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Abstract

Autoinflammatory diseases are conditions in which pathogenic inflammation arises primarily 

through antigen-independent hyperactivation of immune pathways. First recognized just over two 

decades ago, the autoinflammatory disease spectrum has expanded rapidly to include more than 40 

distinct monogenic conditions. Related mechanisms contribute to common conditions such as gout 

and cardiovascular disease. Here we review the basic concepts underlying the “autoinflammatory 

revolution” in the understanding of immune-mediated disease and introduce major categories of 

monogenic autoinflammatory disorders recognized to date, including inflammasomopathies and 

other IL-1-related conditions; interferonopathies; and disorders of NFκB and/or aberrant TNF 

activity. We highlight phenotypic presentation as a reflection of pathogenesis and outline a 

practical approach to the evaluation of patients with suspected autoinflammation.
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Introduction: Autoimmunity vs. Autoinflammation

In 1901, the German immunologist Paul Ehrlich recognized an important theoretical 

downside to the immune system’s capacity to recognize specific targets – namely, the 

possibility that errors could translate into immune attack on self. He employed the now-

famous phrase “horror autotoxicus” to describe what he presumed to be an absolute aversion 

to such self-targeting.1 However, evidence in favor of immune mistakes emerged rapidly, 
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and by the 1950s disease-causing autoantibodies had been clearly demonstrated.2–4 

Autoimmunity is now recognized as a core mechanism of human disease, arising when 

antigen-specific components of adaptive immunity – T cells, B cell and antibodies – 

mistakenly target autologous tissues as though they were foreign. Hundreds of autoimmune 

diseases are now recognized, impacting every organ system and affecting at least 3% of the 

population.5 Allergic diseases similarly reflect aberrant antigen-directed immunity, albeit 

directed against innocuous targets from the environment.

However, adaptive immunity is only one arm of immune defense. From an evolutionary 

point of view, the ability to generate antigen specificity through genetic recombination was a 

late development, originating in distinct but related systems in the jawless and jawed 

vertebrates approximately 500 million years ago (Figure 1).6 For the vast majority of 

species, immunity against pathogens is “hard-wired” into the organism’s genetic code. In 

humans, innate immune mechanisms include lineages such as neutrophils, macrophages, 

mast cells, NK cells, and innate-like lymphocytes; cell-surface and intracellular pattern 

recognition mechanisms such as Toll-like receptors; and soluble defensive proteins such as C 

reactive protein and complement. If inflammatory disease can arise through adaptive 

immune mistakes, it is plausible to suppose that it might also develop though dysfunction in 

these antigen-independent pathways.

Obvious as this possibility appears in retrospect, it is only in the last two decades that 

diseases originating though excesses of innate immunity have been recognized. This new 

understanding began with the discovery that familial Mediterranean fever (FMF) arose from 

mutations in MEFV, encoding pyrin, a protein expressed predominately by innate lineages.
7, 8 Subsequent genetic dissection of a second heritable inflammatory disease, TNF Receptor 

Associated Periodic Syndrome (TRAPS) arising from mutant TNFRSF1A, enabled the 

insight that FMF and TRAPS represented a new category of disease.9 Daniel Kastner and 

colleagues originated the concept of autoinflammatory disease to denote inflammatory 

disorders that arise through mechanisms distinct from autoimmunity and distinguished by 

features such as absence of autoantibodies.9

Since its introduction in 1999, the term “autoinflammation” has been employed widely but 

variably. Here we define an autoinflammatory disease as one in which pathogenic 
inflammation arises primarily through antigen-independent hyperactivation of immune 
pathways. The monogenic autoinflammatory diseases represent loss-of-function mutations 

in genes that suppress inflammation or gain-of-function mutations in genes that propagate 

inflammation, resulting in immune activation spontaneously or with minimal triggering. 

Broadly, autoinflammatory diseases reflect disorders of innate immunity while autoimmune 

and allergic diseases represent disorders of adaptive immunity. However, this simplistic 

division is at best a first approximation. Innate and adaptive immunity are densely 

interconnected, and dysfunction in one often disturbs function in the other. For example, 

some diseases now considered autoinflammatory feature autoantibodies. T and B cells may 

mediate and theoretically even initiate autoinflammatory diseases, as long as activation does 

not reflect antigen-targeted misrecognition of self. While the clearest examples of 

autoinflammation so far have been monogenic, it is likely that there are also 

autoinflammatory diseases that arise through defects in many genes (polygenic).
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Autoinflammation represents one axis of immune dysfunction, together with autoimmunity/

allergy and immunodeficiency (Figure 2). Allergists/immunologists are likely to encounter 

autoinflammation in the course of the evaluation of patients with fever, rash, lung disease, 

and other disease manifestations that can reflect aberrant immunity. Patients with primary 

immunodeficiencies may exhibit autoinflammation in addition to impaired 

immunocompetence, and patients with autoinflammation may paradoxically experience 

recurrent infections. For these reasons, as specialists in immune dysfunction, allergists and 

immunologists need to be prepared to provide a medical home to these complex patients.

Categories of autoinflammatory diseases

Theoretically, there could be as many autoinflammatory diseases as there are immune 

pathways. Indeed, the last decade has witnessed an explosion of new autoinflammatory 

disorders, and more remain to be discovered. Many of these conditions engage multiple 

pathways and fit into several pathogenic categories.10 The first autoinflammatory disease 

recognized, FMF, is an inflammasomopathy; other autoinflammatory diseases arise through 

defects affecting interferon, NFκB and/or aberrant TNF activity, and miscellaneous 

mechanisms (Table 1). New categories of autoinflammatory disease will no doubt emerge 

over time.

1. Inflammasomopathies and other diseases arising through IL-1-family cytokines

The inflammasomes are a family of protein complexes that activate caspase-1, also called 

IL-1 converting enzyme, leading to proteolytic activation of IL-1β and IL-18. Caspase-1 also 

cleaves gasdermin D, which then forms membrane pores that release these cytokines into the 

extracellular milieu and allow solute entry to trigger a pro-inflammatory form of cell death 

termed pyroptosis. The inflammasome forms when a core nucleating protein changes 

conformation in response to a cytoplasmic danger signal, resulting in prion-like assembly of 

ASC (Apoptosis-associated Speck like protein containing a Caspase recruitment domain) 

proteins that in turn coordinate reciprocal activation of multiple caspase-1 molecules. 

Multiple inflammasomes are well-established, defined by their nucleating proteins including 

pyrin, cryopyrin (NLRP3/NALP3), NLRC4, NLRP1, and AIM2. Inflammasomopathies arise 

from mutations in these genes or in genes encoding direct or indirect inflammasome 

regulators, leading to inappropriate nucleation of the inflammasome complex.11 The 

molecular mechanisms underlying the activation of different inflammasomes in the setting 

of disease may include cytoskeletal dysregulation for pyrin or redox stress or 

phosphorylation for cryopyrin.12–14 Clinical differences among the inflammasomopathies 

reflect the nature and severity of the genetic defect, as well as the cellular distribution of a 

particular inflammasome and its substrates, helping to determine the predominant 

downstream mediator. For example, pyrin and cryopyrin are expressed widely in innate 

immune lineages, as is their substrate pro-IL-1β. Overactivity of these inflammasomes 

therefore manifests as widespread immunopathology mediated primarily through IL-1β. By 

contrast, the NLRC4 inflammasome is expressed in the gut lining (among other locations), 

where its substrate pro-IL-18 predominates over pro-IL-1β, contributing to severe colitis 

mediated in part by IL-18, although IL-1β also plays a role. Mutations affecting the NLRP3 

inflammasome inhibitor CARD8 (also called Cardinal) can manifest as inflammatory bowel 
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disease.15 NLRP1 is expressed mainly in skin, such that overactivity presents as primarily 

skin pathology (Multiple Self-healing Palmoplantar Carcinoma and Familial Keratosis 

Lichenoides Chronica, not discussed further here).16 No AIM2-driven inflammasomopathy 

has yet been reported.

Pyrin inflammasomopathies.—Familial Mediterranean fever is the most common of the 

monogenic autoinflammatory disorders, due to the high carrier frequency of MEFV 
mutations in specific populations from the Mediterranean region. FMF is classically 

considered autosomal recessive, since most affected patients carry two mutations; however, 

it is perhaps better regarded as autosomal dominant with limited penetrance, on the basis of 

families with clear autosomal dominant inheritance, affected patients (up to 30%) with only 

one detectable mutation, and evidence from Mefv mutant mice indicating that causal 

mutations are gain-of-function.17, 18 Multiple founder mutations and high prevalence reflect 

enhanced resistance to pathogens that evolved mechanisms to neutralize conventional pyrin 

inflammasome assembly, including the agent of plague, Yersinia pestis.19, 20 Patients 

typically present in childhood with episodes lasting 2–3 days of fever, abdominal and/or 

chest pain, occasional erysipelas-like lower extremity rash, monoarticular arthritis, 

neutrophilia and elevated inflammatory markers. The primary long-term morbidity is 

amyloidosis, most frequently affecting the kidneys. Pyrin Associated Autoinflammation 
with Neutrophilic Dermatosis (PAAND) is a dominantly-inherited disease due to unique 

activating mutations in MEFV.21 Patients present in childhood with recurrent episodes 

lasting weeks and characterized by rashes including sterile skin abscesses, but also fever, 

myalgia, myositis, and elevated acute phase reactants similar to FMF. Some patients exhibit 

abdominal pain. Maintenance colchicine therapy is the standard of care for these two related 

disorders, although PAAND often responds only partially. IL-1-targeted therapies can be 

effective, and TNF inhibitor response is also reported.21–23

Mevalonate Kinase Deficiency (MKD), also called Hyper IgD Syndrome (HIDS), is 

classified as a pyrin inflammasomopathy because disease pathophysiology is mediated by 

dysregulation of the pyrin regulatory factor RhoA.24 MKD is autosomal recessive, consistent 

with mutations in MVK being loss of function. A founder mutation in northern Europe 

accounts for its prevalence in the Netherlands and northern France. Patients often present in 

childhood (usually infancy) with episodes lasting 5–7 days of fever, abdominal pain, 

vomiting, rash, and elevated inflammatory markers. Vaccines are frequent triggers for these 

episodes. Serum IgD and IgA levels are often elevated and urine mevalonate may be 

elevated. IL-1 inhibitors are somewhat effective but may require aggressive dosing.22

Pyogenic Arthritis with Pyoderma gangrenosum and Acne (PAPA) is an autosomal dominant 

disorder due to mutations in PSTPIP1, encoding a protein that binds and likely activates 

pyrin.25 PAPA usually presents in childhood with sterile arthritis and systemic inflammation, 

while cutaneous features develop in adolescence or young adulthood. Patients typically 

respond to IL-1 or TNF blockade, although some may require aggressive dosing or a 

combination therapy.26

Cryopyrin (NLRP3) inflammasomopathies.—Cryopyrin Associated Periodic 
Syndrome (CAPS) is a continuum of previously-defined autoinflammatory syndromes of 
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increasing severity including familial cold autoinflammatory syndrome (FCAS), Muckle-
Wells syndrome (MWS), and neonatal onset multisystem inflammatory disease (NOMID). 

The lines between these sub-phenotypes are blurry. Most CAPS patients possess 

heterozygous germline or somatic gain-of-function mutations in NLRP3, with a fairly 

consistent genotype-phenotype correlation such that specific mutations predict clinical 

features and severity along the disease continuum. Patients with very similar clinical 

presentations but without easily-defined NLRP3 mutations may either have NLRP3 
mutations that are difficult to detect due to somatic mosaicism or mutations in genes with 

related function including NLRP12, NLRC4 and F12 (Factor 12).27, 28 For most CAPS 

patients, symptoms begin within the first year of life, although rarely presentation is delayed 

until adulthood. Common symptoms include urticaria-like rash, fever, arthralgia, myalgia, 

headache, and conjunctivitis, usually in the context of persistent systemic inflammation 

indicated by neutrophilia and elevated acute phase reactants. At the severe end of the 

spectrum, chronic sterile meningitis results in cognitive impairment and hearing loss. 

Features that may distinguish each sub-phenotype include cold sensitivity in FCAS, AA 

amyloidosis in MWS, and significant CNS and bone disease in NOMID. IL-1 blockade is 

the standard of care and most patients respond when dosed adequately.27

NLRC4 inflammasomopathy: Patients with NLRC4 gain-of-function mutations may 

present with CAPS-like symptoms, but the classic presentation is a disease termed 

Autoinflammation with Infantile Enterocolitis (AIFEC) characterized by early-onset 

hyperinflammation (discussed elsewhere in this issue) involving rash, joint symptoms, 

severe intestinal disease, and hepatosplenomegaly.29, 30 Patients exhibit systemic 

inflammation including hyperferritinemia, cytopenias, and laboratory evidence of liver and 

kidney injury, resembling macrophage activation syndrome. IL-1 inhibitors may be helpful, 

but accumulating evidence support a central role for IL-18.31

NLRP12-related disease.—The initial description of patients with heterozygous 

mutations in NLRP12 resembled the NLRP3-associated FCAS phenotype, resulting in this 

disease being referred to as familial cold autoinflammatory syndrome 2 (FCAS2).32 Despite 

similar domain structure and cell expression patterns of NLRP12 and NLRP3, the function 

of these proteins may be different. While reliable reports suggest that NLRP12 can form an 

active inflammasome, NLRP12 also regulates NFκB, placing this condition at a border with 

disorders discussed further below and potentially explaining a lack of complete response to 

IL-1 blockade, in particular since disease-associated mutations in NLRP12 are generally loss 

of function.32–34 Expanded access to genetic sequencing has seen the phenotype of NLRP12 
mutations broaden to include other autoinflammatory phenotypes as well as 

immunodeficiency and autoimmunity, implying diverse roles for NLRP12.

Deficiency of IL-1-family cytokine antagonists.—A common feature of the IL-1 

cytokine family (including IL-1α, IL-1β, IL-18, and IL-36) is the presence of endogenous 

circulating antagonists. These include IL-1 receptor antagonist (IL-1ra, available in 

recombinant form as anakinra) and a similar receptor antagonist for IL-36 termed IL-36ra. 

Deficiency of either protein results in an autoinflammatory disease. Deficiency of IL-1ra 
(DIRA), due to biallelic mutation of IL1RN, results in neonatal-onset pustulosis, multifocal 
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osteomyelitis and periostitis due to excess IL-1 signaling.35, 36 As expected, DIRA is 

managed effectively by anakinra.35, 37 Deficiency of IL-36ra (DITRA) from mutations in 

IL36RN causes generalized pustular psoriasis, since IL-36 receptor is expressed primarily in 

the skin and other epithelial cells in contact with the environment.38 Some of the original 

DIRA patients also had DITRA due to large deletions involving these contiguous genes.
35, 36, 39 DITRA flares are accompanied by fever, malaise, neutrophilia and elevated 

inflammatory markers.40 Although recombinant IL36ra is not yet available, DITRA can be 

effectively managed by biologics that target TNF, IL-17, or IL-12/23.41 The efficacy of IL-1 

inhibition is variable.41, 42 IL-18 has two antagonists, circulating IL-18 binding protein 

(IL-18bp) and the anti-inflammatory IL-1-family cytokine IL-37; diseases arising from 

defects in these mechanisms are not yet described.

2. Interferonopathies

Interferons (IFN) are a family of cytokines involved in immune defense. Three IFN families 

are recognized. Type I interferons encompass IFNα, IFNβ and other members, involved in 

antiviral defense and signaling through the type I IFN receptor and its signal transduction 

kinases JAK1 and TYK2. Type II interferons are limited to IFNγ, a cytokine implicated in 

multiple aspects of adaptive and innate immunity that signals via the type II IFN receptor 

and its kinases JAK1 and JAK2. Type III interferons, termed IFNλ, are less well understood 

and signal through a distinct receptor that shares kinases with the type I IFN receptor. To 

date, autoinflammatory diseases related to interferon – commonly known as the 

interferonopathies – reflect aberrant activation of type I pathways, though in the future type 

II and type III interferonopathies may be recognized.

The (type I) interferonopathies represent conditions in which the type I interferon axis is 

aberrantly activated.43 IFNα/β production is triggered by viral DNA or RNA, and 

correspondingly interferonopathies often arise through defects in nucleic acid sensing or 

through accumulation of host nucleic acid or other intracellular debris that mimic chronic 

viral infection. Alternately, mutations may aberrantly amplify type I interferon receptor 

signaling. Clinically, patients with interferonopathies often exhibit fever (type I IFNs are 

potent endogenous pyrogens), rash, and systemic inflammation, frequently together with 

skin vasculitis and basal ganglia calcifications (Table 1). Interestingly, many of these 

diseases feature autoantibodies, highlighting the lack of a sharp divide between 

autoinflammatory and autoimmune disorders.

Disorders of degradation or processing of endogenous nucleic acids.—
Recognition of type I IFN-mediated autoinflammation originated with studies of Aicardi-
Goutières syndrome (AGS), a group of inherited disorders characterized by early-onset 

neurologic decline, encephalopathy, cerebral calcification, and sometimes fevers and 

systemic inflammation.44 Vasculopathy manifesting as cold-induced chilblains and livedo 

reticularis are common skin manifestations.45 Patients with AGS display variable features of 

autoimmunity, ranging from low-titer autoantibodies and mild cytopenias to the full clinical 

spectrum of systemic lupus erythematosus. Seven types of AGS have been defined based on 

the causative genes: TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1 
and IFIH1.46 With the exception of IFIH1, which amplifies IFN signaling (see below), these 
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genes participate in nucleic acid processing, and loss of function translates into 

accumulation of endogenous nucleic acids. Most AGS patients present early in life, but 

asymptomatic individuals (incomplete penetrance) and delayed presentation with milder 

disease are well recognized, suggesting a role for modifier genes and environmental factors. 

Additional genes implicated in type I interferonopathy through aberrant nucleic acid 

handling include DNA-degrading enzymes (DNAse1, DNAse2 and DNAse1L3) that are 

associated with monogenic forms of lupus, potentially reflecting constitutive recognition of 

accumulated intracellular host DNA triggering pathways engaged by DNA viruses.47

JAK inhibitors (JAKinibs) disrupt JAK signaling downstream of the IFN receptor complex. 

JAKinibs that preferentially target JAK1/2 (ruxolitinib and baricitinib) or JAK1/3 

(tofacitinib) have shown therapeutic efficacy in AGS, with improvement in quality of life, 

growth, inflammatory markers, autoimmune manifestations and corticosteroid dependency.
48–50 Neurologic damage in AGS is likely irreversible but early treatment may attenuate 

decline. Intriguingly, one source of stimulatory nucleic acid for some AGS subtypes may be 

activation of endogenous retroviral elements; a recent study demonstrated successful use of 

nucleoside analogue reverse-transcriptase inhibitors to suppress the IFN signature in AGS 

patients, especially those with RNASEH-complex mutations.51

Disorders of enhanced nucleic acid sensing.—MDA5 (encoded by IFIH1) and RIG-

I (encoded by DDX58) are members of the RIG-I-like receptor family that sense viral 

nucleic acids and activate type I IFN production.52 Gain-of-function mutations in IFIH1 
cause an autosomal dominant form of AGS (Type VII), characterized in some patients by 

psoriasis and pulmonary hypertension in addition to the classic AGS findings.53, 54 Other 

gain-of-function mutations in IFIH1 and DDX58 cause Singleton-Merten syndrome, a 

distinct interferonopathy characterized by aortic and valvular calcification, osteopenia, acro-

osteolysis and dental anomalies.55, 56

STING-associated Vasculopathy of Infancy (SAVI) is a syndrome of vasculitis rash, arthritis 

and interstitial lung disease caused by gain-of-function mutations of TMEM137, which 

encodes stimulator of interferon genes (STING).57 While the vasculopathy of SAVI can 

resemble AGS, interstitial lung disease distinguishes STING from most other 

interferonopathies, likely reflecting tissue-specific effects of STING expression in the lung. 

JAKinibs can be effective but their impact on the IFN signature is variable, corresponding 

generally to an incomplete clinical response.49, 58

Disorders of proteasome function.—The proteasome is a multimeric protein complex 

that degrades ubiquitinated proteins both in steady-state and with cell activation. Production 

of type I IFN by immune cells can be driven by proteasome dysfunction, as shown by 

experiments using proteasome inhibitors.59 Mutations that disrupt proteasome subunits or 

chaperone proteins involved in proteasome assembly, either recessive or digenic affecting 

different components, are associated with the diseases Chronic Atypical Neutrophilic 
Dermatosis with Lipodystrophy and Elevated temperature (CANDLE) syndrome and 

Proteasome-Associated Autoinflammatory Syndrome (PRAAS).59–61 Patients with 

CANDLE / PRAAS typically present during infancy with recurrent fever, annular violaceous 

plaques, violaceous eyelid swelling, hepatosplenomegaly, lipodystrophy and failure to 
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thrive; PRAAS patients may also have panniculitis. A strong type I IFN signature is present 

in the peripheral blood, but unlike AGS, clinical features of autoimmunity are uncommon.62 

The JAKinibs baricitinib and ruxolitinib can partially ameliorate clinical manifestations and 

laboratory abnormalities; corticosteroids and methotrexate are also employed.49, 63

Disorders of amplified IFN receptor signaling.—Ubiquitin specific protease 

(USP)-18 is an endogenous inhibitor of type I IFN signaling that binds to one of the type I 

IFN receptor chains, IFNAR2, to block JAK1 activation. Deficiency of USP18 causes an 

aggressive interferonopathy with severe brain inflammation.64 ISG15 is a stabilizer of 

USP18, such that ISG15 deficiency causes a related interferonopathy characterized by brain 

calcifications and seizures through insufficiency of USP18.65 The recruitment of USP18 to 

IFNAR2 requires a binding site on STAT2, and severe early-onset interferonopathy arises 

from STAT2 mutations that disrupt the interaction with USP18.66, 67 JAK inhibition with 

ruxolitinib led to remarkable improvement in one patient with USP18 deficiency.68

3. Disorders of NFκB and/or aberrant TNF activity

The NFκB complex is a central signaling hub within the cytoplasm, integrating signals from 

multiple cell surface and intracellular danger sensors, upon which one of several 

transcription factors is freed to move to the nucleus where it triggers coordinated expression 

of pro-inflammatory genes. Regulation of NFκB is correspondingly complex, involving a set 

of sensor proteins, inhibitory proteins, and ubiquitin-dependent functional modifications.
69, 70 Defects in any of these pathways can lead to aberrant activation of NFκB. Hallmark 

clinical features of the “NFκBopathies” (sometimes termed the Relopathies, since RelA and 

RelB are key components of the NFκB complex) are fever, systemic inflammation, and 

sometimes granuloma formation.71 Key upstream activators of NFκB activation include 

receptors in the TNF family, which engage this pathway both via canonical (degradation of 

the NFκB inhibitor IκBα) and non-canonical (variant NFκB complex formation) pathways.
72 NFκB activation also results in TNF production. Thus, NFκB and TNF are closely 

intertwined, helping to define a subgroup of autoinflammatory diseases that often respond at 

least partially to TNF blockade (Table 1).

Haploinsufficiency of A20.—TNFAIP3 encodes the protein A20, a ubiquitin-editing 

enzyme that functions as a negative regulator of NFκB. Haploinsufficiency of A20 (HA20) 

causes recurrent oral and genital ulcers that mimics Behcet’s disease with relapsing and 

remitting disease.73, 74 Other phenotypes include early onset autoimmunity and 

immunodeficiency including an presentation similar to autoimmune lymphoproliferative 

syndrome.75 Peripheral blood mononuclear cells from HA20 patients show overproduction 

of TNF and IL-1β, and biologics targeting these cytokines are often used in severe cases. 

Although NFκB and type I IFN are non-redundant pathways, HA20 patients may exhibit 

elevated expression of IFN signature genes that parallels disease activity, potentially 

reflecting a regulatory role of A20 on IFN signaling as well as the induction of IFNβ by 

TNF.76, 77 Importantly, the presence of a type I IFN signature predicted a good response to 

JAKinib treatment in HA20 cases that were resistant to anti-cytokine treatment.78
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Blau syndrome.—Gain-of-function mutations in the cytoplasmic sensor NOD2 result in 

Blau syndrome, an autosomal dominant disease characterized by arthritis, uveitis, and 

granulomatous dermatitis.79 Patients usually present early in life (prior to age 5) with skin 

rash as the initial manifestation. The arthritis associated with Blau syndrome is typically 

symmetric, with marked synovitis but not always erosions, and affecting wrists, ankles, 

knees and fingers.80 Additional manifestations of Blau syndrome are central nervous system 

inflammation, interstitial pneumonitis, liver inflammation and vasculitis. TNF inhibitors can 

be highly effective, whereas response to IL-1 blockade is inconsistent.81

Tumor Necrosis Factor Receptor Associated Periodic Syndrome (TRAPS).—
TRAPS is a dominantly-inherited recurrent fever disorder due to mutations in TNFRSF1A, 

encoding TNF receptor 1 (TNFR1).9 Usually beginning in childhood, patients experience 

episodes lasting 2–4 weeks that include fever, abdominal and muscle pain, headache, and 

conjunctivitis, without response to colchicine. Hallmark features are a tender centrifugal 

rash and periorbital edema. Chronic elevation of inflammatory markers corresponds to an 

increased risk of systemic amyloidosis. The mechanism of disease remains incompletely 

understood. While failure to shed TNF receptor was initially suspected, aberrant trafficking 

or signaling of mutant TNFR1 leading to inflammasome activation appears to be a more 

accurate disease mechanism. Etanercept (soluble TNFR1) therapy can be successful in some 

patients, but efficacy is frequently lost and – paradoxically – anti-TNF antibodies such as 

infliximab can worsen disease.9, 82, 83 IL-1 blockade is more consistently effective and has 

become standard of care, suggesting a role for the inflammasome in disease 

pathophysiology.27

Deficiency of adenosine deaminase 2 (DADA2).—Biallelic mutations in ADA2 
result in a syndrome that variably features systemic vasculitis, early-onset stroke, cytopenias 

and immunodeficiency.84, 85 Vasculitis in DADA2 can resemble the medium vessel 

vasculitis polyarteritis nodosa. TNF is the predominant driver of inflammation, because TNF 

inhibitors are strikingly effective at treating vasculitis and preventing stroke.86 Mutations 

with residual ADA2 function tend to be associated with stroke and other inflammatory 

manifestations responsive to TNF inhibition, while mutations that abrogate gene function 

manifest as profound immunodeficiency and hematologic compromise, often not responsive 

to TNF inhibitors; bone marrow transplant should be considered for this subset of patients.87 

The physiologic function of ADA2 is not clear, but appears to be different from that of 

ADA1 and ADAR (double-stranded RNA-specific adenosine deaminase) based on the 

unique biochemical properties and clinical consequences of mutations in these genes.88

4. Autoinflammation mediated by other mechanisms

The mechanisms by which disordered immune function can lead to inflammatory pathology 

are potentially as numerous as the list of genes involved in immune function. Some 

autoinflammatory diseases have yet to fall into an established pathogenic category, or to 

establish a category of their own (Table 1).

COPA syndrome.—Coatomer protein subunit α, encoded by COPA, is a part of coat 

protein complex I that regulates retrograde transport from the Golgi to the endoplasmic 
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reticulum (ER). Mutations in COPA cause an autosomal dominant syndrome of 

autoimmunity, inflammatory arthritis, interstitial lung disease and diffuse alveolar 

hemorrhage.89 ER stress from disrupted intracellular trafficking skews effector T cells 

towards a Th17 phenotype. Patients with COPA may also have a type I IFN signature, 

raising the possibility that it is an interferonopathy.90 Consistent with this finding, COPA has 

been found to regulate normal trafficking of STING 91, 92. However, a murine model 

implicated autoreactive T cells derived through abnormal thymic function, suggesting that 

COPA might be a monogenic autoimmune disease in addition to (or rather than) a 

monogenic autoinflammatory condition, illustrating the challenge of distinguishing 

unambiguously between categories of immune dysfunction.93 Numerous 

immunosuppressive agents have been trialed in COPA syndrome with variable success.94 

JAKinib treatment was effective in one COPA patient with severe arthritis, although the type 

I IFN signature was not assessed.95

PLAID/APLAID.—Phospholipase C gamma 2 (PLCG2)-associated antibody deficiency and 
immune dysregulation (PLAID) further exemplifies the intersection of autoinflammation, 

autoimmunity/allergy, and immunodeficiency (Figure 2). PLCγ2 hydrolyzes 

phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol trisphosphate, 

triggering calcium release from the ER to mediate cell activation.96 In PLAID, heterozygous 

genomic deletions in the autoinhibitory domain of PLCG2 cause constitutive enzyme 

activation and enhanced signaling at cold temperatures. Clinical features include cold 

urticaria, atopy, granulomatous dermatitis, hypogammaglobulinemia, recurrent 

sinopulmonary infection, and variable manifestations of autoimmunity.97 A constellation of 

autoinflammatory features was later found in patients with heterozygous missense mutations 

in these autoinhibitory regions. This combined phenotype of autoinflammation and PLAID 

(APLAID) is characterized by recurrent blistering skin lesions, interstitial pneumonitis and 

bronchiolitis, eye inflammation, enterocolitis, cellulitis and immunodeficiency.98, 99 

Treatment for PLAID includes cold avoidance, antihistamines, and antibiotic prophylaxis 

and/or IVIG for immunodeficiency.100 Experience with APLAID is limited, but 

corticosteroids, hydroxychloroquine, and IL-1 inhibitors have not shown sustained efficacy.
99

Disorders of complement.—Complement is a system of plasma proteins and related 

cell-surface regulators that serves multiple functions in innate immunity, including 

recognition and clearance of pathogens. Coordinated closely with adaptive immunity, the 

complement system plays a key role in antibody-dependent pathogen targeting and in 

clearance of immune complexes. Defects in complement or its surface inhibitory proteins 

result in pathogenic conditions including immunodeficiency, early-onset systemic lupus 

erythematosus, and age-related macular degeneration. In some cases, these conditions 

represent inflammatory consequences of antigen-independent hyperactivation of immune 

pathways, fulfilling the definition of autoinflammatory diseases. Complement activation and 

its implications have been reviewed extensively and are not considered further here.101
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The “autoinflammatory penumbra”

Diseases such as FMF, TRAPS, MKD and CAPS seem at this point clearly 

autoinflammatory, but for some conditions the situation is less straightforward. Antigen-

independent immune activation contributes to initiation or propagation of tissue injury in 

multiple diseases. Some diseases present with clinical features resembling the 

autoinflammatory diseases but understanding of pathogenesis remains too limited to draw 

firm conclusions. These conditions belong to the “autoinflammatory penumbra” (Figure 3).

Several examples illustrate the scope of this penumbra. Gout and pseudogout are mediated 

through activation of the cryopyrin inflammasome by monosodium urate and calcium 

phosphate dihydrate crystals.102 Cholesterol crystals activate the same inflammasome, 

conferring an autoinflammatory element to atherosclerosis, consistent with the (modest) 

efficacy of IL-1β blockade in cardiovascular disease.103–105 Ankylosing spondylitis is 

strongly associated with the MHC class I allele HLA-B27; this association may reflect the 

propensity of HLA-B27 to mis-fold and thereby trigger the unfolded protein response rather 

than its antigen specificity.106 The pediatric disorders, Periodic Fevers with Aphthous 
stomatitis, Pharyngitis and Adenopathy (PFAPA) and Syndrome of Undifferentiated 
Recurrent Fever (SURF, an increasingly recognized group of patients who meet some but 

not all criteria for PFAPA), as well as the adult-onset Schnitzler syndrome are commonly 

regarded as autoinflammatory due their presentation with episodic fever.107 For these 

conditions, the lack of a molecular understanding renders classification only provisional. For 

example, a recent study made the surprising observation that PFAPA exhibits genetic 

associations with the HLA region as well as other loci associated with T cell function, 

findings that implicate antigen-directed immunity.108 Systemic juvenile idiopathic arthritis 

and its adult counterpart adult-onset Still’s disease are characterized by fever, rash, arthritis, 

and in many patients a brisk response to IL-1β blockade. These features resemble other 

autoinflammatory diseases, but an HLA association and characteristic changes in T cells 

suggest that (like PFAPA) this phenotype is unlikely to be “purely” autoinflammatory.
109–111 Inflammatory bowel disease likely reflects both immune hyper-responsiveness and 

defects in mucosal barrier function.112

The autoinflammatory penumbra is to be expected. Immune function is complicated, and it 

is not surprising that aberrant immune activity can manifest with varying combinations of 

autoinflammation, autoimmunity/allergy, and immunodeficiency. For example, FMF-

associated mutations in MEFV are associated with an increased risk of rheumatoid arthritis 

and higher prevalence of ankylosing spondylitis and vasculitis.113–115 Patients with CDC42 

deficiency, ARPC1B deficiency or homozygous mutations in WDR1 present with recurrent 

infections but also clinical features of autoinflammation (Table 1). Most primary immune 

defects can be expected to yield a phenotype that resides somewhere within the 

autoinflammatory-autoimmunity/allergy-immunodeficiency spectrum rather than adhering 

tightly to a single axis alone (Figure 2).
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Clinical approach to the autoinflammatory diseases

Given the complexity of the autoinflammatory family, how can clinicians proceed to 

diagnosis and management without having to master each disease? We suggest a four-step 

approach (Figure 4).

First, consider autoinflammation in the differential diagnosis.

Several clinical features of inflammation facilitate disease recognition. Fever is common, 

albeit not invariable, as is elevation in inflammatory markers such as C reactive protein 

(CRP) and the erythrocyte sedimentation rate (ESR). Many patients have skin involvement, 

including evanescent or persistent rashes, sometimes with vasculitis. Inflammation typically 

affects many organ systems, sometimes including lung and the gastrointestinal tract. Disease 

often begins early in life, and close relatives may have similar disease, suggesting a genetic 

etiology. Broadly, autoinflammation should be suspected in any patient – especially a child – 

with persistent or recurrent inflammatory episodes that fail to fit the pattern of other 

established diseases.

Second, recognize hallmarks of particular autoinflammatory diseases.

Clinical history, physical examination, and laboratory / imaging studies remain essential to 

diagnosis. For example, recurrent episodes of fevers and abdominal pain lasting less than 48 

hours in a patient with Middle Eastern heritage suggests FMF. An acral vasculitic rash and 

basal ganglia calcifications suggests an interferonopathy. Childhood-onset stroke with livedo 

suggests DADA2. Where possible, clinicians with limited exposure to this disease family 

should seek help from colleagues with more experience recognizing clinical patterns within 

the autoinflammatory spectrum. For the more common periodic fever syndromes, validated 

classification criteria are available and provide useful guidance for diagnosis.116

Third, cast a broad net.

Not all autoinflammatory diseases manifest in their canonical form. The therapeutic 

implications of correct diagnosis support a broad screen for autoinflammation-associated 

genetic mutations early in the evaluation of unexplained multisystem inflammation, using 

any of a range of commercial services that test a large panel of immune-related genes. 

Genetic findings require cautious interpretation because many variants of unknown 

significance will be irrelevant, while some described as likely benign could still represent 

low-penetrance causal variants. Commercial screens will miss noncoding mutations, copy 

number variants, complex chromosomal rearrangements, mutations in novel disease genes, 

and states of mosaicism in which the mutation affects only a subset of cells.117 Genetic 

testing guidelines for the autoinflammatory diseases are available, and an updated list of 

variants and associated phenotypes is provided at Infevers, an online database of 

autoinflammatory mutations at https://infevers.umai-montpellier.fr/.118, 119

Clinical tests can suggest or in some cases establish a diagnosis. Examples include 

circulating serum cytokines such as IL-6 and IL-18, serum IgD and IgA, or urine organic 

acids in MKD, ADA2 activity, and stable proxies for cytokines that are difficult to measure 

directly, such as the chemokine CXCL9 as a proxy for IFNγ.120 Further tests are available 
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largely on a research basis, such as assessment of peripheral blood for cytokine release or 

expression of type I IFN-stimulated genes.10, 121 Whole-exome or whole-genome 

sequencing, potentially together with sequencing of affected and unaffected family 

members, can provide definitive guidance but requires specialized expertise and can miss 

large deletions and mutations affecting non-coding regions such as promoters and enhancers.

Fourth, consider empiric therapy.

Many autoinflammatory diseases operate through pathways or mediators for which 

inhibitors are available. NSAIDs and corticosteroids are anti-inflammatory but have little 

value as therapeutic diagnostics. The exception of PFAPA, in which abrogation of fever with 

a single dose of corticosteroids strongly supports the diagnosis.122 By contrast, response to 

colchicine supports an autoinflammatory etiology, since it can attenuate assembly of the 

pyrin inflammasome and thus treat FMF as well as an appreciable fraction of suspected 

autoinflammatory syndromes that defy molecular diagnosis.123–125 Response to the 

recombinant IL-1 receptor antagonist anakinra establishes the role of IL-1 in an inflamed 

patient. The short half-life of this agent (4–6 hours) and documented safety even in patients 

with severe bacterial illness render a therapeutic trial feasible and safe in many clinical 

contexts.126 Another option is empiric canakinumab (anti-IL-1β antibody), although this 

drug has a considerably longer half-life (26 days).22 JAKinibs such as tofacitinib, baricitinib, 

and ruxolitinib can be employed to explore the role of interferon signaling, albeit with 

caution because of their broad immunosuppressive reach and uncertain safety in bacterial 

and viral infection.10, 49 IL-18 blockade can establish the causative contribution of this 

cytokine, as exemplified by experience in NLRC4-related disease.31 Careful utilization of 

targeted immunomodulators provide a diagnostic and therapeutic path forward for the >50% 

of patients with presumed autoinflammatory disease who defy diagnosis despite genetic 

testing and expert evaluation.124, 125

Conclusion: autoinflammation in immune-mediated diseases

Like the primary immunodeficiencies, the monogenic autoinflammatory disorders provide a 

window into human immunity in action, illustrating the degree to which precise regulation 

of inflammatory pathways is essential to health. Autoinflammation is not all-or-none. 

Related mechanisms contribute to classic autoimmune diseases as well as to diseases not 

usually considered primarily immune-mediated, including the crystalline arthropathies and 

atherosclerosis. Improved understanding of autoinflammation has both illuminated new 

immune pathways and provided novel diagnostic and therapeutic possibilities for our 

patients.
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Abbreviations

AGS (Aicardi-Goutières syndrome)

AR (Autosomal recessive)

CAPS (Cryopyrin-associated periodic syndrome)

COPA (COPI Coat Complex Subunit Alpha)

DITRA (Deficiency of IL-36 receptor antagonist)

FMF (Familial Mediterranean fever)

HA20 (Haploinsufficiency of A20)

JAK (Janus kinase)

JAKinhibs (JAK inhibitors)

MKD (Mevalonate kinase deficiency)

NF-κB (Nuclear factor kappa B)

PFAPA (Periodic fever, aphthous stomatitis, pharyngitis, adenitis)

PLAID (Phospholipase C gamma 2–associated antibody deficiency and 

immune dysregulation)

PRAAS (PRoteasome-associated autoinflammatory syndrome)

STING (Stimulator of interferon genes)

TRAPS (TNF receptor–associated periodic syndrome)

USP18 (Ubiquitin-specific protease 18)
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Figure 1. Innate and adaptive immunity in evolution.
Simplified evolutionary tree of animal phyla depicting the development of adaptive 

immunity at the stage of jawless fishes. Adapted from Porcelli SA, “Innate immunity” in 

Kelley and Firestein’s Textbook of Rheumatology, Eds: Firestein GS, Budd R, Gabriel SE, 

McInnes IB, O’Dell JR,10th ed. 2017 with permission.
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Figure 2. Three axes of immune dysfunction.
Schematic representation of conceptually orthogonal ways in which dysregulated immunity 

leads to human disease: autoinflammation (aberrant antigen-independent immune 

activation), autoimmunity / allergy (aberrant antigen-dependent immune activation), and 

immunodeficiency (defects in innate or adaptive immunity resulting in inadequate defense 

against pathogens). For simplicity, the axes are depicted as beginning at a common origin 

reflecting normal immune function. However, some immune states might potentially cross 

this origin, as for example enhanced resistance to plague in individuals bearing mutant 

MEFV.
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Figure 3. The autoinflammatory penumbra.
Major families of autoinflammatory disorders include the inflammasome/IL-1 diseases, the 

interferonopathies, the NFκB/TNF disorders, and autoinflammation mediated by other 

mechanisms. Many other human diseases exhibit clinical and/or mechanistic overlap with 

these disease families without perhaps being best conceptualized as primarily 

autoinflammatory; some of these are depicted in a shaded zone (penumbra) surrounding the 

monogenic autoinflammatory diseases. PFAPA, Periodic Fevers with Aphthous stomatitis, 

Pharyngitis and Adenopathy; SURF, Syndrome of Undifferentiated Recurrent Fever.

Nigrovic et al. Page 25

J Allergy Clin Immunol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Clinical approach to patients with suspected autoinflammation.
Please see text for discussion of each step.
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Table 1.
The monogenic autoinflammatory diseases.

Presented are a simplified representation of disease mechanism classification, causative gene, heritability, 

major clinical manifestations, and typical treatment options for a representative range of monogenic 

autoinflammatory diseases.

Mechanism Disease Gene Inheritance Clinical presentation Targeted 
therapy

Inflammasomopathies 
and other IL-1 family 

conditions

Pyrin 
activation

FMF MEFV AR or AD fever, pain, (abdominal, 
chest, joint), rash

IL-1, 
colch.

PAAND MEFV AD fever, myalgia, myositis, 
rash, abscesses

IL-1, 
colch.

MKD MVK AR fever, pain (abdominal, 
extremity), vomiting, rash IL-1

PAPA PSTPIP1 AD pyoderma gangrenosum, 
arthritis

IL-1, 
TNF

Hz/Hc127 PSTPIP1 AD
rash, FTT, 
hepatosplenomegaly, 
neutropenia

IL-1, 
TNF

PFIT128 WDR1 AR
fever, infection, oral 
inflammation, perianal 
ulceration

IL-18

Cryopyrin 
activation

FCAS NLRP3 AD cold urticaria, extremity 
pain, conjunctivitis, fever IL-1

MWS NLRP3 AD
urticarial rash, extremity 
pain, hearing loss, 
conjunctivitis, fever

IL-1

NOMID NLRP3 AD
CNS inflammation, 
urticaria, knee arthropathy, 
fever

IL-1

Majeed’s129 LPIN2 AR osteomyelitis, fevers, rash, 
dyserythropoietic anemia IL-1

NLRC4 
activation

AIFEC NLRC4 AD enterocolitis, rash, arthritis, 
fever

IL-1, 
IL-18

FCAS/NOMID NLRC4 AD cold urticaria, extremity 
pain, fever, CNS disease IL-1

NLRP12 
activation FCAS NLRP12 AD cold urticaria, extremity 

pain, fever TNF, IL-1

NLRP1 
activation NAIAD130 NLRP1 AD Ocular, laryngeal, skin 

dyskeratosis, fever, arthritis
IL-1, 
TNF

Receptor 
antagonist 
deficiency

DIRA IL1RN AR
pustular rash, 
osteomyelitis, periostitis, 
fever,

IL-1

DITRA IL36RN AR pustular psoriasis, fever, 
malaise

TNF, IL- 
17/12/23?

Type I 
Interferonopathies

Nucleic acid 
processing and 

degradation

Aicardi-
Goutières 
syndrome

TREX1, 
ADAR1, 
RNASEH2A/B/
C SAMHD1, 
IFIH1

AR (AD: 
IFIH1)

fever, neurologic decline, 
encephalopathy, cerebral 
calcification, chilblains, 
autoantibodies

JAK, 
RTI?

monogenic SLE 
complements DNASE1/2/1L3, AR (AD: 

DNASE1)
autoantibodies, cytopenias, 
glomerulonephritis, skin JAK?
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Mechanism Disease Gene Inheritance Clinical presentation Targeted 
therapy

cytopenias, 
glomerulonephritis, skin 
rash, oral ulcers, arthritis

Nucleic acid 
sensing

SMS IFIH1, DDX58a AD

calcification of aorta / 
cardiac valves, osteopenia, 
acro-osteolysis, dental 
anomalies

JAK?

SAVI TMEM137 AD
Chilblain’s rash, small 
vessel vasculitis, arthritis, 
ILD

JAK

Proteasome
CANDLE / 
PRAAS, 
PRAID131

PSMB4, 
PSMA3, 
PSMB8, POMP, 
PSMG2,PSMB9, 
PSMB10

Digenic, AR 
(AD: 
POMP)

fever, joint contractures, 
annular plaques, eyelid 
swelling, 
hepatosplenomegaly, 
lipodystrophy, FTT, 
developmental delay, 
anemia

JAK

IFN signaling AGS-like USP18, ISG15, 
STAT2 AR

skin ulcerations, seizures, 
hydrocephalus, cerebral 
calcifications, respiratory 
failure

JAK

other SPENCD132 ACP5 AR

skeletal dysplasia, short 
statue, cerebral 
calcification, cytopenias, 
autoantibodies

?

NF-KB and/or aberrant 
TNF activity

dysregulation 
of NFKB 
signaling

HA20 TNFAIP3 AD
oral, gastrointestinal and 
genital ulcerations, fever, 
arthritis, recurrent infection

TNF, 
IL-1, 
JAK?

RELA 
haploinsuf.133 RELA AD

oral and gastrointestinal 
ulcerations, cytopenias, 
lymphoproliferative 
disease

TNF

ORAS OTULIN AR fever, panniculitis, 
diarrhea, arthritis, FTT TNF

LUBAC 
deficiency134,135 HOIL1, HOIP AR

fever, recurrent infection, 
FTT, hepatosplenomegaly, 
amylopectin-like deposits 
in muscles

TNF?

Dysregulation 
of TNF

Blau NOD2 AD
granulomatous dermatitis, 
uveitis, polyarticular 
arthritis

TNF

TRAPS TNFRSF1A AD

episodic fever, abdominal 
pain, headache, 
conjunctivitis, painful 
centrifugal rash

IL-1, 
TNF

DADA2 ADA2 AR
systemic vasculitis, fever, 
rash, stroke, cytopenias, 
hypogammaglobulinemia

TNF, 
HSCT

CRIA136,137 RIPK1 AD fever, lymphadenopathy, 
hepatosplenomegaly IL-6?

Other mechanisms
Golgi-ER 
Transport COPA COPA AD

arthritis, ILD, diffuse 
alveolar hemorrhage, 
autoantibodies

IL-17? 
JAK?
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Mechanism Disease Gene Inheritance Clinical presentation Targeted 
therapy

Intracellular 
calcium 

signaling

PLAID PLCG2 AD

cold urticaria, atopy, 
granulomatous dermatitis, 
hypogammaglobulinemia, 
infection, autoantibodies

?

APLAID PLCG2 AD

blistering skin lesions, 
ILD, bronchiolitis, eye 
inflammation, 
enterocolitis, 
immunodeficiency

?

tRNA 
biogenesis SIFD138 TRNT1 AR

fever, developmental delay, 
seizures, microcytic 
anemia 
hypogammaglobulinemia

TNF

Lipid 
metabolism? 
ER stress?

LACC1 
deficiency139,140 LACC1/FAMIN AR

fever, systemic JIA, 
oligoarticular/polyarticular 
JIA

?

Cytokine 
dysregulation VEO-IBD141,142 IL-10, IL10RA, 

IL10RB AR Early-onset colitis, FTT HSCT, 
IL-1?

Actin 
Assembly

ARPC1B 
deficiency143,144 ARPC1B AR

platelet abnormalities, 
bleeding, recurrent 
infection, small vessel 
vasculitis, eczema, arthritis

?

Actin 
polymerization

CDC42 
deficiency145,146 CDC42 AR

Neurodevelopmental 
defects, facial 
dysmorphism cytopenias, 
recurrent infection, fever, 
rash

IL-1
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