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Abstract

We introduce probability estimation, a broadly applicable framework to certify randomness in a 

finite sequence of measurement results without assuming that these results are independent and 

identically distributed. Probability estimation can take advantage of verifiable physical constraints, 

and the certification is with respect to classical side information. Examples include randomness 

from single-photon measurements and device-independent randomness from Bell tests. 

Advantages of probability estimation include adaptability to changing experimental conditions, 

unproblematic early stopping when goals are achieved, optimal randomness rates, applicability to 

Bell tests with small violations, and unsurpassed finite-data efficiency. We greatly reduce latencies 

for producing random bits and formulate an associated rate-tradeoff problem of independent 

interest. We also show that the latency is determined by an information-theoretic measure of 

nonlocality rather than the Bell violation.

Randomness is a key enabling resource for computation and communication. Besides being 

required for Monte-Carlo simulations and statistical sampling, private random bits are 

needed for initiating authenticated connections and establishing shared keys, both common 

tasks for browsers, servers and other online entities [1]. Public random bits from 

“randomness beacons” have applications to fair resource sharing [2] and can seed private 

randomness sources based on quantum mechanics [3]. Common requirements for random 

bits are that they are unpredictable to all before they are generated, and private to the users 

before they are published.

Quantum mechanics provides natural opportunities for generating randomness. The best 

known example involves measuring a two-level system that is in an equal superposition of 

its two levels. A disadvantage of such schemes is that they require trust in the measurement 

apparatus, and undiagnosed failures are always a possibility. This disadvantage is overcome 

by a loophole-free Bell test [4, 5], which can generate output whose randomness can be 

certified solely by statistical tests of setting and outcome frequencies. The devices preparing 

the quantum states and performing the measurements may come from an untrusted source. 
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This strategy for certified randomness generation is known as device-independent 

randomness generation (DIRG).

Loophole-free Bell tests have been realized with nitrogen-vacancy (NV) centers [6], with 

atoms [7] and with photons [8, 9], enabling the possibility of full experimental 

implementations of DIRG. However, for NV centers and atoms, the rate of trials is too low, 

and for photons, the violation per trial is too small. As a result, previously available DIRG 

protocols [3, 10–18] are not ready for implementation with current loophole-free Bell tests. 

These protocols do not achieve good finite-data efficiency and therefore require an 

impractical number of trials. Experimental techniques will improve, but for many 

applications of randomness generation, including randomness beacons and key generation, it 

is desirable to achieve finite-data efficiency that is as high as possible, since these 

applications often require short blocks of fresh random bits with minimum delay or latency.

Excellent finite-data efficiency was achieved by a method that we described and 

implemented in Refs. [19, 20], which reduced the time required for generating 1024 low-

error random bits with respect to classical side information from hours to minutes for a state-

of-the-art photonic loophole-free Bell test. The method in Refs. [19, 20] is based on the 

prediction-based ratio (PBR) analysis [21] for hypothesis tests of local realism. Specifically, 

in Refs. [19, 20] we established a connection between the PBR-based p-value and the 

amount of randomness certified against classical side information. The basis for success of 

the method of Refs. [19, 20] motivates our development of probability estimation for 

randomness certification, with better finite-data efficiency and with broader applications.

In the probability estimation framework, the amount of certified randomness is directly 
estimated without relying on hypothesis tests of local realism. To certify randomness, we 

first obtain a bound on the conditional probability of the observed outcomes given the 

chosen settings, valid for all classical side information. Then we show how to obtain 

conditional entropy estimates from this bound to quantify the number of extractable random 

bits [22]. By focusing on data-dependent probability estimates, we are able to take 

advantage of powerful statistical techniques to obtain the desired bound. The statistical 

techniques are based on test supermartingales [23] and Markov’s bounds. Probability 

estimation inherits several features of the theory of test supermartingales. For example, 

probability estimation has no independence or stationarity requirement on the probability 

distribution of trial results. Also, probability estimation supports stopping the experiment 

early, as soon as the randomness goal is achieved.

Probability estimation is broadly applicable. In particular it is not limited to device-

independent scenarios and can be applied to traditional randomness generation with 

quantum devices. Such applications are enabled by the notion of models, which are sets of 

probability distributions that capture verified, physical constraints on device behavior. In the 

case of Bell tests, these constraints include the familiar non-signaling conditions [24, 25]. In 

the case of two-level systems such as polarized photons, the constraints can capture that 

measurement angles are within a known range, for example.
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In this paper, we first describe the technical features of probability estimation and the main 

results that enable its practical use. We propose a general information-theoretic rate-tradeoff 

problem that closely relates to finite-data efficiency. We then show how the general 

theoretical concepts are instantiated in experimentally relevant examples involving Bell-test 

configurations. We demonstrate advantages of probability estimation such as its optimal 

asymptotic randomness rates and show large improvements in finite-data efficiency, which 

corresponds to great reductions in latency.

Theory.

Consider an experiment with “inputs” Z and “outputs” C. The inputs normally consist of the 

random choices made for measurement settings but may include choices of state 

preparations such as in the protocols of Refs. [26, 27]. The outputs consist of the 

corresponding measurement outcomes. In the cases of interest, the inputs and outputs are 

obtained in a sequence of n time-ordered trials, where the i’th trial has input Zi and output 

Ci, and Z = (Zi)i = 1
n  and C = (Ci)i = 1

n . We assume that Zi and Ci are countable-valued. We 

refer to the trial inputs and outputs collectively as the trial “results”, and to the trials 

preceding the upcoming one as the “past”. The party with respect to which the randomness 

is intended to be unpredictable is represented by an external classical system, whose initial 

state before the experiment may be correlated with the devices used. The classical system 

carries the side information E, which is assumed to be countable-valued. After the 

experiment, the joint of Z, C and E is described by a probability distribution μ. The upper-

case symbols introduced in this paragraph are treated as random variables. As is 

conventional, their values are denoted by the corresponding lower-case symbols.

The amount of extractable uniform randomness in C conditional on both Z and E is 

quantified by the (classical) smooth conditional min-entropy Hmin
ϵ (C ∣ ZE)μ where ϵ is the 

“error bound” (or “smoothness”) and μ is the joint distribution of Z, C and E. One way to 

define the smooth conditional min-entropy is with the conditional guessing probability 

Pguess(C|ZE)μ defined as the average over values z and e of the maximum conditional 

probability maxc μ(c|ze). The ϵ-smooth conditional min-entropy Hmin
ϵ (C ∣ ZE)μ is the 

greatest lower bound of −log2 Pguess(C|ZE)μ′ for all distributions μ′ within total-variation 

distance ϵ of μ. Our goal is to obtain lower bounds on Hmin
ϵ (C ∣ ZE)μ with probability 

estimation.

The application of probability estimation requires a notion of models. A model ℋ for an 

experiment is defined as the set of all probability distributions of Z and C achievable in the 

experiment conditionally on values e of E. If a joint distribution μ of Z, C and E satisfies that 

for all e, the conditional distributions μ(CZ|e), considered as distributions of Z and C, are in 

ℋ, we say that the distribution μ satisfies the model ℋ.

To apply probability estimation to an experiment consisting of n time-ordered trials, we 

construct the model ℋ for the experiment as a chain of models Ci for each individual trial i 

in the experiment. The trial model Ci is defined as the set of all probability distributions of 
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trial results CiZi achievable at the i’th trial conditionally on both the past trial results and the 

side information E. For example, for Bell tests, Ci may be the set of non-signaling 

distributions with uniformly random inputs. Let z < i = (zj)j = 1
i − 1  and c < i = (cj)j = 1

i − 1  be the 

results before the i’th trial. The sequences z≤i and c≤i are defined similarly. The chained 

model ℋ consists of all conditional distributions μ(CZ|e) satisfying the following two 

conditions. First, at each trial i the conditional distributions μ(CiZi|c<iz<ie) for all c<i, z<i and 

e are in the trial model Ci. Second, at each trial i the input Zi is independent of the past 

outputs C<i given E and the past inputs Z<i. The second condition prevents leaking 

information about the past outputs through the future inputs, which is necessary for 

certifying randomness in the outputs C conditional on both the inputs Z and the side 

information E. In the common situation where the inputs are chosen independently with 

distributions known before the experiment, the second condition is always satisfied.

Since the model ℋ consists of all conditional distributions μ(CZ|e) regardless of the value e, 

the analyses in the next paragraph apply to the worst-case conditional distribution over e. To 

simplify notation we normally write the distribution μ(CZ|e) conditional on e as μe(CZ), 

abbreviated as μe.

To estimate the conditional probability μe(c|z), we design trial-wise probability estimation 

factors (PEFs) and multiply them. Consider a generic trial with trial model C, where for 

generic trials, we omit the trial index. Let β > 0. A PEF with power β for C is a function F : 

cz ↦ F(cz) ≥ 0 such that for all σ ∈ C, Eσ(F (CZ)σ(C ∣ Z)β) ≤ 1, where E denotes the 

expectation functional. Note that F(cz) = 1 for all cz defines a valid PEF with each positive 

power. For each i, let Fi be a PEF with power β for the i’th trial, where the PEF can be 

chosen adaptively based on the past results c<iz<i. Other information from the past may also 

be used, see Ref. [28]. Let T0 = 1 and Ti = ∏j = 1
i Fj(CjZj) . The final value Tn of the 

running product Ti, where n is the total number of trials in the experiment, determines the 

probability estimate. Specifically, for each value e of E, each μe in the chained model 

Ti = Πj = 1
i Fj(CjZj), and ϵ > 0, we have

ℙμe(μe(C |Z) ≥ U(CZ)) ≤ ϵ, (1)

where ℙμe denotes the probability according to the distribution μe and U(CZ) = (ϵTn)−1/β. 

The proof of Eq. (1) is given in Appendix C1. The meaning of Eq. (1) is as follows: For each 

e and each μe ∈ ℋ, the probability that C and Z take values c and z for which U(C = c, Z = 

z) ≤ μe (C = c|Z = z) is at most ϵ. This defines U(CZ) = (ϵTn)−1/β as a level-ϵ probability 

estimator.

A main theorem of probability estimation is the connection between probability estimators 

and conditional min-entropy estimators, which is formalized as follows:

Theorem 1. Suppose that the joint distribution μ of Z, C and E satisfies the chained model 
ℋ. Let 1 ≥ κ, ϵ > 0 and 1 ≥ p ≥ 1/|Rng(C)|, where |Rng(C)| is the number of possible 
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outputs. Define {ϕ} to be the event that Tn ≥ 1/(pβϵ), and let κ ≤ ℙμ(ϕ). Then the smooth 

conditional min-entropy satisfies

Hmin
ϵ (C |ZE; ϕ) ≥ − log2(p/k1 + 1/β) .

The probability of the event {ϕ} can be interpreted as the probability that the experiment 

succeeds, and κ is an assumed lower bound on the success probability. The theorem is 

proven in Appendix C2.

When constructing PEFs, the power β > 0 must be decided before the experiment and cannot 

be adapted. Thm. 1 requires that p, ϵ and κ also be chosen beforehand, and success of the 

experiment requires Tn ≥ 1/(pβ ϵ), or equivalently,

log2(Tn)/β + log2(ϵ)/β ≥ − log2(p) . (2)

Since log2(Tn) = ∑i log2(Fi), before the experiment we choose PEFs in order to aim for large 

expected values of the logarithms of the PEFs Fi. Consider a generic next trial with results 

CZ and model C. Based on prior calibrations or the frequencies of observed results in past 

trials, we can determine a distribution ν ∈ C that is a good approximation to the distribution 

of the next trial’s results CZ. Many experiments are designed so that each trial’s distribution 

is close to ν. The PEF can be optimized for this distribution but, by definition, is valid 

regardless of the actual distribution of the next trial in C. Thus, one way to optimize PEFs 

before the next trial is as follows:

Max: Ev(n log2(F (CZ))/β + log2(ϵ)/β)
With: ∑czF (cz)σ(c |z)βσ(cz) ≤ 1 for all σ ∈ C,
F (cz) ≥ 0, for all cz .

(3)

The objective function is strictly concave and the constraints are linear, so there is a unique 

maximum, which can be found by convex programming. More details are available in 

Appendix E.

Before the experiment, one can also optimize the objective function in Eq. (3) with respect 

to the power β. During the experiment ϵ and β are fixed, so it suffices to maximize 

Eν(log2(F (CZ))). If during the experiment, the running product Ti with i < n exceeds the 

target 1/(pβ ϵ), we can set future PEFs to F(CZ) = 1, which is a valid PEF with power β. 

This ensures that Tn = Ti and is equivalent to stopping the experiment after trial i. Since the 

target needs to be set conservatively in order to make the actual experiment succeed with 

high probability, this can result in a significant reduction in the number of trials actually 

executed.

A question is how PEFs perform asymptotically for a stable experiment. This question is 

answered by determining the rate per trial of entropy production assuming constant ϵ and κ 
independent of the number of trials. In view of Thm. 1, after n trials the entropy rate is given 

by (−log2(p) + log2(κ1+1/β))/n. Considering Eq. (2), when n is large the entropy rate is 
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dominated by log2(Tn)/(nβ), which is equal to Σi = 1
n log2(Fi) (nβ). Therefore, if each trial 

has distribution ν and each trial model is the same C, then in the limit of large n the 

asymptotic entropy rate witnessed by a PEF F with power β is given by Eν(log2(F (CZ)) β). 
Define the rate

g(β) = sup
F

Eν(log2(F (CZ))/β), (4)

where the supremum is over PEFs F with power β for C. The maximum asymptotic entropy 

rate at constant ϵ and κ witnessed by PEFs is g0 = supβ>0 g(β). The rate g(β) is non-

increasing in β (see Appendix D), so g0 is determined by the limit as β goes to zero. A 

theorem proven in Ref. [28] is that g0 is the worst-case conditional entropy H(C|ZE) over 

joint distributions of CZE allowed by C with marginal ν. Since this is a tight upper bound 

on the asymptotic randomness rate [29], probability estimation is asymptotically optimal and 

we identify g0 as the asymptotic randomness rate. We also remark that probability 

estimation enables exponential expansion of input randomness [28].

For finite data and applications requiring fresh blocks of randomness, the rate g0 is not 

achieved. To understand why, consider the problem of certifying a fixed number of bits b of 

randomness at error bound ϵ and with as few trials as possible, where each trial has 

distribution ν. In view of Thm. 1, the PEF optimization problem in Eq. (3), and the 

definition of g(β) in Eq. (4), n needs to be sufficiently large so that

ng(β) + log2(ϵ)/β + (1 + 1/β)log2(κ) ≥ b . (5)

The left-hand side is maximized at positive β, whereas g(β) increases to g0 as β goes to zero. 

As a result the best actual rate b/n is less than g0.

Setting κ = 1 in Eq. (5) shows that the number of trials n must exceed −log2(ϵ)/(βg(β)) 

before randomness can be produced, which suggests that the maximum of βg(β) is a good 

indicator of finite-data performance. Another way to arrive at this quantity is to consider ϵ = 

2−γn, where γ > 0 is the “certificate rate”. Given ν and the trial model, we can ask for the 

maximum certificate rate for which it is possible to have positive entropy rate at κ = 1. It 

follows from Eq. (5) with κ = 1 that this rate is at most

γPEF = sup
β > 0

βg(β) . (6)

We propose a general information-theoretic rate-tradeoff problem given trial model C and 

ν ∈ C: For a given certificate rate γ, determine the supremum of the entropy rates achievable 

by protocols. Eq. (5) implies lower bounds on the resulting tradeoff curve.

Our protocol assumes classical-only side information. There are more costly DIRG 

protocols that handle quantum side information [11, 13–17], but verifying that side 

information is effectively classical only requires confirming that the quantum devices used 

in the experiment have no long-term quantum memory. Verifying the absence of long-term 
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quantum memory in current experiments is possibly less difficult than ensuring that there are 

no backdoors or information leaks in the experiment’s hardware and software.

Applications.

We consider DIRG with the standard two-party, two-setting, two-outcome Bell-test 

configuration [30]. The parties are labeled A and B. In each trial, a source prepares a state 

shared between the parties, and each party chooses a random setting (their input) and obtains 

a measurement outcome (their output). We write Z = XY, where X and Y are the inputs of A 

and B, and C = AB, where A and B are the respective outputs. For this configuration, A, B, 
X, Y ∈ {0,1}.

Consider the trial model N consisting of distributions of ABXY with uniformly random 

inputs and satisfying non-signaling [24]. We begin by determining and comparing the 

asymptotic randomness rates witnessed by different methods. The rates are usually 

quantified as functions of the expectation I  of the C-HSH Bell function (Eq. G4) for I > 2
(the classical upper bound). We prove in Appendix G that the maximum asymptotic 

randomness rate for any ν ∈ N is equal to (I − 2) 2, and the rate g0 witnessed by PEFs 

matches this value. Most previous studies, such as Refs. [3, 10, 12, 18, 31–33], estimate the 

asymptotic randomness rate by the singletrial conditional min-entropy Hmin(AB|XY E). We 

determine that Hmin(AB ∣ XY E) = − log2((6 − I ) 4) < g0 when 2 < I < 4. As I  decreases to 

2 the ratio of g0 to Hmin(AB|XYE) approaches 1.386, demonstrating an improvement at 

small violations.

Next, we investigate finite-data performance. We consider three different families of 

quantum-achievable distributions of trial results. For the first family νE,θ, A and B share the 

unbalanced Bell state |Φθ⟩ = cos θ|00⟩ + sin θ|11⟩ with θ ∈ (0, π/4] and apply projective 

measurements that maximize I . This determines νE,θ. This family contains the goal states 

for many experiments suffering from detector inefficiency. For the second family νW,p, A 

and B share a Werner state ρ = p ∣ Ψπ 4 Ψπ 4 ∣ + (1 − p)1 4 with p ∈ (1 2, 1] and again 

apply measurements that maximize I . Werner states are standard examples in quantum 

information and are among the worst states for our application. In experiments with photons, 

measurements are implemented with imperfect detectors. For the third family νP,η, A and B 

use detectors with efficiency η ∈ (2/3, 1) to implement the measurements and to close the 

detection loophole [34]. They choose the unbalanced Bell state |Φθ⟩ and measurements such 

that an information-theoretic measure of nonlocality, the statistical strength for rejecting 

local realism [35–37], is maximized.

For each family of distributions, we determine the maximum certificate rate γPEF as given in 

Eq. (6). For this, we consider the trial model N, but we note that γPEF does not depend on 

the specific constraints on the quantum-achievable conditional distributions ℙ(AB ∣ XY ) (see 

Appendix F). As an indicator of finite-data performance, γPEF depends not only on I , but 

also on the distribution ν. To illustrate this behavior, we plot the rates γPEF as a function of 

I  for each family of distributions in Fig. 1. To obtain these plots, we note that I  is a 

monotonic function of the parameter θ, p or η for each family. We also find that γPEF is 
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given by the statistical strength of the distribution ν for rejecting local realism (see 

Appendix F for a proof). Conventionally, experiments are designed to maximize I , but in 

general, the optimal state and measurements maximizing I  are different from those 

maximizing the statistical strength [36, 37].

We further determine the minimum number of trials, nPEF,b, required to certify b bits of ϵ-

smooth conditional min-entropy with a given distribution ν of trial results. From Eq. (5), we 

get

nPEF, b = inf
β > 0

bβ − log2(ϵ) − (1 + β)log2(κ)
βg(β) ,

where for simplicity we allow non-integer values for nPEF,b. We can upper bound nPEF,b by 

means of the simpler-to-compute certificate rate γPEF given in Eq. (6). For the trial model 

N, γPEF is achieved when β is above a threshold β0 that depends on ν (see Appendix F). 

From γPEF and β0, we can determine the upper bound

nPEF, b′ = (bβ0 − log2(ϵ) − (1 + β0) log2(κ))/γPEF

on nPEF,b. The minimum number of trials required can be determined for other published 

protocols, which usually certify conditional min-entropy from I . (An exception is Ref. [18] 

but the minimum number of trials required is worse.) We consider the protocol “PM” of Ref. 

[3] and the entropy accumulation protocol “EAT” of Ref. [17]. From Thm. 1 of Ref. [3] with 

κ = 1 and b ↘ 0, we obtain a lower bound

nPM, 0 = −2 loge(ϵ)/((I − 2)/(4 + 2 2))2 .

For the EAT protocol, we determine an explicit lower bound nEAT,b in Appendix H. This 

lower bound applies for b ≥ 0 and ϵ, κ, ∈ (0, 1], and is valid with respect to quantum side 

information for the trial model consisting of quantum-achievable distributions.

We compare the three protocols over a broad range of I  for b ↘ 0, ϵ = 10−6, and κ = 1. For 

each family of distributions above, we compute the improvement factors given by 

fPM = nPM, 0 nPEF, 0′  and fEAT = nEAT, 0 nPEF, 0′ . For νW,p the improvement factors depend 

weakly on I :fPM increases from 3.89 at I = 2.008 to 4.36 at I = 2 2, while fEAT increases 

from 84.97 at I = 2.008 to 86.35 at I = 2 2. For νE,θ and νP,η, the improvement factors can 

be much larger and depend strongly on I , monotonically decreasing with I  as shown in Fig. 

2. The improvement is particularly notable at small violations which are typical in current 

photonic loophole-free Bell tests. We remark that similar comparison results were obtained 

with other choices of the values for ϵ and κ.

The large latency reduction with probability estimation persists for certifying blocks of 

randomness. For randomness beacons, good reference values are b = 512 and ϵ = 2−64. We 

also set κ = 2−64. Setting κ = ϵ is a common conservative choice, but we remark that 
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soundness for randomness generation can be defined with a better tradeoff between ϵ and κ 
[28]. We consider the trial model T of distributions with uniformly random inputs, 

satisfying both non-signaling conditions [24] and Tsirelson’s bounds [38]. Consider the 

state-of-the-art photonic loophole-free Bell test reported in Ref. [20]. With probability 

estimation, the number of trials required for the distribution inferred from the measurement 

statistics is 4.668 × 107, which would require about 7.78 minutes of running time in the 

referenced experiment. With entropy accumulation [17], 2.887 × 1011 trials taking 802 hours 

would be required. For atomic experiments, we can use the distribution inferred from the 

measurement statistics in Ref. [7], for which probability estimation requires 7.354 × 104 

trials, while entropy accumulation [17] requires 5.629 × 106. The experiment of Ref. [7] 

observed 1 to 2 trials per minute, so probability estimation would have needed at least 612.8 

hours of data collection, which while impractical is still less than the 5.35 years required by 

entropy accumulation [17].

Finally, we briefly discuss the performance of probability estimation on DIRG with 

published Bell-test experimental data. The first experimental demonstration of conditional 

min-entropy certification for DIRG is reported in Ref. [10]. The method therein certifies the 

presence of 42 random bits at error bound ϵ = 10−2 against classical side information, where 

the trial model consists of quantum-achievable distributions with uniform inputs. (The lower 

bound of the protocol success probability κ = 1 was used implicitly in Ref. [10], so κ = 1 in 

the following comparison.) For the same data but with the less restrictive trial model T, 

probability estimation certifies the presence of at least nine times more random bits with ϵ = 

10−2. With ϵ = 10−6 probability estimation can still certify the presence of 80 random bits, 

while other methods fail to certify any random bits. For the loophole-free Bell-test data 

reported in Ref. [9] and analyzed in our previous work Ref. [19], the presence of 894 

random bits at ϵ = 10−3 was certified against classical side information with the trial model 

N. Further, 256 private random bits within 10−3 (in terms of the total-variation distance) of 

uniform were extracted in Ref. [19]. With probability estimation we can certify the presence 

of approximately two times more random bits at ϵ = 10−3. The presence of four times more 

bits can be certified if we use the more restrictive trial model T. Furthermore, we can certify 

randomness even when the input distribution is not precisely known, which was an issue in 

the experiment of Ref. [9]. Applications to other experimental distributions, complete 

analyses of the mentioned experiments, and details on handling input choices whose 

probabilities are not precisely known are in Ref. [28].

In conclusion, probability estimation is a powerful and flexible framework for certifying 

randomness in data from a finite sequence of experimental trials. Implemented with 

probability estimation factors, it witnesses optimal asymptotic randomness rates. For 

practical applications requiring fixed-size blocks of random bits, it can reduce the latencies 

by orders of magnitude even for high-quality devices. Latency is a notable problem for 

device-independent quantum key generation (DIQKD). If probability estimation can be 

extended to accommodate security against quantum side information, the latency reductions 

may be extendable to DIQKD by means of existing constructions [17].

Finally we remark that if the trial results are explainable by local realism, no device-

independent randomness would be certified by probability estimation. The reason is as 
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follows. For simplicity we assume that the input distribution is fixed and known [52]. 

Consider a generic trial with results CZ and model C. Let PLR be the set of distributions of 

CZ explainable by local realism, which is a convex polytope with a finite number of 

extremal distributions σLR,k, k = 1, 2, …, K. Since PLR is a subset of C, by definition a PEF 

F with power β satisfies the condition

∑
cz

F (cz)σLR, k(c |z)βσLR, k(cz) ≤ 1, (7)

for each k. For each extremal distribution σLR,k in PLR and each cz, the value of σLR,k,(c|z) 

is either 0 or 1, from which it follows that σLR,k(c|z)β σLR,k(cz) = σLR,k(cz). Eq. (7) now 

becomes

EσLR, k(F (CZ)) = ∑
cz

F (cz)σLR, k(cz) ≤ 1. (8)

Since any local realistic distribution can be written as a convex mixture of extremal 

distributions σLR,k, k = 1, 2, …, K, Eq. (8) implies that for all distributions ν ∈ PLR

Eν(F (CZ)) ≤ 1. (9)

By the concavity of the logarithm function and Eq. (9) we get that

Eν(log2(F (CZ))) ≤ log2(Eν(F (CZ))) ≤ 0.

Hence, the asymptotic entropy rate in Eq. (4) cannot be positive if the distribution of trial 

results is explainable by local realism. Furthermore, Eq. (9) shows that the PEF F is a test 

factor for the hypothesis test of local realism [21] (see Appendix B for the formal definition 

of test factors). So, if a finite sequence of trial results is explainable by local realism and Fi 

is a PEF with power β for the i’th trial, according to Ref. [21] the success event Tn ≥ 1/(pβ ϵ) 

with Tn = Πi = 1
n Fi in Thm. 1 for randomness certification would happen with probability at 

most pβ ϵ.
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Appendix

Appendix A: Notation

Much of this work concerns stochastic sequences, that is, sequences of random variables 

(RVs). RVs are functions on an underlying probability space. The range of an RV is called 

its value space and may be thought of as the set of its observable values or realizations. 

Here, all RVs have countable value spaces. We truncate sequences of RVs so that we only 
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consider finitely many RVs at a time. With this the underlying probability space is countable 

too. We use upper-case letters such as A, B, …, X, Y, … to denote RVs. The value space of 

an RV such as X is denoted by Rng(X). The cardinality of the value space of X is |Rng(X)|. 

Values of RVs are denoted by the corresponding lower-case letters. Thus x is a value of X, 

often thought of as the particular value realized in an experiment. When using symbols for 

values of RVs, they are implicitly assumed to be members of the range of the corresponding 

RV. In many cases, the value space is a set of letters or a set of strings of a given length. We 

use juxtaposition to denote concatenation of letters and strings. Stochastic sequences are 

denoted by capital bold-face letters, with the corresponding lower-case bold-face letters for 

their values. For example, we write A = (Ai)i = 1
N  and A ≤ m = (Ai)i = 1

m . Our conventions for 

indices are that we generically use N to denote a large upper bound on sequence lengths, n to 

denote the available length and i,j,k,l,m as running indices. By convention, A≤0 is the empty 

sequence of RVs. Its value is constant. When multiple stochastic sequences are in play, we 

refer to the collection of i’th RVs in the sequences as the data from the i’th trial. We 

typically imagine the trials as happening in time and being performed by an experimenter. 

We refer to the data from the trials preceding the upcoming one as the “past”. The past can 

also include initial conditions and any additional information that may have been obtained. 

These are normally implicit when referring to or conditioning on the past.

Probabilities are denoted by ℙ(…). If there are multiple probability distributions involved, 

we disambiguate with a subscript such as in ℙν(…) or simply ν(…), where ν is a probability 

distribution. We generally reserve the symbol μ for the global, implicit probability 

distribution, and may write μ(…) instead of ℙ(…) or ℙμ(…). Expectations are similarly 

denoted by E(…) or Eμ(…). If ϕ is a logical expression involving RVs, then {ϕ} denotes the 

event where ϕ is true for the values realized by the RVs. For example, {f(X) > 0} is the event 

{x : f(x) > 0} written in full set notation. The brackets {…} are omitted for events inside 

ℙ(…) or E(…). As is conventional, commas separating logical expressions are interpreted as 

conjunction. When the capital/lower-case convention can be unambiguously interpreted, we 

abbreviate “X = x” as “x”. For example, with this convention, ℙ(x, y) = ℙ(X = x, Y = y). 
Furthermore, we omit commas in the abbreviated notation, so ℙ(xy) = ℙ(x, y). RVs or 

functions of RVs appearing outside an event but inside ℙ(…) or after the conditioner in 

E(… ∣ …) result in an expression that is itself an RV. We can define these without 

complications because of our assumption that the event space is countable. Here are two 

examples. ℙ(f(X) ∣ Y ) is a function of the RVs X and Y and can be described as the RV 

whose value is ℙ(f(X) = f(x) ∣ Y = y) whenever the values of X and Y are x and y, 

respectively. Similarly E(X ∣ Y ) is the RV defined as a function of Y, with value E(X ∣ Y = y)
whenever Y has value y. Note that X plays a different role before the conditioners in E(…)
than it does in ℙ(…), as E(X ∣ Y ) is not a function of X, but only of Y. We comment that 

conditional probabilities with conditioners having probability zero are not well-defined, but 

in most cases can be defined arbitrarily. Typically, they occur in a context where they are 

multiplied by the probability of the conditioner and thereby contribute zero regardless. An 

important context involves expectations, where we use the convention that when expanding 

an expectation over a set of values as a sum, zero-probability values are omitted. We do so 

without explicitly adding the constraints to the summation variables. We generally use 
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conditional probabilities without explicitly checking for probability-zero conditioners, but it 

is necessary to monitor for well-definedness of the expressions obtained.

To denote general probability distributions, usually on the joint value spaces of RVs, we use 

symbols such as μ, ν, σ, with modifiers as necessary. As mentioned, we reserve the 

unmodified μ for the distinguished global distribution under consideration, if there is one. 

Other symbols typically refer to probability distributions defined on the joint range of a 

subset of the available RVs. We usually just say “distribution” instead of “probability 

distribution”. The terms “distributions on Rng(X)” and “distributions of X” are synonymous. 

If ν is a joint distribution of RVs, then we extend the conventions for arguments of ℙ(…) to 

arguments of ν, as long as all the arguments are determined by the RVs for which ν is 

defined. For example, if ν is a joint distribution of X, Y, and Z, then ν(x|y) has the expected 

meaning, as does the RV ν(X|Y) in contexts requiring no other RVs. Further, ν(X) and 

ν(XY) are the marginal distributions of X and XY, respectively, according to ν.

In our work, probability distributions are constrained by a “model”, which is defined as a set 

of distributions and denoted by letters such as ℋ or C. The models for trials to be considered 

here are usually convex and closed.

The total-variation (TV) distance between ν and ν′ is defined as

TV(ν, ν′) = ∑
x

(ν(x) − ν′(x))⟦ν(x) ≥ ν′(x)⟧ = 1
2 ∑

x
ν(x) − ν′(x) , (A1)

where ⟦ϕ⟧ for a logical expression ϕ denotes the {0,1}-valued function evaluating to 1 iff ϕ 
is true. True to its name, the TV distance satisfies the triangle inequality. Here are three other 

useful properties: First, if ν and ν′ are joint distributions of X and Y and the marginals 

satisfy ν(Y) = ν′(Y), then the TV distance between ν and ν′ is the average of the TV 

distances of the Y-conditional distributions:

TV(v, v′) = ∑
y

v(y)TV(v(X |y), v′(X |y)) . (A2)

Second, if for all y, the conditional distributions ν(X|y) = ν′(X|y), then the TV distance 

between ν and ν′ is given by the TV distance between the marginals on Y:

TV(v, v′) = TV(v(Y ), v′(Y )) . (A3)

Third, the TV distance satisfies the data-processing inequality. That is, for any stochastic 

process ℰ on Rng(X) and distributions ν and ν′ of X, TV(ℰ(ν), ℰ(ν′)) ≤ TV(ν, ν′). We use this 

property only for functions ℰ, but for general forms of this result, see Ref. [39]. The above 

properties of TV distances are well known, specific proofs can be found in Refs. [20, 28].

When constructing distributions close to a given one in TV distance, which we need to do 

for the proof of Thm. 1 in the main text, it is often convenient to work with subprobability 

distributions. A subprobability distribution of X is a sub-normalized non-negative measure 

on Rng(X), which in our case is simply a non-negative function ν  on Rng(X) with weight 
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w(ν ) = Σxν (x) ≤ 1. For expressions not involving conditionals, we use the same conventions 

for subprobability distributions as for probability distributions. When comparing 

subprobability distributions, ν ≤ ν ′ means that for all x, ν (x) ≤ ν ′(x), and we say that ν ′
“dominates” ν .

Lemma 2. Let ν  be a subprobability distribution of X of weight w = 1 − ϵ. Let ν and ν′ be 
distributions of X satisfying ν ≤ ν and ν ≤ ν′. Then TV(ν, ν′) ≤ ϵ.

Proof. Calculate

TV(ν, ν′) = Σx (ν(x) − ν′(x))⟦ν(x) ≥ ν′(x)⟧
≤ Σx (ν(x) − ν(x))⟦ν(x) ≥ ν(x)⟧
= Σx (ν(x) − ν(x))
= 1 − w = ϵ .

Lemma 3. Assume that p ≥ 1/|Rng(X)|. Let ν be a distribution of X and ν ≤ ν a 
subprobability distribution of X with weight w = 1 − ϵ and ν ≤ p. Then there exists a 
distribution ν′ of X with ν′ ≥ ν , ν′ ≤ p, and TV(ν, ν′) ≤ ϵ.

Proof. Because p ≥ 1/|Rng(X)|, that is, ∑x p ≥ 1, and for all x, ν (x) ≤ p, there exists a 

distribution ν′ ≥ ν  with ν ≤ p. Since ν′ and ν are distributions dominating ν  and by Lem. 2, 

TV(ν, ν′) ≤ ϵ.

Appendix B: Test Supermartingales and Test Factors

Definition 4. A test supermartingale [23] with respect to a stochastic sequence R and model 

ℋ is a stochastic sequence T = (Ti)i = 0
N  with the properties that 1) T0 = 1, 2) for all i Ti ≥ 0, 

3) Ti is determined by R≤i and the governing distribution, and 4) for all distributions in ℋ, 

E(Ti + 1 ∣ R ≤ i) ≤ Ti. The ratios Fi = Ti/Ti−1 with Fi = 1 if Ti−1 = 0 are called the test factors 

of T.

Here R captures the relevant information that accumulates in a sequence of trials. It does not 

need to be accessible to the experimenter. Between trials i and i + 1, the sequence R≤i is 

called the past. In the definition, we allow for Ti to depend on the governing distribution μ. 

With this, for a given μ, Ti is a function of R≤i Below, when stating that RVs are determined, 

we implicitly include the possibility of dependence on μ without mention. The μ-dependence 

can arise through expressions such as Eμ(G ∣ R ≤ i) for some G, which is determined by R≤i 

given μ. One way to formalize this is to consider μ-parameterized families of RVs. We do 

not make this explicit and simply allow for our RVs to be implicitly parameterized by μ. We 

note that the governing distribution in a given experiment or situation is fixed but usually 

unknown with most of its features inaccessible. As a result, many RVs used in mathematical 

arguments cannot be observed even in principle. Nevertheless, they play important roles in 

establishing relationships between observed and inferred quantities.
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Defining Fi = 1 when Ti−1 = 0 makes sense because given {Ti−1 = 0}, we have {Ti = 0} with 

probability 1. The sequence F = (Fi)i = 1
N  satisfies the conditions that for all i, 1) Fi ≥ 0, 2) Fi 

is determined by R≤i and 3) for all distributions in ℋ, E(Fi + 1 ∣ R ≤ i) ≤ 1. We can define test 

supermartingales in terms of such sequences: Let F be a stochastic sequence satisfying the 

three conditions. Then the stochastic sequence with members T0 = 1 and Ti = Π1≤j≤i Fj for i 
≥ 1 is a test supermartingale. It suffices to check that E(Ti + 1 ∣ R ≤ i) ≤ Ti. This follows from

E(Ti + 1|R ≤ i) = E(Fi + 1Ti |R ≤ i) = E(Fi + 1|R ≤ i)Ti ≤ Ti,

where we pulled out the determined quantity Ti from the conditional expectation. In this 

work, we construct test supermartingales from sequences F with the above properties. We 

refer to any such sequence as a sequence of test factors, without necessarily making the 

associated test supermartingale explicit. We extend the terminology by calling an RV F a test 

factor with respect to ℋ if F ≥ 0 and E(F ) ≤ 1 for all distributions in ℋ. Note that F = 1 is a 

valid test factor.

For an overview of test supermartingales and their properties, see Ref. [23]. The notion of 

test supermartingales and proofs of their basic properties are due to Ville [40] in the same 

work that introduced the notion of martingales. The name “test supermartingale” appears to 

have been introduced in Ref. [23]. Test supermartingales play an important theoretical role 

in proving many results in martingale theory, including that of proving tail bounds for large 

classes of martingales. They have been studied and applied to Bell tests [21, 41, 42].

The definition implies that for a test supermartingale T, for all n, E(Tn) ≤ 1. This follows 

inductively from E(Ti + 1) = E(E(Ti + 1 ∣ R ≤ i)) ≤ E(Ti) and T0 = 1. An application of 

Markov’s inequality shows that for all ϵ > 0,

ℙ(Tn ≥ 1/ϵ) ≤ ϵ . (B1)

Thus, a large final value t = Tn of the test supermartingale is evidence against ℋ in a 

hypothesis test with ℋ as the (composite) null hypothesis. Specifically, the RV 1/T is a p-

value bound against ℋ, where in general, the RV U is a p-value bound against ℋ if for all 

distributions in ℋ, ℙ(U ≤ ϵ) ≤ ϵ.

One can produce a test supermartingale adaptively by determining the test factors Fi+1 to be 

used at the next trial. If the i’th trial’s data is Ri, including any incidental information 

obtained, then Fi+1 is expressed as a function of R≤i and data from the (i + 1)’th trial (a 

“past-parameterized” function of Ri+1), and constructed to satisfy Fi+1 ≥ 0 and 

E(Fi + 1 ∣ R ≤ i) ≤ 1 for any distribution in the model ℋ. Note that inbetween trials, we can 

effectively stop the experiment by assigning all future Fi+1 = 1, which is a valid test factor, 

conditional on the past. This is equivalent to constructing the stopped process relative to a 

stopping rule. This argument also shows that the stopped process is still a test 

supermartingale.
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More generally, we use test supermartingales for estimating lower bounds on products of 

positive stochastic sequences G. Such lower bounds are associated with unbounded-above 

confidence intervals. We need the following definition:

Definition 5. Let U, V, X be RVs and 1 ≥ ϵ ≥ 0. I = [U, V] is a confidence interval for X at 

level ϵ with respect to ℋ if for all distributions in ℋ we have ℙ(U ≤ X ≤ V ) ≥ 1 − ϵ. The 
quantity ℙ(U ≤ X ≤ V ) is called the coverage probability.

As noted above, the RVs U, V and X may be μ-dependent. For textbook examples of 

confidence intervals such as in Ch. 2.4.3 of Ref [43], X is a parameter determined by μ, and 

U and V are obtained according to a known distribution for an estimator of X. The quantity e 

in the definition is a significance level, which corresponds to a confidence level of (1 − ϵ). 

The following technical lemma will be used in the next section.

Lemma 6. Let F and G be two stochastic sequences with Fi ∈ [0, ∞), Gi ∈ (0, ∞], and Fi 

and Gi determined by R≤i. Define T0 = 1, Ti = Π1 ≤ j ≤ iFi and U0 = 1, Ui = Π1 ≤ j ≤ iGi, and 

suppose that for all μ ∈ ℋ, E(Fi + 1 Gi + 1 ∣ R ≤ i) ≤ 1. Then [Tnϵ, ∞) is a confidence 

interval for Un at level ϵ with respect to ℋ.

Proof. The assumptions imply that the sequence (Fi Gi)i = 1
N  forms a sequence of test factors 

with respect to ℋ and generate the test supermartingale T/U, where division in this 

expression is term-by-term. Therefore, by Eq. (B1),

ℙ(Tnϵ ≥ Un) = ℙ(Tn/Un ≥ 1/ϵ) ≤ ϵ, (B2)

so [Tnϵ, ∞) is a confidence interval for Un at level ϵ.

Appendix C: Proof of Main Results

In this section, we show how to perform probability estimation and how to certify smooth 

conditional min-entropy by probability estimation.

1. Probability Estimation by Test Supermartingales: Proof of Main Text Eq. (1)

We consider the situation where CZ is a time-ordered sequence of n trial results, and the 

classical side information is represented by an RV E with countable value space. In an 

experiment, Z and C are the inputs and outputs of the quantum devices, and the side 

information E is carried by an external classical system E. Before the experiment, the initial 

state of E may be correlated with the quantum devices. At each trial of the experiment, we 

allow arbitrary one-way communication from the system E to the devices. For example, E 

can initialize the state of the quantum devices via a one-way communication channel. We 

also allow the possibility that the device initialization at a trial by E depends on the past 

inputs preceding the trial. This implies that the random inputs Z can come from 

publicrandomness sources, as first pointed out in Ref. [3]. However, at any stage of the 

experiment the information of the outputs C cannot be leaked to the system E. After the 

experiment, we observe Z and C, but not the side information E.
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A model ℋ for an experiment is defined as the set of joint probability distributions of CZ 

that satisfy the known constraints and consists of all achievable probability distributions of 

CZ conditional on values e of E. Thus we say that a joint distribution μ of CZ and E satisfies 

the model ℋ if μ(CZ ∣ E = e) ∈ ℋ for each value e.

We focus on probability estimates with lower bounds on coverage probabilities that do not 

depend on E. Our specific goal is to prove Eq. (1) in the main text. We will show that the 

probability bound of U(CZ) = (Tnϵ)−1/β in Eq. (1) of the main text is an instance of what we 

call an “ϵ-uniform probability estimator”:

Definition 7. Let 1 ≥ ϵ ≥ 0. The function U : Rng(CZ) → [0, ∞) is a level-ϵ E-uniform 

probability estimator for ℋ (ϵ-UPE or with specifics, ϵ − UPE(C ∣ ZE; ℋ)) if for all e and 
distributions μ satisfying the model ℋ, we have ℙμ(U(CZ) ≥ μ(C ∣ Ze) ∣ e) ≥ 1 − ϵ. We omit 

specifics such as ℋ if they are clear from context.

We can obtain ϵ-UPEs by constructing test supermartingales. In order to achieve this goal, 

we consider models ℋ(C) of distributions of CZ constructed from a chain of trial models 

Ci + 1 ∣ c ≤ iz ≤ ie, where the trial model Ci + 1 ∣ c ≤ iz ≤ ie is defined as the set of all achievable 

distributions of Ci+1Zi+1 conditional on both the past results c≤iz≤i and the value e of E. The 

chained model ℋ(C) consists of all conditional distributions μ(CZ|e) satisfying the 

following two properties. First, for all i, c≤iz≤i, and e, the conditional distributions

μ(Ci + 1Zi + 1|c ≤i z ≤i e) ∈ Ci + 1|c ≤ iz ≤ ie .

Second, the joint distribution μ of CZ and E satisfies that Zi+1 is independent of C≤i 

conditionally on both Z≤i and E. The second condition is needed in order to be able to 

estimate ZE-conditional probabilities of C and corresponds to the Markov-chain condition 

in the entropy accumulation framework [17].

In many cases, the trial models Ci + 1 ∣ c ≤ iz ≤ ie do not depend on the past outputs c≤i, but 

probability estimation can take advantage of dependence on the past inputs z≤i. Such 

dependence captures the possibility that at the (i + 1)’th trial the device initialization by the 

external classical system E depends on the past inputs z≤i. In applications involving Bell-test 

configurations, the trial models capture constraints on the input distributions and on non-

signaling or quantum behavior of the devices. For simplicity, we write 

Ci + 1 = Ci + 1 ∣ c ≤ iz ≤ ie, leaving the conditional parameters implicit. Normally, models for 

individual trials Ci + 1 are convex and closed. If they are not, we note that our results 

generally extend to the convex closures of the trial models used.

For chained models ℋ(C), we can construct ϵ-UPEs from products of “probability 

estimation factors” according to the following definition, see also the paragraph containing 

Eq. (1) in the main text.
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Definition 8. Let β > 0, and let C be any model, not necessarily convex. A probability 

estimation factor (PEF) with power β for C is a non-negative RV F = F(CZ) such that for all 

σ ∈ C, Eσ(Fσ(C ∣ Z)β) ≤ 1.

We emphasize that a PEF is a function of the trial results CZ, but not of the side information 

E.

Consider the model ℋ(C) constructed as a chain of trial models Ci. Let Fi be PEFs with 

power β > 0 for Ci, past-parameterized by C≤i and Z≤i. Define T0 = 1, Ti = Π1 ≤ j ≤ iFj for i 

≥ 1, and

U(CZ) = (Tnϵ)−1/β . (C1)

Then, U(CZ) satisfies the inequality in Eq. (1) of the main text as proven in the following 

theorem, and is therefore an ϵ-UPE. To simplify notation in the following theorem, we 

normally write the distribution μ(CZ|e) conditional on e as μe(CZ), abbreviated as μe.

Theorem 9. Fix β > 0. For each value e of E, each μe ∈ ℋ(C), and ϵ > 0, the following 

inequality holds:

ℙμe(μe(C |Z) ≥ (ϵTn)−1/β) ≤ ϵ . (C2)

Note that β cannot be adapted during the trials. On the other hand, before the i’th trial, we 

can design the PEFs Fi for the particular constraints relevant to the i’th trial.

Proof. We first observe that for each value e of E,

∏
j = 0

i − 1
μe(Cj + 1 |Zj + 1Z ≤ jC ≤ j) = μe(C ≤ i |Z ≤ i) . (C3)

This follows by induction with the identity

μe(C ≤ j + 1|Z ≤ j + 1) = μe(Cj + 1|Zj + 1Z ≤ jC ≤ j)μe(C ≤ j |Zj + 1Z ≤ j)
= μe(Cj + 1|Zj + 1Z ≤ jC ≤ j)μe(C ≤ j |Z ≤ j)

by conditional independence of Zj+1 on C≤j given Z≤j and E = e.

We claim that for each e, Fi+1μe(Ci+1|Zi+1Z≤iC≤i)β is a test factor determined by C≤i+1Z≤i+1. 

To prove this claim, for all c≤iz≤i, the distributions ν = μe(Ci + 1Zi + 1 ∣ c ≤ iz ≤ i) ∈ Ci + 1. 

With Fi+1 = Fi+1(Ci+1Zi+1; c≤iz≤i), we obtain the bound

E(Fi + 1μe(Ci + 1|Zi + 1z ≤ ic ≤ i)β |c ≤ iz ≤ i) = Eν(Fi + 1ν(Ci + 1|Zi + 1)β)
≤ 1,

Zhang et al. Page 17

Phys Rev A (Coll Park). Author manuscript; available in PMC 2020 December 10.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



where we invoked the assumption that Fi+1 is a PEF with power β for Ci + 1. By arbitrariness 

of c≤iz≤i, and because the factors Fi+1μe(Ci+1|Z≤iC≤i)β are determined by C≤i+1Z≤i+1, the 

claim follows. The product of these test factors is

∏
j = 0

i − 1
Fj + 1μe(Cj + 1 |Zj + 1Z ≤ jC ≤ j)β = T i ∏

j = 0

i − 1
μe(Cj + 1 |Zj + 1Z ≤ jC ≤ j)β

= T iμe(C ≤ i |Z ≤ i)β,
(C4)

with Ti = ∏j = 1
i Fj. To obtain the last equality above, we used Eq. (C3). Thus, for each e, 

the sequence Q0 = 1 and Qi = Tiμe(C≤i|Z≤i)β for i > 0 satisfies the supermartingale property 

Eμe(Qi + 1 ∣ C ≤ iZ ≤ i) ≤ Qi. We remark that as a consequence, 

Eμe(Qi + 1) = Eμe(Qi + 1 ∣ C ≤ iZ ≤ i)) ≤ Eμe(Qi). By induction this gives 

Eμe(Qn) = Eμe(Tnμe(C ∣ Z)β) ≤ 1. Thus, considering that Tn = ∏i = 1
n Fi ≥ 0, Tn is a PEF with 

power β for ℋ(C), that is, chaining PEFs yields PEFs for chained models.

In Lem. 6, if we replace Ti and Ui there by Ti and μe(C≤i|Z≤i)−β here, then from Eq. (B2) and 

manipulating the inequality inside ℙ( ⋅ ), we get the inequality in Eq. (C2).

That Fi+1 can be parameterized in terms of the past as Fi+1 = Fi+1 (Ci+1Zi+1; C≤iZ≤i) allows 

for adapting the PEFs based on CZ, but no other information can be used. To adapt the PEF 

Fi+1 based on other past information besides C≤iZ≤i, we need a “soft” generalization of 

probability estimation as detailed in Ref. [28].

2. Smooth Min-Entropy by Probability Estimation: Proof of Main Text Thm. 1

We want to generate bits that are near-uniform conditional on E and often other variables 

such as Z. For our analyses, E is not particularly an issue because our results hold uniformly 

for all values of E, that is, conditionally on {E = e} for each e. However this is not the case 

for Z. For this subsection, it is not necessary to structure the RVs as stochastic sequences, so 

below we use C and Z in place of C and Z.

Definition 10. The distribution μ of CZE has ϵ-smooth average ZE-conditional maximum 

probability p if there exists a distribution ν of CZE with TV(ν, μ) ≤ ϵ and ∑ze maxc(ν(c|

ze))ν(ze) ≤ p. The minimum p for which μ has ϵ-smooth average ZE-conditional maximum 

probability p is denoted by Pmax, μ
ϵ (C ∣ ZE). The quantity 

Hmin, μ
ϵ (C ∣ ZE) = − log2(Pmax, μ

ϵ (C ∣ ZE)) is the (classical) ϵ-smooth ZE-conditional min-

entropy.

We denote the ϵ-smooth ZE-conditional min-entropy evaluated conditional on an event {ϕ} 

by Hmin
ϵ (C ∣ ZE; ϕ). We refer to the smoothness parameters as “error bounds”. Observe that 

the definitions are monotonic in the error bound. For example, if Pmax, μ
ϵ ≤ p and ϵ′ ≥ ϵ, then 

Pmax, μ
ϵ′ ≤ p. The quantity ∑ze maxc(ν(c|ze))ν(ze) in the definition of Pmax, μ

ϵ  can be 

recognized as the (average) maximum guessing probability of C given Z and E (with respect 

to ν), whose negative logarithm is the guessing entropy defined, for example, in Ref. [44].
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A summary of the relationships between smooth conditional min-entropies and randomness 

extraction with respect to quantum side information is given in Ref. [22] and can be 

specialized to classical side information. When so specialized, the definition of the smooth 

conditional min-entropy in, for example, Ref. [22] differs from the one above in that Ref. 

[22] uses one of the fidelity-related distances. One such distance reduces to the Hellinger 

distance h for probability distributions for which ℎ2 ≤ TV ≤ 2ℎ.

The Z-conditional maximum probabilities with respect to E = e can be lifted to the ZE-

conditional maximum probabilities, as formalized by the next lemma.

Lemma 11. Suppose that for all e, Pmax, μ(CZ ∣ e)
ϵe (C ∣ Z) ≤ pe, and let ϵ‒ = Σeϵeμ(e) and 

p‒ = Σepeμe. Then Pmax, μ(CZE)
ϵ‒ (C ∣ ZE) ≤ p‒.

Proof. For each e, let νe witness Pmax, μ(CZ ∣ e)
ϵe (C ∣ Z) ≤ pe. Then TV(νe,μ(CZ|e)) ≤ ϵe and ∑z 

maxc(νe(c|z))νe(z) ≤ pe. Define ν by ν(cze) = νe(cz)μ(e). Then the marginals ν(E) = μ(E), 

so we can apply Eq. (A2) for

TV(ν, μ) = ∑
e

TV(νe, μ(CZ |e))μ(e) ≤ ∑
e

ϵeμ(e) = ϵ .

Furthermore,

∑
ze

max
c

(ν(c |ze))ν(ze) = ∑
e

μ(e)∑
z

max
c

(νe(c |z))νe(z)

≤ ∑
e

μ(e)pe = p,

as required for the conclusion. □

The level of a probability estimator relates to the smoothness parameter for smooth min-

entropy via the relationships established below.

Theorem 12. Suppose that U is an ϵ − UPE(C ∣ ZE; ℋ) and that the distribution μ of CZE 
satisfies the model ℋ. Let p ≥ 1/|Rng(C)| and κ = μ(U ≤ p). Then 

Pmax, μ(CZE ∣ U ≤ p)
ϵ κ (C ∣ ZE) ≤ p κ.

Proof. Let κe = μ(U ≤ p|e). Below we show that for all values e of E, 

Pmax, μ(CZ ∣ e, U ≤ p)
ϵ κe (C ∣ Z) ≤ p κe. Once this is shown, we can use

∑
e

1
κe

μ(e |U ≤ p) = ∑
e

1
μ(U ≤ p |e)μ(e |U ≤ p) = ∑

e

μ(e)
μ(U ≤ p) = 1/κ, (C5)

and Lem. 11 to complete the proof. For the remainder of the proof, e is fixed, so we simplify 

the notation by universally conditioning on {E = e} and omitting the explicit condition. 

Further, we omit e from suffixes. Thus κ = κe from here on.
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Let κz = μ(U ≤ p|z). We have ∑z κzμ(z) = κ and

κz = μ(z |U ≤ p)κ/μ(z) . (C6)

Define the subprobability distribution μ by μ(cz)[U(cz) ≥ μ(c ∣ z)]. By the definition of ϵ-

UPEs, we get that the weight of μ satisfies

w(μ) = ∑
cz

μ(cz)⟦U(cz) ≥ μ(c |z)⟧

= μ(U(CZ) ≥ μ(C |Z))
≥ 1 − ϵ .

(C7)

Define ν (cz) = μ(cz)[U(cz) ≤ p] κ. The weight of ν  satisfies

w(ν) = ∑
cz

μ(cz)⟦U(cz) ≤ p⟧/κ

≤ ∑
cz

μ(cz)⟦U(cz) ≤ p⟧/κ

= μ(U ≤ p)/κ = 1,

(C8)

w(ν) = ∑
cz

μ(cz)⟦U(cz) ≤ p⟧/κ − ∑
cz

(μ(cz) − μ(cz))⟦U(cz) ≤ p⟧/κ

= 1 − ∑
cz

(μ(cz) − μ(cz))⟦U(cz) ≤ p⟧/κ

≥ 1 − ∑
cz

(μ(cz) − μ(cz))/κ = 1 − (1 − w(μ))/κ

≥ 1 − (1 − (1 − ϵ))/κ = 1 − ϵ/κ .

(C9)

To obtain the last inequality above, we used Eq. (C7). Thus ν  is a subprobability distribution 

of weight at least 1 − ϵ/κ. We use ν  to construct the distribution ν witnessing the conclusion 

of the theorem. For each cz we bound

ν(cz)/μ(z |U ≤ p) = μ(cz)⟦U(cz) ≥ μ(c |z)⟧⟦U(cz) ≤ p⟧/(κμ(z |U ≤ p))
= μ(c |z)⟦U(cz) ≥ μ(c |z)⟧⟦U(cz) ≤ p⟧/κz
≤ p/κz,

(C10)

where in the second step we used Eq. (C6). Define ν (C ∣ z) by ν (c ∣ z) = ν (cz) μ(z ∣ U ≤ p), 
with ν (c ∣ z) = 0 if μ(z|U ≤ p) = 0, and let wz = w(ν (C ∣ z)). We show below that wz ≤ 1, and 

so the definition of ν (C ∣ z) extends the conditional probability notation to the subprobability 

distribution ν  with the understanding that the conditionals are with respect to μ given {U ≤ 

p}. Applying the first two steps of Eq. (C10) and continuing from there, we have

ν(c |z) = μ(c |z)⟦U(cz) ≥ μ(c |z)⟧⟦U(cz) ≤ p⟧/κz
≤ μ(c |z)⟦U(cz) ≤ p⟧/κz
= μ(c, U ≤ p |z)/μ(U ≤ p |z) = μ(c |z, U ≤ p) .

(C11)

Since μ(C|z, U ≤ p) is a normalized distribution, the above equation implies that wz ≤ 1. For 

each z, we have that ν (C ∣ z) ≤ p κz (Eq. (C10)), p/κz ≥ p ≥ 1/|Rng(C)|, and μ(C|z, U ≤ p) 

dominates ν (C ∣ z) (Eq. (C11)). Hence, we can apply Lem. 3 to obtain distributions νz of C 
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such that νz ≥ ν (C ∣ z), νz ≤ p/κz, and TV(νz, μ(C|z, U ≤ p)) ≤ 1 − wz. Now we can define 

the distribution ν of CZ by ν(cz) = νz(c)μ(z|U ≤ p). By Eq. (A2), we get

TV(ν, μ(CZ |U ≤ p)) = ∑
z

TV(νzμ(C |z, U ≤ p))μ(z |U ≤ p)

≤ ∑
z

(1 − wz)μ(z |U ≤ p)

= 1 − ∑
z

w(ν(C |z))μ(z |U ≤ p)

= 1 − ∑
z

∑
c

(v cz) /μ(z U ≤ p)μ(z U ≤ p)

= 1 − w(v ≤ ϵ/κ, )

(C12)

where in the last step we used Eq. (C9). For the average maximum probability of ν, we get

∑
z

max
c

ν(c |z)ν(z) = ∑
z

max
c

νz(c)μ(z |U ≤ p)

≤ p∑
z

μ(z |U ≤ p)/κz

= p∑
z

μ(z)/κ = p/κ,
(C13)

where to obtain the last line we used Eq. (C6). The above two equations show that for an 

arbitrary value e of E, Pmax, μ(CZ ∣ e, U ≤ p)
ϵ κe (C ∣ Z) ≤ p κe, which together with the argument 

at the beginning of the proof establishes the theorem. □

The above theorem implies Thm. 1 in the main text as a corollary.

Corollary 13. Suppose that the distribution μ of CZE satisfies the chained model ℋ(C). Let 
1 ≥ p ≥ 1/|Rng(C)| and 1 ≥ κ′, ϵ > 0. Define {ϕ} to be the event that U ≤ p, where U is given 
in Eq. (C1). Let κ′ ≤ κ = ℙμ(ϕ). Then the smooth conditional min-entropy satisfies

Hmin
ϵ (C |ZE; ϕ) ≥ − log2(p/κ′1 + 1/β) .

Proof. We observe that the event that U ≤ p is the same as the event that U′ ≤ p/κ1/β, where 

U′ = (Tnϵκ)−1/β and Tn is defined as above Eq. (C1). By Thm. 9, U′ is an ϵκ-UPE. In Thm. 

12, if we replace U and p there by U′ and p/κ1/β here, then we obtain 

Pmax, μ(CZE ∣ ϕ)
ϵ (C ∣ ZE) ≤ p κ1 + 1 β. Since κ′ ≤ κ, we also have 

Pmax, μ(CZE ∣ ϕ)
ϵ (C ∣ ZE) ≤ p κ′1 + 1 β. According to the definition of the smooth 

conditional min-entropy in Def. 10, we get the lower bound in the corollary. □

We remark that, to obtain uniformly random bits, Cor. 13 can be composed directly with 

“classical-proof” strong extractors in a complete protocol for randomness generation. The 

error bounds from the corollary and those of the extractor compose additively [28]. Efficient 
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randomness extractors requiring few seed bits exist, see Refs. [45, 46]. Specific instructions 

for ways to apply them for randomness generation can be found in Refs. [19, 20, 28].

Appendix D: Properties of PEFs

Here we prove the monotonicity of the functions g(β) and βg(β): As β increases, the rate 

g(β) as defined in Eq. (4) of the main text is monotonically non-increasing, and βg(β) is 

monotonically non-decreasing. These are the consequence of the following lemma:

Lemma 14. If F is a PEF with power β for the trial model D, then for any 0 < γ ≤ 1, F is a 
PEF with power β/γ for C, and Fγ is a PEF with poiver γβ for C.

Proof. For an arbitrary distribution σ ∈ C, we have 0 ≤ σ(c|z) ≤ 1 for all cz. By the 

monotonic property of the exponential function x ↦ ax with 0 ≤ a ≤ 1, we get that σ(c|z)β/γ 

≤ σ(c|z)β for all cz. Therefore, if a non-negative RV F satisfies that

∑
cz

F (cz)σ(c |z)βσ(cz) ≤ 1,

then

∑
cz

F (cz)σ(c |z)β /γσ(cz) ≤ ∑
cz

F (cz)σ(c |z)βσ(cz) ≤ 1.

Hence, if F is a PEF with power β for C, then F is a PEF with power β/γ for C.

On the other hand, by the concavity of the function x ↦ xγ with 0 < γ ≤ 1, we can apply 

Jensen’s inequality to get

Eσ(F (CZ)γσ(C |Z)γβ) = Eσ (F (CZ)σ(C |Z)β)γ

≤ (Eσ(F (CZ)σ(C |Z)β))γ

≤ 1,

for all distributions σ ∈ C. Hence Fγ is a PEF with power γβ for C.

The property that βg(β) is monotonically non-decreasing in β follows directly from Lem. 14 

and the definition of g(β) in Eq. (4) of the main text. On the other hand, to prove that g(β) is 

monotonically non-increasing in β, we also need to use the equality that

Eσ(log2(Fγ(CZ))/(γβ)) = Eσ(log2(F (CZ))/β) .

The monotonicity of the function g(β) (or βg(β)) helps to determine the maximum 

asymptotic randomness rate g0 = supβ>0 g(β) (or the maximum certificate rate γPEF = supβ>0 

βg(β)), as one can analyze the PEFs with powers β only in the limit where β goes to 0 (or 

where β goes to the infinity).
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Appendix E: Numerical Optimization of PEFs

We provide more details here on how to perform the optimizations (such as the optimization 

in Eq. (3) of the main text) required to determine the power β and the PEFs Fi to be used at 

the i’th trial. We claim that to verify that the PEF F satisfies the first constraint in Eq. (3) of 

the main text for all σ ∈ C, it suffices to check this constraint on the extremal members of 

the convex closure of C. The claim follows from the next lemma, Carathéodory’s theorem, 

and induction on the number of terms in a finite convex combination.

Lemma 15. Let F ≥ 0 and β > 0. Suppose that the distribution σ can be expressed as a 
convex combination of two distributions: For all cz, σ(cz) = λσ1(cz) + (1 − λ)σ2(cz) with λ 
∈ [0, 1]. If the distributions σ1 and σ2 satisfy ∑cz F(cz)σi(c|z)β σi(cz) ≤ 1, then σ satisfies ∑cz 

F(cz)σ(c|z)βσ(cz) ≤ 1.

Proof. We start by proving that for every cz, the following inequality holds:

σ(c |z)βσ(cz) ≤ λσ1(c |z)βσ1(cz) + (1 − λ)σ2(c |z)βσ2(cz) . (E1)

If σ1(z) = σ2(z) = 0, we recall our convention that probabilities conditional on z are zero, and 

so for every c, σ1(c|z) = σ2(c|z) = σ(c|z) = 0. Hence, Eq. (E1) holds immediately (as an 

equality). If σ1(z) = 0 < σ2(z), then for every c, σ1(c|z) = 0 and σ(cz) = (1 − λ)σ2(cz). In this 

case, one can verify that Eq. (E1) holds. By symmetry, Eq. (E1) also holds in the case that 

σ2(z) = 0 < σ1(z). Now consider the case that σ1(z) > 0 and σ2(z) > 0. Let xi = σi(cz) and yi 

= σi(z), and consider the function

f(λ) = (λx1 + (1 − λ)x2)1 + β(λy1 + (1 − λ)y2)−β,

so f(0) = σ2(c|z)βσ2(cz), f(1) = σ1(c|z)βσ1(cz), and f(λ) = σ(c|z)βσ(c|z). If we can show that 

f(λ) is convex in λ on the interval [0,1], Eq. (E1) will follow. Since f(λ) is continuous for λ 
∈ [0,1] and smooth for λ ∈ (0,1), it suffices to show that f″(λ) ≥ 0 as follows:

f′(λ) = (λx1 + (1 − λ)x2)β(λy1 + (1 − λ)y2)−β − 1 × (1 + β)(x1 − x2)(λy1 + (1 − λ)y2)
+ (−β)(λx1 + (1 − λ)x2)(y1 − y2)
f″(λ) = (λx1 + (1 − λ)x2)β − 1(λy1 + (1 − λ)y2)−β − 2 ×
β(1 + β)(x1 − x2)2(λy1 + (1 − λ)y2)2 + 2(−β)(1 + β)(x1 − x2)(y1 − y2)(λx1 + (1 − λ)x2)(λy1 + (1 − λ)y2)

+ (−β)(−1 − β)(y1 − y2)2(λx1 + (1 − λ)x2)2

= (λx1 + (1 − λ)x2)β − 1(λy1 + (1 − λ)y2)−β − 2 × β 1 + β
) (x1 − x2)(λy1 + (1 − λ)y2) − (y1 − y2)(λx1 + (1 − λ)x2) 2,

which is a non-negative multiple of a square. Having demonstrated Eq. (E1), we can 

complete the proof of the lemma as follows:
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∑
cz

F (cz)σ(c |z)βσ(cz) ≤ ∑
cz

F (cz)[λσ1(c |z)βσ1(cz) + (1 − λ)σ2(c |z)βσ2(cz)]

= λ∑
cz

F (cz)σ1(c |z)βσ1(cz) + (1 − λ)∑
cz

F (cz)σ2(c |z)βσ2(cz)

≤ λ × 1 + (1 − λ) × 1
= 1.

Suppose that the trial model C is a convex polytope with a finite number of extremal 

distributions σk(CZ), k = 1,2, …, K. In view of the claim before Lem. 15, the optimization 

problem in Eq. (3) of the main text is equivalent to

Max: nEν log2(F (CZ))/β + log2(ϵ)/β
With: ∑czF (cz)σk(c |z)βσk(cz) ≤ 1, k = 1, 2, …, K,
F (cz) ≥ 0, ∀cz .

(E2)

Given the values of n, β, ϵ, ν, and σk with k = 1, 2, …, K, the objective function in Eq. (E2) 

is a concave function of F(CZ), and each constraint on F(CZ) is linear. Hence, the above 

optimization problem can be solved by any algorithm capable of optimizing nonlinear 

functions with linear constraints on the arguments. In our implementation, we use sequential 

quadratic programming. Due to numerical imprecision, it is possible that the returned 

numerical solution does not satisfy the first constraint in Eq. (E2) and the corresponding 

PEF is not valid. In this case, we can multiply the returned numerical solution by a positive 

factor smaller than 1, whose value is given by the reciprocal of the largest left-hand side of 

the above first constraint at the extremal distributions σk(CZ), k = 1, 2, …, K. Then, the re-

scaled solution is a valid PEF. We remark that if the trial model C is not a convex polytope 

but there exists a good approximation C ⊆ D with D a convex polytope, then we can enlarge 

the model to D for an effective method to determine good PEFs.

Consider device-independent randomness generation (DIRG) in the CHSH Bell-test 

configuration [30] with inputs Z = XY and outputs C = AB, where A, B, X, Y ∈ {0,1}. If the 

input distribution ℙ(XY ) is fixed with ℙ(xy) > 0 for all xy, then we need to characterize the 

set of input-conditional output distributions ℙ(AB ∣ XY ). If we consider all distributions 

ℙ(AB ∣ XY ) satisfying non-signaling conditions [24], then the associated trial model C is the 

nonsignaling polytope, which is convex and has 24 extreme points [25]. If we consider only 

the distributions ℙ(AB ∣ XY ) achievable by quantum mechanics, then the associated trial 

model is a proper convex subset of the above non-signaling polytope. The quantum set has 

an infinite number of extreme points. In our analysis of the Bell-test results reported in Refs. 

[9, 10], we simplified the problem by considering instead the set of distributions ℙ(AB ∣ XY )
satisfying nonsignaling conditions [24] and Tsirelson’s bounds [38], which includes all the 

distributions ℙ(AB ∣ XY ) achievable by quantum mechanics. For a fixed input distribution 

ℙ(XY ) with ℙ(xy) > 0 for all xy, the associated trial model C is a convex polytope with 80 

extreme points [28]. If the input distribution ℙ(XY ) is not fixed but is contained in a convex 

polytope, the associated trial model C is still a convex polytope (see Ref. [28] for more 

details). Therefore, for DIRG based on the CHSH Bell test [30], the optimizations for 
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determining the power β and the PEFs Fi can be expressed in the form in Eq. (E2) and hence 

solved effectively.

Appendix F: Relationship between Certificate Rate and Statistical 

Strength

We prove that for DIRG in the CHSH Bell-test configuration, the maximum certificate rate 

γPEF witnessed by PEFs at a distribution ν of trial results is equal to the statistical strength 

of ν for rejecting local realism as studied in Refs. [35–37]. To prove this, we first simplify 

the optimization problem for determining γPEF. Then, we show that the simplified 

optimization problem is the same as that for determining the statistical strength. The 

argument generalizes to any convex-polytope model whose extreme points are divided into 

the following two classes: 1) classical deterministic distributions satisfying that given the 

inputs, the outputs are deterministic (here we require that for every cz there exists a 

distribution in the model where the outcome is c given z), and 2) distributions that are 

completely non-deterministic in the sense that for no input is the output deterministic. The 

argument further generalizes to models contained in such a model, provided it includes all of 

the classical deterministic distributions of the outer model.

In order to determine γPEF = supβ>0 βg(β), considering the monotonicity of the function 

βg(β) proved in Sect. D and the definition of g(β) in Eq. (4) of the main text, we need to 

solve the following optimization problem at arbitrarily large powers β:

Max: Eν(log2(F (CZ)))
With: ∑czF (cz)σ(c |z)βσ(cz) ≤ 1 for all σ ∈ C,
F (cz) ≥ 0, for all cz .

(F1)

To simplify this optimization, we first consider the case that the trial model C is the set of 

non-signaling distributions with a fixed input distribution ℙ(Z) where ℙ(z) > 0 for all z. The 

model C is a convex polytope and has 24 extremal distributions [25], among which there are 

16 deterministic local realistic distributions, denoted by σLR, i = 1, 2, …, 16, and 8 

variations of the Popescu-Rohrlich (PR) box [24], denoted by σPRj, j = 1, 2, …, 8. 

According to the discussion in Sect. E, the optimization problem in Eq. (F1) is equivalent to

Max: Eν(log2(F (CZ)))
With: ∑czF (cz)σLRi(cz) ≤ 1, ∀i,
∑czF (cz)σPRj(c |z)βσPRj(cz) ≤ 1, ∀j,
F (cz) ≥ 0, for all cz,

(F2)

where we used the fact that σLRi(c|z) is either 0 or 1. Only the second constraint in Eq. (F2) 

depends on the power β. The distributions σPRj satisfy that σPRj(c|z) < 1 for all cz. Hence 

σPRj)
β → 0 for all cz as β → ∞. Because there are finitely many constraints and values of 

cz, the second constraint becomes irrelevant for sufficiently large β. Let βth
NS be the 

minimum β for which the second constraint is implied by the first. The threshold βth
NS is 

independent of the specific input distribution. To see this, the last factors in the sums on the 
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left-hand sides of the constraints in Eq. (F2) are of the form σ(cz), which can be written as 

σ(c|z)σ(z) with a fixed σ(z). We can define F (cz) = F (cz)σ(z) and optimize over F  instead, 

thus eliminating the fixed input distribution from the problem. Then the first constraint on F
implies that ΣczF (cz)ΣiσLRi(c ∣ z) ≤ 16. Since ∑i σLRi(c|z) ≥ 4 for each cz, this constraint 

implies the second provided that σPRj(c|z)1+β ≤ 1/4, which holds for each j and cz for 

sufficiently large β. Particularly, since σPRj(c|z) is either 0 or 1/2 [25], we obtain that 

βth
NS ≤ 1. Furthermore, by numerical optimization for a sample of large-enough β we find 

that βth
NS ≈ 0.4151. Therefore, when β ≥ βth

NS the optimization problem in Eq. (F2) is 

independent of β and becomes

Max: Eν(log2(F (CZ)))
With: ∑czF (cz)σLRi(cz) ≤ 1, ∀i,
F (cz) ≥ 0, for all cz .

(F3)

This optimization problem is identical to the one for designing the optimal test factors for 

the hypothesis test of local realism [21, 41, 47]. In Ref. [21] it is proven that the optimal 

value of the optimization problem in Eq. (F3) is equal to the statistical strength for rejecting 

local realism [35–37], which is defined as

s = min
σLR

DKL(ν |σLR) .

Here, σLR is an arbitrary local realistic distribution and DKL(ν|σLR) is the Kullback-Leibler 

divergence from σLR to ν [48]. Therefore, when β ≥ βth
NS we have βg(β) = s. Considering that 

the function βg(β) is monotonically non-decreasing in β, we have shown that

γPEF = sup
β > 0

βg(β) = s .

Now we consider the case where the trial model C is the set of quantum-achievable 

distributions with a fixed input distribution ℙ(Z) where ℙ(z) > 0 for all z. Since the set of 

quantum-achievable distributions is a proper subset of the non-signaling polytope, the 

constraints on F(CZ) imposed by quantum-achievable distributions are a subset of the 

constraints imposed by non-signaling distributions. Moreover, the set of quantum-achievable 

distributions contains all local realistic distributions. Therefore, in the quantum case, when 

β ≥ βth
NS, the constraints on F(CZ) are also implied by the constraints associated with the 

local realistic distributions. Consequently the maximum certificate rate γPEF is also equal to 

the statistical strength s. We remark that as a consequence, if we set βth
QM to be the threshold 

such that when β ≥ βth
QM all quantum constraints on F(CZ) are implied by those imposed by 

the local realistic distributions, then βth
QM ≤ βth

NS.

We remark that β0 = inf[β|βg(β) = s} is typically strictly less than βth
NS and depends on both 

the distribution ν as well as the trial model C. One way to understand this behavior is as 
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follows: When β < βth
NS, the second constraint in Eq. (F2) is relevant; however, if β is still 

large enough, it is possible that the constraint does not affect the optimal solution of the 

optimization problem (F2). By numerical optimization, we find that for the CHSH Bell-test 

configuration β0 is typically less than 0.2 when the trial model C includes all non-signaling 

distributions with the uniform distribution for inputs.

Appendix G: Analytic Expressions for Asymptotic Randomness Rates

In this section we derive the asymptotic randomness rates for the trial model consisting of 

non-signaling distributions according to two different methods for DIRG protocol based on 

the CHSH Bell test [30]. We first consider the maximum asymptotic rate g0 witnessed by 

PEFs. Then, we derive the single-trial conditional min-entropy for comparison.

Suppose that the distribution of each trial’s inputs XY and outputs AB is ν(ABXY ) ∈ C, 

where C is the model for each trial. The maximum asymptotic rate g0 is equal to the worst-

case conditional entropy that is consistent with the distribution ν(ABXY) [28]. That is, the 

rate g0 is given by the following minimization:

g0 = min
σ

{Hσ(AB |XY E) : σ(ABXY ) = ν(ABXY )}, (G1)

where σ is the joint distribution of A, B, X, Y and E, and σ(ABXY) is its marginal. By the 

assumption that the value space of E is countable, we can also express the above 

minimization as

g0 = min
we, σe

{∑
e

ωeHσe(AB |XY , E = e) : ∀e, σe ∈ C and ωe ≥ 0, ∑
e

ωe = 1,

∑
e

ωeσe = ν}, (G2)

where σe is the distribution of A, B, X and Y conditional on E = e according to σ, and ωe is 

the probability of the event E = e. By the concavity of the conditional entropy, if any of the 

σe contributing to the sum in Eq. (G2) is not extremal in C, we can replace it by a convex 

combination of extremal distributions to decrease the value of the sum. Thus, we only have 

to consider extremal distributions in the above minimization.

For the rest of this section we let C consist of non-signaling distributions for the CHSH Bell-

test configuration with a fixed input distribution ℙ(XY ) where ℙ(xy) > 0 for all xy. As 

explained in the previous section, C is a convex polytope with 24 extreme points. 

Considering the argument below Eq. (G2), the number of terms in the sum of Eq. (G2) is at 

most 24. As in the previous section, we can divide the 24 extreme points into the two classes 

consisting of the 16 deterministic local realistic distributions σLRi, i = 1, 2, …, 16, and the 8 

variations of the PR box σPRj, j = 1, 2, …, 8. Because the σLRi are deterministic conditional 

on the inputs, if σe = σLRi then the conditional entropy satisfies HσLRi
 (AB|XY, E = e) = 0. 

For each PR box σPRj, the conditional probabilities σPRj (AB|XY) are either 0 or 1/2 [25]. 

Thus, if σe = σPRj, the conditional entropy satisfies HσPRj
 (AB|XY, E = e) = 1. Hence, the 

minimization problem in Eq. (G2) becomes
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g0 = Min: ∑jωPRj
With: ωLRi, ωPRj ≥ 0, ∀i, j,
∑i ωLRi + ∑jωPRj = 1,
∑i ωLRiσLRi + ∑jωPRjσPRj = ν .

(G3)

We need to find the minimum total probability of PR boxes in a representation of the 

distribution ν as a convex combination of the 16 local realistic distributions and the 8 PR 

boxes. To help solve this problem, we consider the violation of the CHSH Bell inequality 

[30]. Recall that there is only one PR box that can violate a particular CHSH Bell inequality 

E(ICHSH) ≤ 2 [25], where ICHSH is the CHSH Bell function

ICHSH(ABXY ) = (1 − 2XY )(−1)A + B/ℙ(XY ), (G4)

and A, B, X, Y ∈ {0,1}. Let σPR1 be the violating PR box. The expectation of ICHSH 

according to σPR1 is maximal, that is, EσPR1(ICHSH) = 4. Without loss of generality, 

I = Eν(ICHSH) > 2. The probability ωPR1 in the convex decomposition of ν satisfies the 

inequality 4ωPR1 + (1 − ωPR1)2 ≥ I , or equivalently, ωPR1 ≥ (I − 2) 2. Hence, according to 

Eq. (G3), we have g0 ≥ (I − 2) 2.

We next show that g0 ≤ (I − 2) 2. For this, we directly use the result of Ref. [49]. According 

to Ref. [49], for any non-signaling distribution σ(ABXY), if Eσ(ICHSH) > 2, then the 

distribution σ(ABXY) can be decomposed as σ(ABXY) = ωPR1 σPR1 + ∑iωLRiσLRi, where 

ωPR1 = (Eσ(ICHSH) − 2) 2, ωLRi ≥ 0, and ∑iωLRi = 1 − ωPR1. Specializing to the distribution 

ν(ABXY), we get that g0 ≤ (I − 2) 2 for I > 2.
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FIG. 3: 
Asymptotic randomness rates as a function of I . Results according to both our method (the 

solid curve) and Refs. [3, 10, 12, 18, 31–33] (the dashed curve) are shown. Our method 

witnesses the maximum asymptotic rate H(AB|XY E), which is the worst-case conditional 

entropy.

The arguments above show that given I > 2, the maximum asymptotic randomness rate 

witnessed by PEFs is

g0 = (I − 2)/2, (G5)

independent of the particular distribution ν realizing I .
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We also numerically evaluated the maximum asymptotic rate according to g0 = supβ>0 g(β) 

with g(β) given by Eq. (4) of the main text. The numerical results are presented in Fig. 3, 

which are consistent with the analytic expression in Eq. (G5).

Next, we consider the quantification of the asymptotic randomness rate by the single-trial 

conditional min-entropy Hmin(AB|XY E), which is a lower bound and is studied in Refs. [3, 

10, 12, 18, 31–33]. The single-trial conditional min-entropy is defined by

Hmin(AB |XY E) = − log2(Pguess(AB |XY E)), (G6)

where Pguess(AB|XYE) is the average guessing probability of the output AB given the input 

XY and the side information E, as defined in Ref. [33]. According to Refs. [32, 33], the 

guessing probability at xy is given by the following maximization:

Pguess(AB |xyE) = max
ωe, σe

∑
e

ωe max
ab

σe(ab |xy) : ∀e, σe ∈ C and ωe ≥ 0, ∑
e

ωe

= 1, ∑
e

ωeσe = ν .
(G7)

If a σe contributing to the sum in Eq. (G7) is not extremal in the set C, we can replace it by a 

convex combination of extremal distributions to increase the value of the sum. Thus, we only 

have to consider extremal distributions σe in the above maximization. Applying the 

argument that led from Eq. (G2) to Eq. (G3), we obtain

Pguess(AB |xyE) = Max: ∑i ωLRi + 1
2 ∑jωPRj

With: ωLRi, ωPRj ≥ 0, ∀i, j,
∑i ωLRi + ∑jωPRj = 1,
∑i ωLRiσLRi + ∑jωPRjσPRj = ν .

(G8)

Since ΣiωLRi + 1
2ΣjωPRj = 1 − 1

2ΣjωPRj only need to minimize the total probability of PR 

boxes ∑jωPRj in the convex decomposition of the distribution ν. Prom the derivation of g0 

that gave Eq. (G5), we conclude that min ΣjωPRj = (I − 2) 2 for I > 2. Therefore 

Pguess(AB ∣ xyE) = (6 − I ) 4 regardless of the particular input xy. Furthermore, the specific 

convex decomposition over E that achieves the maximum in Eq. (G8) is the same for all the 

possible inputs. Hence we also have Pguess(AB ∣ XY E) = (6 − I ) 4 independent of the input 

distribution. Therefore the single-trial conditional min-entropy is

Hmin(AB |XY E) = − log2((6 − I )/4), (G9)

which is plotted in Fig. 3.

The results of this section are summarized in the following theorem:

Theorem 16. Suppose that the trial model C consists of non-signaling distributions with a 
fixed input distribution ℙ(XY ) where ℙ(xy) > 0 for all xy. For any ν ∈ C, both the maximum 
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asymptotic randomness rate g0 witnessed by PEFs and the single-trial conditional min-
entropy Hmin(AB|XY E) depend only on I = Eν(ICHSH) > 2 and are given by g0 = (I − 2) 2
and Hmin(AB ∣ XY E) = − log2((6 − I ) 4).

Appendix H: Entropy Accumulation

Consider DIRG in the CHSH Bell-test configuration. In this section, the input distribution 

ℙ(XY ) at each trial is assumed to be uniform. Define the winning probability at a trial by 

ω = 1 2 + I 8 where I = Eν(ICHSH) with ν the distribution of trial results. Entropy 

accumulation [17] is a framework for estimating (quantum) conditional min-entropy with 

respect to quantum side information and can be applied to the CHSH Bell-test configuration. 

The following theorem from Ref. [17] implements the framework:

Theorem 17. Let (2 + 2) 4 ≥ ωexp, pt ≥ 3 4, and 1 ≥ κ, ϵ > 0. Suppose that after n trials 

the joint quantum state of the inputs XY, the outputs AB and the quantum side information 
E is ρ. Define {ϕ} to be the event that the experimentally observed winning probability is 
higher than or equal to ωexp, and suppose that κ ≤ ℙρ(ϕ). Denote the joint quantum state 

conditional on {ϕ} by ρ|ϕ. Then the (quantum) smooth conditional min-entropy evaluated at 
ρ|ϕ satisfies

Hmin
ϵ (AB |XY E)ρ |ϕ > nη(pt, wexp, n, ϵ, κ),

where η is defined by

g(p) =
1 − ℎ 1

2 + 1
2 16p(p − 1) + 3 p ∈ [3/4, (2 + 2)/4]

1 p ∈ [(2 + 2)/4, 1],

fmin(pt, p) =
g(p) p ≤ pt
d

dpg(p) ptp + g(pt) − d
dpg(p) ptpt p > pt,

v(pt, ϵ, κ) = 2 log213 + d
dpg(p) pt 1 − 2 log2(ϵκ),

η(pt, p, n, ϵ, κ) = fmin(pt, p) − 1
nv(pt, ϵ, κ),

with h(x) = −x log2(x) − (1 − x) log2 (1 − x) be the binary entropy function.

The function fmin in the theorem is referred to as a min-tradeoff function. The parameter pt 

in the theorem is free, and can be optimized over its range before running the protocol based 

on the chosen parameters n, ωexp, ϵ and κ. So the optimal entropy rate is ηopt(ωexp, n, ϵ, κ) 

= maxpt η(pt, ωexp, n, ϵ, κ).

According to Thm. 17, in order to certify b bits of entropy given ωexp, ϵ and κ, we need that 

ηη(pt, ωexp, n, ϵ, κ) ≥ b. Equivalently, n ≥ nEAT,b(pt) where
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nEAT, b(pt) = ν(pt, ϵ, κ) + ν(pt, ϵ, κ)2 + 4bfmin(pt, ωexp)
2fmin (pt, ωexp)

2

. (H1)

Including the optimization over pt gives the minimum number of identical trials required:

nEAT, b = min
3/4 ≤ pt ≤ (2 + 2)/4

nEAT, b(pt) .
(H2)

To compute nEAT,b, we set the parameter ωexp to the winning probability ω according to the 

distribution ν of trial results in a stable experiment.

We finish with several remarks on the comparison between entropy accumulation and 

probability estimation. First, Thm. 17 based on entropy accumulation holds with respect to 

quantum side information, while Cor. 13 (Thm. 1 in the main text) based on probability 

estimation holds with respect to classical side information. Second, in principle both entropy 

accumulation and probability estimation can witness asymptotically tight bounds on the 

smooth conditional min-entropies with respect to the assumed side information. Entropy 

accumulation can witness the maximum asymptotic entropy rate with respect to quantum 

side information, if an optimal min-tradeoff function is available. However, it is unknown 

how to obtain such min-tradeoff functions. In particular, the min-tradeoff function fmin (p, 

pt) is not optimal for the CHSH Bell-test configuration considered here. A min-tradeoff 

function is required to be a bound on the single-trial conditional von Neumann entropy 

H(AB|XY E). That fmin (p, pt) is not optimal is due to the following: 1) fmin (p, pt) is 

designed according to a bound on the single-trial conditional von Neumann entropy H(A|XY 
E) derived in Refs. [50, 51]. A tight bound on H(A|XY E) is generally not a tight bound on 

H(AB|XY E). 2) The bound on H(A|XY E) derived in Refs. [50, 51] is tight if the only 

information available is the winning probability. However, in practice one can access the full 

measurement statistics rather than just the winning probability. In contrast to entropy 

accumulation, probability estimation is an effective method for approaching the maximum 

asymptotic entropy rate (with respect to classical side information) considering the full 

measurement statistics and the model constraints. In general, the maximum rate with respect 

to quantum side information is lower than that with respect to classical side information, as 

accessing quantum side information corresponds to a more powerful attack. Third and as 

demonstrated in the main text, probability estimation performs significantly better with finite 

data.
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FIG. 1: 
Maximum certificate rates γPEF (Eq. (6)) as a function of I  for each family of distributions.

Zhang et al. Page 36

Phys Rev A (Coll Park). Author manuscript; available in PMC 2020 December 10.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 2: 
Improvement factors as a function of I .
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