of correct choices for each animal
relative to the currently most rewarded object, across the block.
We then correlated the average fraction of correct choices with
the average entropy of the reversal distribution (Fig. 9A), the
average reversal trial difference (Fig. 9C) and the average abso-
lute value of the reversal trial difference (Fig. 9B). The correla-
tion between fraction correct and the entropy was large and
negative across animals (ρ =−0.920, P < 0.001), as would be
expected as entropy depends on choice accuracy. The correla-
tion was also significant with the absolute value of the differ-
ence between the monkey and actual reversal trial (ρ = −0.773,

P < 0.01). However, the correlation between the fraction correct
and the signed difference in the reversal trial was not sig-
nificant (ρ = 0.117, P > 0.05). The correlation between fraction
correct and entropy was significantly larger than the correla-
tion between fraction correct and the reversal trial difference
(Z = 3.19, P = 0.001), but the difference between the correlation
of the fraction correct and the entropy, and the correlation
between the fraction correct and the absolute value, was not
different (Z = 1.05, P = 0.300). It is not surprising that these
correlations do not differ, because the absolute value is related
to the entropy. The entropy characterizes the width of the pos-
terior over reversal trials, and the absolute value characterizes
how far samples from this distribution are, from the mean, on
average.

The Bayesian model also estimates whether the monkey’s
choices were more consistent with choosing one of the objects
(What block) or one of the saccade directions (Where blocks).
These estimates provide evidence for the block type the
monkeys thought they were in based on their choice strategy
(Fig. 10). Across conditions there was a fourth-order interac-
tion (Group × Trial × Schedule × Block type; F(158, 1264) = 1.3,
P = 0.007, ω2 = 0.001). To examine this in detail, we analyzed each
block type separately. In What blocks, we found that posteriors
were higher for easier schedules (Schedule; F(2, 16) = 42.7,
P < 0.001, ω2 = 0.12). We also found that group differences varied
across schedules and trials (Group × Trial × Schedule; F(158,
1264) = 2.4, P < 0.001, ω2 = 0.004). When we analyzed effects
in the What blocks separately for each schedule, we found
the groups differed across trials in all schedules (Group × Trial;
60/40 F(79, 632) = 3.5, P < 0.001, ω2 = 0.028); 70/30 F(79, 632) = 6.6,
P < 0.001, ω2 = 0.036); 80/20 F(79, 632) = 1.31, P = 0.044, ω2 = 0.009).
In Where blocks (Fig. 10B), we found that posteriors were
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Figure 7. Posterior distributions and entropy of posterior. (A) Posterior distribution for control group in the What condition, overlaid on ideal observer posterior for each
schedule of the What condition. (B) Same as A for the lesion group. (C) Entropy of posterior distribution for both groups for the What condition, broken out by schedule.
Error bars are ±1 SEM (N = 6 control, 4 lesion). (D) Same as A for the Where condition. (E) Same as B for the Where condition. (F) Same as C for the Where condition.

higher in easy schedules, reflecting increased consistency
in the monkey’s choice behavior (Schedule; F(2, 16) = 29.9,
P < 0.001, ω2 = 0.117). There were, however, no group differences.
Therefore, in What blocks, the monkeys with amygdala lesions
were less consistently choosing one of the objects relative to the
controls. However, in Where blocks the groups did not differ.

Discussion
In the present study, we found that lesions of the amygdala
affected learning to select rewarding stimuli (What) and reward-
ing actions (Where). In both block types, we found that controls
more often chose the better option than the monkeys with
amygdala lesions. The choice accuracy deficit in the animals
with amygdala lesions was not significantly different in one

block type versus the other. When we analyzed win-stay, lose-
switch measures of the monkey’s choices, we found that the
lesioned animals more often switched after a negative outcome,
which decreased performance due to the stochastic schedules.
Therefore, much of their decreased accuracy, overall, followed
from switching after negative outcomes, and these effects were
significant in the What condition, although we did not find
that the groups differed significantly across conditions. We also
found that the animals with amygdala lesions tended to con-
sistently select locations more often in What blocks, relative to
control animals in harder schedules. This was consistent with
the finding that animals with amygdala lesions were better fit
by a model with object by location perseveration in the What
condition than the Where condition. Because the perseveration
term in the RL model is independent of reward, it will tend
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Figure 8. Relative and absolute difference in reversal behavior. Error bars are ±1 SEM (N = 6 control animals and 4 lesion animals). (A) Relative reversal trial in the
What condition. The relative reversal trial is given by the difference between the point estimate of the monkey’s reversal trial in each block and the actual reversal

trial. Negative numbers indicate that the monkey reversed before the actual reversal trial. (B) Relative reversal trial in the Where condition. (C) Absolute value of the
difference in the reversal trial in the What condition. In each block, we computed the difference between the estimated reversal trial of the animal, and the actual
reversal trial. We then took the absolute value of this difference.

Figure 9. Correlation plots for all 10 monkeys (6 control, 4 lesion). (A) The correlation between fraction correct and entropy. (B) Same as A, but the correlation is between
fraction correct and absolute reversal trial difference. (C) Same as A, but the correlation is between fraction correct and reversal trial difference.

to lower performance and therefore it lowered performance
relatively more in the What condition than the Where condition.

Because the operated monkeys sustained a variable amount
of damage to structures adjacent to the amygdala, in addition
to the substantial, planned damage to the amygdala, we consid-
ered the possibility that the behavioral impairments arose from
the inadvertent, extra-amygdala damage. Notably, there was

no apparent correlation of behavioral scores with the amount
of inadvertent damage to a particular structure. For example,
cases M2 and M3 had similar scores on acquisition yet ranked
fourth and first among lesion subjects in extent of damage
to the entorhinal cortex, respectively. In addition, based on
prior work, we can be confident that the amount of damage
estimated from T2-weighted scans, reported in Supplementary

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa241#supplementary-data
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Figure 10. Posterior probability of the choice strategy used by the monkeys. (A) Probability that the monkeys were using a What strategy in What blocks. A What strategy
implies that the monkeys are consistently picking one of the objects. (B) Probability that the animals were using a Where strategy in Where blocks. A Where strategy
implies that the monkeys are consistently picking a location. Shaded region indicates ±1 SEM, where the N = the number of animals in each group (4 lesion, 6 control).

Table 1, is an overestimate (Basile et al. 2017). These two factors
militate against the possibility that extra-amygdala damage is
responsible for the behavioral impairments we observed.

We also examined the reversal behavior in detail, to see
whether the animals with amygdala lesions had specific deficits
in reversing their choice-outcome preferences. For both block
types, we found that the lesion group had higher entropy in their
reversal distributions. This would be expected if the animals less
consistently chose the better option in both the acquisition and
reversal phase, as each time the animals choose the less pre-
ferred option, there is a small probability that they are reversing
their choice preference. This is, therefore, consistent with the
increased lose-switch probability of the lesioned group. When
we compared the mean and absolute values of the estimated
reversal trials, we found no average differences between the
groups. Therefore, the monkeys with amygdala lesions reversed,
on average, as effectively as the controls. In other work, we
have found a correlate of the reversal inference in dorsal lateral
prefrontal cortex (Bartolo and Averbeck 2020), which suggests
it may be playing an important role in the reversal process,
although we have not yet looked for such a correlate in the

amygdala. As stated earlier, learning in this task requires three
processes. Monkeys have to infer the block type, they have to
figure out the best choice within each block type, and they
have to reverse this preference when the outcome mapping
reverses. (It is possible that inferring the block type and figuring
out the best option are done as one process.) Of these three
processes, only the ability to consistently pick the best option
was significantly impaired in monkeys with amygdala lesions,
and this was primarily driven by more frequently switching after
a negative outcome. The fact that our results are not statisti-
cally distinguishable across the different block types suggests
that the amygdala plays a general role in forming associations
between both objects and actions with rewards. Whether this is
a deficit in representing the choices, the rewards, or in forming
associations between them is not clear from the current results.
Previous work would suggest the deficit, at least in part, is
in forming the association (Cardinal et al. 2002; Chau et al.
2015; Costa et al. 2016). These data are also consistent with
previous work, examining learning to reverse, which showed
that monkeys with amygdala lesions learned to reverse faster
(Jang et al. 2015). The current results suggest that the faster

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa241#supplementary-data
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reversals in those studies followed from weaker object outcome
associations, not stronger prior probabilities on variability in
the environment (Jang et al. 2015). Also relevant is the finding
discerned from fMRI that, in intact monkeys, amygdala activity
during both deterministic and probabilistic learning specifically
predicts lose-shift behavior, and adaptive win-stay, lose-shift
signals are evident in ventrolateral prefrontal cortex area 12o
(Chau et al. 2015), a region necessary for probabilistic discrim-
ination learning (Rudebeck, Ripple, et al. 2017). Future studies
could address whether probabilistic learning like that examined
here requires the functional interaction of the amygdala with
the ventrolateral prefrontal cortex.

Learning systems and their anatomical substrates can be dis-
sociated in various ways. For example, learning is often studied
using Pavlovian or instrumental paradigms (Mackintosh 1994).
Formation of Pavlovian CS–US associations is mediated, to some
extent, by the amygdala (Cardinal et al. 2002; Braesicke et al.
2005). Formation of instrumental associations, on the other
hand, is thought to be mediated by frontal–striatal systems
(Balleine et al. 2009). Both forms of conditioning were developed
from purely behavioral considerations and, therefore, they do
not necessarily map cleanly onto separable neural systems.
Furthermore, there is considerable interaction between these
behavioral processes in tasks like Pavlovian Instrumental Trans-
fer (Corbit and Balleine 2005) and conditioned reinforcement
(Burns et al. 1993). The bandit tasks often used to study RL
(O’Doherty et al. 2004; Daw et al. 2006; Costa et al. 2016), do not
map cleanly onto Pavlovian or instrumental constructs. Actions
are required to select options in bandit tasks. However, when the
reward values of objects are being learned, the required action
varies depending on the location of the object. Furthermore,
when the reward values of actions are being learned, it is likely
that learning the reward values of arm movements may engage
different neural systems than learning the reward values of eye
movements, given the differing neural systems engaged by each
type of action (Alexander et al. 1986). It is also possible that
learning deficits following amygdala lesions may depend on the
type of motor response required to register choices. Additional
work will be required to clarify this hypothesis.

From a psychological perspective, it is of interest that the
amygdala is essential for both object-outcome and action-
outcome associations as assessed with devaluations tasks
(Málková et al. 1997; Rhodes and Murray 2013). Together with
the present data, these findings show that the amygdala is
important for learning about both objects and actions as they
relate to reward probability (present study) and current reward
value, including reward magnitude (Málková et al. 1997; Rhodes
and Murray 2013; Rudebeck et al. 2013). An earlier study on
object reversal learning found that, relative to unoperated
controls, monkeys with amygdala lesions benefitted more from
correct choices that follow an error in a deterministic setting
(Rudebeck and Murray 2008). While this finding would seem to
be at odds with the present findings, we note that the object
reversal tasks differ in more ways than use of deterministic
versus probabilistic outcomes. For example, the standard object
reversal learning task employed by Rudebeck and Murray
employed a small number (nine) of reversals, whereas in the
present study, all monkeys had received extensive training in
reversals. As a result, unlike in the present study, monkeys
in the deterministic task experienced unexpected uncertainty,
at least in early reversals. In addition, the present and earlier
task differ in the type of response required (manual vs. eye-
movement), in the location and type of reward (food reward

under object vs. fluid reward delivered to mouth), and in the
number of trials administered per session (30 trials vs. massed
trials). These task differences might account for the somewhat
different picture gained from assessing amygdala contributions
to the two kinds of reversal learning. Thus, the amygdala makes
an essential contribution to reversal learning in probabilistic and
even deterministic settings with massed trials in an automated
apparatus (Costa et al. 2016) but not to reversal learning in
deterministic settings with a small number of trials in a manual
test apparatus (Izquierdo and Murray 2007).

The What versus Where task used in the current study
was developed to separate neural circuits underlying learning
rewards associated with objects whose locations vary, versus
learning to associate rewards with actions independent of the
object at the saccade target location. The hypothesis that such a
dissociation should be possible follows from work in the visual
and auditory systems (Ungerleider and Mishkin 1982; Romanski
et al. 1999) based on the separable anatomical organization
of visual cortex (Ungerleider and Mishkin 1982; Goodale and
Milner 1992), as well as proposed frontal extensions of this
circuitry (Averbeck and Murray 2020). Parietal cortex processes
information about the spatial locations of objects in the envi-
ronment, and the motor actions required to interact with these
objects (Steinmetz et al. 1987; Mascaro et al. 2003; Caminiti
et al. 2017). The ventral visual cortex, on the other hand, pro-
cesses information about object features that allow for object
identification and discrimination (Desimone et al. 1984; Yamins
et al. 2014). This separable organization continues into prefrontal
cortex (Barbas 1988; Webster et al. 1994; Averbeck and Seo 2008;
Averbeck and Murray 2020), and correspondingly into the striatal
circuitry (Haber et al. 2006; Averbeck et al. 2014; Neftci and
Averbeck 2019). While there is evidence for anatomical segrega-
tion, neurophysiological recordings have shown integration of
What and Where information in both prefrontal (Rao et al. 1997)
and parietal (Sereno and Maunsell 1998) cortex. Thus, in neural
circuits that are less proximal to sensory processes, it is not clear
that these separate streams differentially process behaviorally
relevant information, particularly in frontal–striatal systems.

The task was developed to separate learning about actions
versus learning about objects. However, there are other
differences between the conditions that may lead to behavioral
effects. For example, in the What condition, the preferred object
is present on the screen, whereas in the Where condition,
although the response zones are indicated on the screen,
the animals have to internally generate the action that will
most likely lead to reward. Still, there is no reason to think
monkeys with amygdala lesions are impaired in the ability
to internally generate actions. An earlier study that examined
the effects of amygdala lesions on conditional motor learning
found no impairment in learning new conditional problems
in a deterministic setting, even though the responses were
internally generated (Murray and Wise 1996). It is also possible
that the animals find one or the other condition to be more
difficult. We have not systematically studied this, but in
other work we have seen that some animals do better in
either the Where relative to the What (Rothenhoefer et al.
2017) or the What relative to Where conditions (Bartolo and
Averbeck 2020; Bartolo et al. 2020). Therefore, animals do not
consistently show a clear preference for one or the other
condition.

We have previously shown that learning oculomotor action
sequences depends on a dorsal–lateral prefrontal, dorsal striatal
circuit (Seo et al. 2012; Lee et al. 2015). The prefrontal and striatal
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nodes in this circuit processed sequence related information
(Seo et al. 2012), and local injections of dopamine antagonists
into the DS led to deficits in performance during sequence
learning (Lee et al. 2015). The DS also contains a stronger rep-
resentation of action value than prefrontal cortex (Samejima
et al. 2005; Lau and Glimcher 2008). This suggests that the dorsal
circuit is important for action learning, when actions are eye
movements. We have also found that lesions of the VS yield
deficits specific to learning to select rewarding objects, without
affecting learning to select rewarding actions, using the same
What versus Where task used here (Rothenhoefer et al. 2017).
In other work, we found that amygdala lesions affect learning
to choose rewarding stimuli (Costa et al. 2016; Rudebeck, Ripple,
et al. 2017). We have not, however, carried out a double disso-
ciation experiment, using the same task with manipulations of
either the DS or the VS.

Anatomy is often a guide to function. Anatomically, the baso-
lateral amygdala is strongly interconnected with the ventral,
visual object system (Turner et al. 1980; Amaral et al. 1992; Neftci
and Averbeck 2019). It receives substantial projections from
high level visual cortex (Amaral et al. 1992), and correspond-
ingly projects to the VS (Friedman et al. 2002), and ventrolat-
eral and orbital prefrontal cortex (Ghashghaei and Barbas 2002;
Ghashghaei et al. 2007). Both prefrontal areas also receive input
from temporal lobe, and not parietal lobe, visual areas (Webster
et al. 1994). The amygdala also interacts with the medial portion
of the mediodorsal thalamic nucleus (Russchen et al. 1987),
which also projects to orbitofrontal cortex (Goldman-Rakic and
Porrino 1985).

Given the anatomical connections of the amygdala with
the ventral visual pathway, we had hypothesized that it
would be mostly related to learning to choose objects and
not actions. However, we found that lesions of the amygdala
led to deficits in both learning to select actions and objects.
Numerically the choice accuracy effect was larger for selection
of objects. Although the amygdala has minimal connectivity
with dorsal prefrontal areas that underlie oculomotor control
(Ghashghaei et al. 2007) and no connections to the DS, it
does have substantial back-projections across the visual
hierarchy, including early visual cortex (Amaral et al. 1992).
Given that early visual areas have minimal bilateral visual
representation, these back-projections may affect lateralized
spatial representations. Furthermore, neurophysiology studies
have shown that amygdala neurons contain representations
of the spatial locations of rewarded objects (Peck et al. 2013;
Peck et al. 2014; Peck and Salzman 2014a, 2014b; Costa et al.
2019). These spatially selective responses are also in contrast
to the VS, which contains no spatial information (Costa et al.
2019). Therefore, neurophysiology suggests a possible role for
the amygdala in spatial-attentional processes, and the effects
of these representations on behavior may be mediated by back-
projections to early visual areas, or other pathways that connect
these representations, polysynaptically, to areas that underlie
eye movements. In related work, the amygdala is also involved
in revaluing arm-motor responses in devaluation paradigms,
where the value associated with a specific motor response
changes following a selective satiation procedure (Rhodes and
Murray 2013).

Amygdala interactions with orbitofrontal and ventrolateral
prefrontal cortex are also likely important for the learning
processes we have examined (Rudebeck, Saunders, et al. 2017;
Murray and Rudebeck 2018). Recent work in rats has shown that
ablation of amygdala neurons that project to the OFC impairs

reversal performance on a probabilistic spatial learning task
(Groman et al. 2019). This deficit was due to the rats losing
their ability to use positive outcomes to guide their choice
behavior. In this same study, it was shown that ablation of OFC
neurons projecting to amygdala enhanced reversal performance
by destabilizing action values. Related to this, it has been
shown that lesions of the OFC impair reversal behavior, but
subsequent lesions of the amygdala in the same animals restore
performance (Stalnaker et al. 2007). These results suggest that,
under some circumstances, amygdala–OFC interactions may be
detrimental to learning.

Our Bayesian model assumes that a state inference process
underlies reversal learning. The model assumes the animals
have a preference for one option (i.e., state A), which reverses at
some point in the block (i.e., state B). The posterior distribution
over reversals is the estimate of where the animals switch
states in each block. Our data suggest that the amygdala is not
involved in inferring state or state switches in our task. Although
monkeys with amygdala lesions have deficits in consistently
choosing the better option in both conditions, they reverse their
choice preference as well as controls. Therefore, it is possible
that state inference processes are being carried out by prefrontal
cortical areas, as suggested by previous work (Durstewitz et al.
2010; Karlsson et al. 2012; Wilson et al. 2014; Schuck et al. 2016;
Ebitz et al. 2018; Starkweather et al. 2018; Sarafyazd and Jazayeri
2019; Bartolo and Averbeck 2020). The interaction between corti-
cal state-inference processes, and amygdala learning processes,
may lead to deficits in some conditions, when there is a conflict
between the best choices predicted by each process. Under
these conditions, lesions of the OFC to amygdala pathway may
improve performance. Future work can examine this possibility
in more detail.

Conclusion
We found that lesions of the amygdala led to deficits in con-
sistently choosing the more frequently rewarded options. We
found these deficits in both the What condition, when ani-
mals had to learn to choose the best visual object, and in the
Where condition, when the animals had to learn to choose
the best action. The deficits in choice accuracy followed pri-
marily from switching after a negative outcome, which led to
decreased performance due to the stochastic schedules. We did
not find deficits in reversal accuracy; thus, monkeys with amyg-
dala lesions were able to reverse their choice-outcome map-
pings, in both conditions, as well as controls. Inferring reversals
in choice-outcome mappings may, therefore, be more dependent
on other brain areas, including cortex. Overall, this suggests
that the amygdala is important for consistently choosing a
rewarded option. Future work should focus on understanding
how the network of areas that are important for learning orches-
trates the multiple processes involved in learning in dynamic
environments.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.

Notes
Conflict of Interest. None declared.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa241#supplementary-data


544 Cerebral Cortex, 2021, Vol. 31, No. 1

Funding
The National Institute of Mental Health at the National Insti-
tutes of Health (grant number ZIA MH002928).

References
Alexander GE, DeLong MR, Strick PL. 1986. Parallel organization

of functionally segregated circuits linking basal ganglia and
cortex. Annu Rev Neurosci. 9:357–381.

Amaral DG, Price JL. 1984. Amygdalo-cortical projections in the
monkey (Macaca fascicularis). J Comp Neurol. 230:465–496.

Amaral DG, Price JL, Pitkanen A, Carmichael ST. 1992. Anatomical
organization of the primate amygdaloid complex. In: . Aggle-
ton JP, editor. The amygdala: neurobiological aspects of emotion,
memory, and mental dysfunctdion. New York: Wiley-Liss. pp.
1–66.

Asaad WF, Eskandar EN. 2008. A flexible software tool for
temporally-precise behavioral control in Matlab. J Neurosci
Methods. 174:245–258.

Averbeck BB, Costa VD. 2017. Motivational neural circuits under-
lying reinforcement learning. Nature Neurosci. 20:505–512.

Averbeck BB, Lehman J, Jacobson M, Haber SN. 2014. Estimates of
projection overlap and zones of convergence within frontal-
striatal circuits. J Neurosci. 34:9497–9505.

Averbeck BB, Murray EA. 2020. Hypothalamic interactions with
large-scale neural circuits underlying reinforcement learning
and motivated behavior. Trends Neurosci. 43:681–694.

Averbeck BB, Seo M. 2008. The statistical neuroanatomy
of frontal networks in the macaque. PLoS Comput Biol.
4:e1000050.

Balleine BW, Liljeholm M, Ostlund SB. 2009. The integrative
function of the basal ganglia in instrumental conditioning.
Behav Brain Res. 199:43–52.

Barbas H. 1988. Anatomic organization of basoventral and
mediodorsal visual recipient prefrontal regions in the rhesus
monkey. J Comp Neurol. 276:313–342.

Bartolo R, Averbeck BB. 2020. Prefrontal cortex predicts state
switches during reversal learning. Neuron. 106:1044–1054.

Bartolo R, Saunders RC, Mitz AR, Averbeck BB. 2020. Information-
limiting correlations in large neural populations. J Neurosci.
40:1668.

Basile BM, Karaskiewicz CL, Fiuzat EC, Malkova L, Murray EA.
2017. MRI overestimates excitotoxic amygdala lesion damage
in rhesus monkeys. Front Integr Neurosci. 11:12.

Baxter MG, Murray EA. 2002. The amygdala and reward. Nat Rev
Neurosci. 3:563–573.

Belova MA, Paton JJ, Salzman CD. 2008. Moment-to-moment
tracking of state value in the amygdala. J Neurosci.
28:10023–10030.

Braesicke K, Parkinson JA, Reekie Y, Man MS, Hopewell L, Pears A,
Crofts H, Schnell CR, Roberts AC. 2005. Autonomic arousal in
an appetitive context in primates: a behavioural and neural
analysis. Eur J Neurosci. 21:1733–1740.

Burns LH, Robbins TW, Everitt BJ. 1993. Differential effects
of excitotoxic lesions of the basolateral amygdala, ventral
subiculum and medial prefrontal cortex on responding with
conditioned reinforcement and locomotor activity potenti-
ated by intra-accumbens infusions of d-amphetamine. Behav
Brain Res. 55:167–183.

Bussey TJ, Wise SP, Murray EA. 2002. Interaction of ventral
and orbital prefrontal cortex with inferotemporal cortex

in conditional visuomotor learning. Behav Neurosci. 116:
703–715.

Caminiti R, Borra E, Visco-Comandini F, Battaglia-Mayer A, Aver-
beck BB, Luppino G. 2017. Computational architecture of the
Parieto-frontal network underlying cognitive-motor control
in monkeys. eNeuro. 4:ENEURO.0306-16.2017.

Cardinal RN, Parkinson JA, Hall J, Everitt BJ. 2002. Emotion and
motivation: the role of the amygdala, ventral striatum, and
prefrontal cortex. Neurosci Biobehav Rev. 26:321–352.

Chau BK, Sallet J, Papageorgiou GK, Noonan MP, Bell AH, Walton
ME, Rushworth MF. 2015. Contrasting roles for orbitofrontal
cortex and amygdala in credit assignment and learning in
macaques. Neuron. 87:1106–1118.

Corbit LH, Balleine BW. 2005. Double dissociation of basolateral
and central amygdala lesions on the general and outcome-
specific forms of pavlovian-instrumental transfer. J Neurosci.
25:962–970.

Costa VD, Dal Monte O, Lucas DR, Murray EA, Averbeck BB. 2016.
Amygdala and ventral striatum make distinct contributions
to reinforcement learning. Neuron. 92:505–517.

Costa VD, Mitz AR, Averbeck BB. 2019. Subcortical substrates
of explore-exploit decisions in primates. Neuron. 103:53–545
e535.

Costa VD, Tran VL, Turchi J, Averbeck BB. 2015. Reversal
learning and dopamine: a bayesian perspective. J Neurosci.
35:2407–2416.

Cox RW. 1996. AFNI: software for analysis and visualization of
functional magnetic resonance neuroimages. Comput Biomed
Res. 29:162–173.

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ. 2006. Cor-
tical substrates for exploratory decisions in humans. Nature.
441:876–879.

Desimone R, Albright TD, Gross CG, Bruce C. 1984. Stimulus-
selective properties of inferior temporal neurons in the
macaque. J Neurosci. 4:2051–2062.

Durstewitz D, Vittoz NM, Floresco SB, Seamans JK. 2010.
Abrupt transitions between prefrontal neural ensemble
states accompany behavioral transitions during rule learn-
ing. Neuron. 66:438–448.

Ebitz RB, Albarran E, Moore T. 2018. Exploration disrupts choice-
predictive signals and alters dynamics in prefrontal cortex.
Neuron. 97:450–461 e459.

Friedman DP, Aggleton JP, Saunders RC. 2002. Comparison
of hippocampal, amygdala, and perirhinal projections to
the nucleus accumbens: combined anterograde and retro-
grade tracing study in the macaque brain. J Comp Neurol.
450:345–365.

Gershman SJ, Pesaran B, Daw ND. 2009. Human reinforcement
learning subdivides structured action spaces by learning
effector-specific values. J Neurosci. 29:13524–13531.

Ghashghaei HT, Barbas H. 2002. Pathways for emotion: interac-
tions of prefrontal and anterior temporal pathways in the
amygdala of the rhesus monkey. Neuroscience. 115:1261–1279.

Ghashghaei HT, Hilgetag CC, Barbas H. 2007. Sequence of infor-
mation processing for emotions based on the anatomic dia-
logue between prefrontal cortex and amygdala. Neuroimage.
34:905–923.

Goldman-Rakic PS, Porrino LJ. 1985. The primate mediodorsal
(MD) nucleus and its projection to the frontal lobe. J Comp
Neurol. 242:535–560.

Goodale MA, Milner AD. 1992. Separate visual pathways for
perception and action. Trends Neurosci. 15:20–25.



Amygdala and Learning Taswell et al. 545

Groman SM, Keistler C, Keip AJ, Hammarlund E, DiLeone RJ,
Pittenger C, Lee D, Taylor JR. 2019. Orbitofrontal circuits
control multiple reinforcement-learning processes. Neuron.
103:734–746 e733.

Haber SN, Kim KS, Mailly P, Calzavara R. 2006. Reward-related
cortical inputs define a large striatal region in primates
that interface with associative cortical connections, pro-
viding a substrate for incentive-based learning. J Neurosci.
26:8368–8376.

Hampton AN, Adolphs R, Tyszka MJ, O’Doherty JP. 2007. Contri-
butions of the amygdala to reward expectancy and choice
signals in human prefrontal cortex. Neuron. 55:545–555.

Izquierdo A, Murray EA. 2007. Selective bilateral amygdala
lesions in rhesus monkeys fail to disrupt object reversal
learning. J Neurosci. 27:1054–1062.

Jang AI, Costa VD, Rudebeck PH, Chudasama Y, Murray EA,
Averbeck BB. 2015. The role of frontal cortical and medial-
temporal lobe brain areas in learning a Bayesian prior belief
on reversals. J Neurosci. 35:11751–11760.

Karlsson MP, Tervo DG, Karpova AY. 2012. Network resets in
medial prefrontal cortex mark the onset of behavioral uncer-
tainty. Science. 338:135–139.

Lau B, Glimcher PW. 2005. Dynamic response-by-response mod-
els of matching behavior in rhesus monkeys. J Exp Anal Behav.
84:555–579.

Lau B, Glimcher PW. 2008. Value representations in the primate
striatum during matching behavior. Neuron. 58:451–463.

Lee E, Seo M, Dal Monte O, Averbeck BB. 2015. Injection of a
dopamine type 2 receptor antagonist into the dorsal stria-
tum disrupts choices driven by previous outcomes, but not
perceptual inference. J Neurosci. 35:6298–6306.

Mackintosh NJ, editor. 1994. Animal learning and cognition. New
York: Academic Press, Handbook of Perception and Cognition.

Málková L e, Gaffan D, Murray EA. 1997. Excitotoxic lesions of
the amygdala fail to produce impairment in visual learn-
ing for auditory secondary reinforcement but interfere with
Reinforcer devaluation effects in rhesus monkeys. J Neurosci.
17:6011–6020.

Mascaro M, Battaglia-Mayer A, Nasi L, Amit DJ, Caminiti R. 2003.
The eye and the hand: neural mechanisms and network
models for oculomanual coordination in parietal cortex.
Cereb Cortex. 13:1276–1286.

Morecraft RJ, McNeal DW, Stilwell-Morecraft KS, Gedney M, Ge J,
Schroeder CM, van Hoesen GW. 2007. Amygdala interconnec-
tions with the cingulate motor cortex in the rhesus monkey.
J Comp Neurol. 500:134–165.

Murray EA, Rudebeck PH. 2018. Specializations for reward-guided
decision-making in the primate ventral prefrontal cortex.
Nature Rev Neurosci. 19:404–417.

Murray EA, Wise SP. 1996. Role of the hippocampus plus
subjacent cortex but not amygdala in visuomotor condi-
tional learning in rhesus monkeys. Behav Neurosci. 110:
1261–1270.

Neftci EO, Averbeck BB. 2019. Reinforcement learning in artificial
and biological systems. Nat Mach Intell. 1:133–143.

O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan
RJ. 2004. Dissociable roles of ventral and dorsal striatum in
instrumental conditioning. Science. 304:452–454.

Olejnik S, Algina J. 2000. Measures of effect size for compar-
ative studies: applications, interpretations, and limitations.
Contemp Educ Psychol. 25:241–286.

Parker NF, Cameron CM, Taliaferro JP, Lee J, Choi JY, Davidson
TJ, Daw ND, Witten IB. 2016. Reward and choice encoding in

terminals of midbrain dopamine neurons depends on striatal
target. Nature Neurosci. 19:845–854.

Paton JJ, Belova MA, Morrison SE, Salzman CD. 2006. The primate
amygdala represents the positive and negative value of visual
stimuli during learning. Nature. 439:865–870.

Peck CJ, Lau B, Salzman CD. 2013. The primate amygdala com-
bines information about space and value. Nature Neurosci.
16:340–348.

Peck CJ, Salzman CD. 2014a. The amygdala and basal forebrain
as a pathway for motivationally guided attention. J Neurosci.
34:13757–13767.

Peck CJ, Salzman CD. 2014b. Amygdala neural activity reflects
spatial attention towards stimuli promising reward or threat-
ening punishment. eLife. 3:e04478.

Peck EL, Peck CJ, Salzman CD. 2014. Task-dependent
spatial selectivity in the primate amygdala. J Neurosci.
34:16220–16233.

Rao SC, Rainer G, Miller EK. 1997. Integration of what and where
in the primate prefrontal cortex. Science. 276:821–824.

Rhodes SE, Murray EA. 2013. Differential effects of amyg-
dala, orbital prefrontal cortex, and prelimbic cortex lesions
on goal-directed behavior in rhesus macaques. J Neurosci.
33:3380–3389.

Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS,
Rauschecker JP. 1999. Dual streams of auditory afferents
target multiple domains in the primate prefrontal cortex. Nat
Neurosci. 2:1131–1136.

Rothenhoefer KM, Costa VD, Bartolo R, Vicario-Feliciano R, Mur-
ray EA, Averbeck BB. 2017. Effects of ventral striatum lesions
on stimulus versus action based reinforcement learning. J
Neurosci. 37:6920–6914.

Rudebeck PH, Mitz AR, Chacko RV, Murray EA. 2013. Effects
of amygdala lesions on reward-value coding in orbital and
medial prefrontal cortex. Neuron. 80:1519–1531.

Rudebeck PH, Murray EA. 2008. Amygdala and orbitofrontal
cortex lesions differentially influence choices during object
reversal learning. J Neurosci. 28:8338–8343.

Rudebeck PH, Ripple JA, Mitz AR, Averbeck BB, Murray EA. 2017.
Amygdala contributions to stimulus-reward encoding in the
macaque medial and orbital frontal cortex during learning. J
Neurosci. 37:2186–2202.

Rudebeck PH, Saunders RC, Lundgren DA, Murray EA. 2017.
Specialized representations of value in the orbital and ven-
trolateral prefrontal cortex: desirability versus availability of
outcomes. Neuron. 95:1208–1220 e1205.

Russchen FT, Amaral DG, Price JL. 1987. The afferent input to the
magnocellular division of the mediodorsal thalamic nucleus
in the monkey, Macaca fascicularis. J Comp Neurol. 256:175–210.

Salzman CD, Fusi S. 2010. Emotion, cognition, and mental state
representation in amygdala and prefrontal cortex. Annu Rev
Neurosci. 33:173–202.

Samejima K, Ueda Y, Doya K, Kimura M. 2005. Representation
of action-specific reward values in the striatum. Science.
310:1337–1340.

Sarafyazd M, Jazayeri M. 2019. Hierarchical reasoning by neural
circuits in the frontal cortex. Science. 364:eaav8911.

Schuck NW, Cai MB, Wilson RC, Niv Y. 2016. Human orbitofrontal
cortex represents a cognitive map of state space. Neuron.
91:1402–1412.

Seidlitz J, Sponheim C, Glen D, Ye FQ, Saleem KS, Leopold DA,
Ungerleider L, Messinger A. 2018. A population MRI brain
template and analysis tools for the macaque. Neuroimage.
170:121–131.



546 Cerebral Cortex, 2021, Vol. 31, No. 1

Seo M, Lee E, Averbeck BB. 2012. Action selection and action value
in frontal-striatal circuits. Neuron. 74:947–960.

Sereno AB, Maunsell JH. 1998. Shape selectivity in primate lateral
intraparietal cortex. Nature. 395:500–503.

Stalnaker TA, Franz TM, Singh T, Schoenbaum G. 2007. Basolat-
eral amygdala lesions abolish orbitofrontal-dependent rever-
sal impairments. Neuron. 54:51–58.

Starkweather CK, Gershman SJ, Uchida N. 2018. The
medial prefrontal cortex shapes dopamine reward
prediction errors under state uncertainty. Neuron. 98:
616–629 e616.

Steinmetz MA, Motter BC, Duffy CJ, Mountcastle VB. 1987. Func-
tional properties of parietal visual neurons: radial organi-
zation of directionalities within the visual field. J Neurosci.
7:177–191.

Taswell CA, Costa VD, Murray EA, Averbeck BB. 2018. Ventral
striatum’s role in learning from gains and losses. Proc Natl
Acad Sci USA. 115:E12398–E12406.

Turner BH, Mishkin M, Knapp M. 1980. Organization of the
amygdalopetal projections from modality-specific corti-

cal association areas in the monkey. J Comp Neurol. 191:
515–543.

Ungerleider LG, Mishkin M. 1982. Two cortical visual systems.
In: Ingle DJ, Goodale MA, Mansfield RJW, editors. Analysis of
visual behavior. Cambridge: MIT Press, pp. 549–587.

Webster MJ, Bachevalier J, Ungerleider LG. 1994. Connections of
inferior temporal areas TEO and TE with parietal and frontal
cortex in macaque monkeys. Cereb Cortex. 4:470–483.

Willenbockel V, Sadr J, Fiset D, Horne GO, Gosselin F, Tanaka
JW. 2010. Controlling low-level image properties: the SHINE
toolbox. Behav Res Methods. 42:671–684.

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014.
Orbitofrontal cortex as a cognitive map of task space. Neuron.
81:267–279.

Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo
JJ. 2014. Performance-optimized hierarchical models predict
neural responses in higher visual cortex. Proc Natl Acad Sci
USA. 111:8619–8624.

Zar JH. 1999. Biostatistical analysis. Prentice Hall: Upper Saddle
River.


	Effects of Amygdala Lesions on Object-Based Versus Action-Based Learning in Macaques
	Introduction
	Materials and Methods
	Subjects
	Surgery
	Lesion Assessment
	Task and Apparatus
	Task Training
	Objects and Eye Tracking
	Bayesian Model of Reversal Learning
	Reinforcement Learning Model of Choice Behavior
	ANOVA Models

	Results
	Choice Behavior
	Reinforcement Learning Model
	Reversals

	Discussion
	Conclusion
	Supplementary Material
	Notes
	Funding


