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Abstract: The foot strike pattern performed during running is an important variable for runners,
performance practitioners, and industry specialists. Versatile, wearable sensors may provide foot
strike information while encouraging the collection of diverse information during ecological running.
The purpose of the current study was to predict foot strike angle and classify foot strike pattern
from LoadsolTM wearable pressure insoles using three machine learning techniques (multiple linear
regression—MR, conditional inference tree—TREE, and random forest—FRST). Model performance
was assessed using three-dimensional kinematics as a ground-truth measure. The prediction-model
accuracy was similar for the regression, inference tree, and random forest models (RMSE: MR = 5.16◦,
TREE = 4.85◦, FRST = 3.65◦; MAPE: MR = 0.32◦, TREE = 0.45◦, FRST = 0.33◦), though the regression
and random forest models boasted lower maximum precision (13.75◦ and 14.3◦, respectively) than
the inference tree (19.02◦). The classification performance was above 90% for all models (MR = 90.4%,
TREE = 93.9%, and FRST = 94.1%). There was an increased tendency to misclassify mid foot strike
patterns in all models, which may be improved with the inclusion of more mid foot steps during
model training. Ultimately, wearable pressure insoles in combination with simple machine learning
techniques can be used to predict and classify a runner’s foot strike with sufficient accuracy.

Keywords: decision tree; human running; random forest; regression; wearable devices

1. Introduction

Recreational running is a globally accessible activity due to the limited necessity of sport-essential
equipment and facilities. Due to its full-body nature, the human anatomical system has many ways to
affect running performance. Some factors of paramount importance are joint angles (which thus affect
stride length), flight time, and the minimization of lateral force-dissipation [1,2]. The selection of the
running shoe also appears to affect performance [3,4], the subjective experience of comfort [5,6], and the
injury risk of runners [3,7]. Equipment-based recommendations should include the consideration of a
runner’s foot strike pattern (FSP) [8]. A midsole design that facilitates the repetitive and comfortable
execution of the preferred FSP (i.e., rear foot (RF), mid foot (MF), or fore foot (FF)) can aid the
consumer-based shoe selection and recommendation process [3]. Such a recommendation thus requires
a reliable method for the discrete classification of a runner’s FSP as a prerequisite.
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Some performance-related outcome variables are affected by the FSP used, including the vertical
compliance of the anatomical system [9], ankle and knee stiffness [10], vertical impact force [11],
and instantaneous loading rates [11]. Importantly, these variables can be measured on a continuous
scale and are likely responsive to more sensitive foot strike angle (FSA) measurements. More specifically,
the FSA is the angular degree of the foot at the instant of ground contact (often defined by a force or
loading rate threshold) [12,13]. Therefore, the ability to detect the degree of foot strike on a continuous
level enables greater correlational insights that may be overlooked by a discrete classification-based
system [14]. Thus, in addition to the necessity of FSP classification, the continuous-scale identification
of a runner’s FSA should be accessible for researchers and performance-centered practitioners.

With the growing importance for ecologically valid shoe prescription and scientific investigation
of runners, the ability to detect and classify the FSA of a runner using wearable sensors is
essential. Inertial measurement units (IMUs) are a viable and validated option for ecological FSA
collection [8,15,16], although the calculated angular displacements are prone to poor reliability due
to drifts over time which thus affect the integration of the inertial signals in IMU systems [17].
The combination of inertial, gyroscopic, and magnetometer information that an IMU provides helps in
the reduction and correction of its measured drift, though the rigidity and alignment of the sensor
attachment also directly influence the reliability of the angular measures [17]. Alternative to IMU
systems, the holistic pairing of kinetic information with the kinematic measurement of FSA from a
single measurement system may enable greater insights about performance and injury indicators in
running. Thus, a simple, “low-friction” wearable device that could validly provide this holistic view
would be groundbreaking for the running industry.

In an effort to fill this innovative gap, the accelerometer-based StrydTM foot pod attempts to
provide this holistic view of the kinematic and kinetic information by estimating running power [18–20].
However, StrydTM appears to have limitations when detecting temporal variables [20]. From a
methodological context, running power calculations that require both kinetic and kinematic inputs
appear to have better prediction performance of a linear power-velocity relationship than those using
kinematic data only [21]. Unfortunately, single IMU-based estimations of ground reaction force (GRF)
come with substantial limitations; (i) the placement of an IMU can affect GRF estimate accuracy,
(ii) magnetic disturbances can affect the orientation of the IMU, and (iii) the existence of kinematic
estimate errors would be inherent in subsequent GRF estimates [22,23]. Thus, a wearable kinetic
system may be better equipped to provide this holistic view.

The wearable application of pressure insoles already extends to temporal gait events [24,25],
therefore they may be a plausible alternative to IMUs to facilitate ecological kinematic estimation
while also enabling a valid measurement of vertical force (Fong et al., 2008). Importantly, LoadsolTM

wearable insoles can measure vertical force in the rear and fore foot separately; thus the time and force
relationships of the fore and aft sensors may provide enough information for FSA prediction and FSP
classification [26,27]. Further, the separation of the insole into multiple components is encouraged by
the assumption that the foot is not a singularly rigid segment as was traditionally considered [28,29].
The LoadsolTM has been previously validated under running stimulus [13,30,31], therefore it is an
appropriate system to establish the potential for the kinematic estimation of FSA and FSP.

Machine learning techniques may enable the estimation of FSA and FSP from pressure sensors;
these are practical tools that can be trained and implemented into large-scale problems and data sets,
with the inherent goal being to capitalize on the distinctive qualities of the data set [32]. Due to a
linear relationship between strike index (the percent of foot length at which the center of pressure
exists) and FSA [14,16], the linear approach of a multiple regression may be appropriate for the
prediction of FSA [27]. In contrast to linear regression models that are based on numerous assumptions
(e.g., normality of residuals, homoscedasticity, etc.) [33], nonparametric models such as conditional
inference trees or random forests, need only the assumption that similar inputs lead to similar
outputs [32]. The prediction and classification accuracy may thus be greater with nonparametric
frameworks. Conditional inference trees are a non-parametric class of regression trees that allow
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for unbiased variable selection and do not require pruning based on resampling [34]. They are
based on conditional inference procedures for testing independence between response and each input
variable [34]. Alternatively, robust random forest frameworks encourage accuracy gains with the
development of multiple variable-randomized trees [35,36].

Ultimately, to confirm best-practice recommendations, the prediction and classification of foot
strike using kinetic sensors should be approached from distinctly different statistical techniques.
Thus, the purposes of the current study were to compare the accuracy and precision of i) continuous
FSA prediction and ii) FSP classification as calculated from three statistical methodologies (multiple
regression, conditional inference tree, and random forest) using independent variables derived from
the LoadsolTM pressure insoles.

2. Materials and Methods

2.1. Participants and Experimental Approach

Thirty injury-free recreational male runners (Mean ± SD; 1.79 ± 0.07 m; 80.1 ± 9.6 kg; 34.0 ± 6.9 yr)
provided written informed consent approved by the institutional review board to participate in the
study. Participants appeared for one testing occasion where they were asked to perform over-ground
running using six types of FSPs at a comfortable speed (average velocity = 2.69 ± 0.40 m·s−1). The first
condition investigated was their natural running pattern (NA; no constraints), followed by extreme-FF,
FF, MF, RF, and extreme-RF in a randomized counterbalanced order. The extreme-FF and extreme-RF
conditions were instructed by asking the participants to over-exaggerate their performance of the
FF and RF conditions, respectively. Participants were not given any condition-based feedback.
All trials were performed with participants running back-and-forth (i.e., shuttle-wise) in a laboratory
environment; participants ran a straight distance (5 m) over a force platform located in the center
of the straight phase. Participants then quickly changed direction before running the same straight
phase. For each participant, 20 non-consecutive left foot-fall instants were recorded per foot strike
condition (n = 120 steps). Participants were allowed 5–10 minutes for a self-selected running warm
up and familiarization laps were performed before each condition until the participants expressed
comfortability with the desired foot strike condition. Importantly, the measured foot falls were labelled
as their true pattern or angle, regardless of the condition in which it was performed (see subsequent
sections). However, the consistency of participant’s performance of the FSA was assessed in a
supplementary analysis which boasted generally good consistency [37].

2.2. Measurements

Insole pressure, force plate kinetics, and kinematics were recorded for 3,489 foot falls (originally,
120 steps per participant × 30 participants = 3,600 foot falls; however only 3,489 are reported due to
collection error or data loss). The pressure measurements were achieved with a two-sensor (fore-aft)
wireless insole (LoadsolTM; Novel GmbH; Munich, Germany) inserted into standardized shoes worn by
the participants (Adidas Duramo 6; weight = 280 g., heel drop = 11 mm). The LoadsolTM system was
applied over the shoe’s insole and recorded at its maximum sampling rate (100 Hz). Kinetic data from
a force platform (AMTI; Watertown, MA, USA; BP6001200) and three-dimensional (3D) motion capture
was recorded with a Qualysis system (13-camera setup; 2019.3, Göteborg, Sweden) and sampled at
100 Hz to match the maximum sampling rate of the LoadsolTM system. A six-marker anatomical
marker set was applied to the left foot segment (over the shoe when necessary); retroreflective markers
were secured on the medial and lateral malleoli, the head of the 2nd metatarsal, the heel (placed at the
same height as the 2nd metatarsal), the medial side of the 1st metatarsal, and the lateral side of the
5th metatarsal (Figure 1A,B) [38]. The kinematic and LoadsolTM data were synchronized by aligning
the peak force of a stomp measured by the AMTI force platform (data logging with Qualysis) and
LoadsolTM at the beginning of each trial.
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achieve this, raw kinematic data were filtered using a low-pass 15 Hz filter. Visual 3D ×64 
Professional (v6.03.06; Germantown, MD, USA) was used to model the foot segment so that the shoe-
elicited angulation was negated and the subsequent foot segment angle (in relation to the laboratory 
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Figure 1. A medial view (A) and lateral view (B) of the left foot marker placements can be seen on the
test shoe.

2.3. Data Processing

Initial contact (IC) and toe off (TO) were identified from the LoadsolTM measurements as the
frame in which the loading rate of the pressure insoles was greater than 1500 or −1500 Newtons per
second, respectively [13]. Ten force and time related variables were extracted from the measurements.
Two parameters were calculated from the first third (IC to 33%) and eight parameters from the entire
(IC to TO; 100%) stance phase (Table 1). Finally, the FSA was identified for each IC captured. To achieve
this, raw kinematic data were filtered using a low-pass 15 Hz filter. Visual 3D×64 Professional (v6.03.06;
Germantown, MD, USA) was used to model the foot segment so that the shoe-elicited angulation was
negated and the subsequent foot segment angle (in relation to the laboratory coordinate system) was
reported [39].

Table 1. Ten variables calculated from the LoadsolTM insole measurements are defined with respect to
the sensor used and the percentage of the stance phase used in calculation.

Parent
Variable Variable Definition Insole

Sensor
Stance

Phase [%] Abbreviation

Impulse
[N·s]

Impulse Ratio
[%]

Impulse ratio between the insole sensor and total
foot during the entire or first third of the stance phase

Fore 0–100% IR_Fore
Aft 0–100% IR_Aft

Fore 0-33% IR_Fore0-33%
Aft 0-33% IR_Aft0-33%

Peak Force
[N]

Peak Force Ratio
[%]

Ratio of peak force measured from the insole sensor
and total foot during the entire stance phase

Fore 0–100% PF_Fore
Aft 0–100% PF_Aft

Peak RFD
[N·s−1]

Peak RFD Ratio
[%]

Ratio of peak RFD between the insole sensor and
total foot

Fore 0–100% RFD_Fore
Aft 0–100% RFD_Aft

Ln(Peak RFD)
[unit]

Natural logarithm of the occurrence of the peak RFD
(as a stance phase %)

Fore % of Stance Ln(%RFD_Fore)
Aft % of Stance Ln(%RFD_Aft)

RFD = rate of force development; FF = fore foot; RF = rear foot; N = Newton; s = second.

2.4. Modeling Approaches

As a pre-requisite for model development, all variables were assessed for normality (i.e., skewness
or kurtosis statistic ≤ 2.58). If the assumption of a normal distribution was not met for any of the
variables, a natural logarithm transformation was performed to ensure their use was appropriate for
parametric statistics (noted in Table 1). The data was then split record-wise into two sets; one was
a training data set (70%; n = 2442 steps) and the other a validation (“test” or “hold out”) set (30%;
n = 1047 steps). This was done to avoid model under-fitting and high classification errors [40–42].

Three modelling techniques (multiple linear regression, conditional inference tree and random
forest) were then trained using the training data set to predict FSA and to classify FSP from the pressure
insole data. For the classification of FSP, all models employed the degree-based ranges defined by
Altman and Davis [14] to categorize steps into either FF (FSA < −1.6◦), MF (−1.6◦ ≤ FSA ≤ 8.0◦), or RF



Sensors 2020, 20, 6737 5 of 13

(FSA > 8.0◦). Steps were classified regardless of the trial condition in which they were performed
(i.e., the extreme FF and FF conditions were primarily classified as FF strikes, and similarly, extreme RF
and RF conditions as RF strikes).

2.5. Model Development

First, a parametric stepwise multiple linear regression (MR) to predict the FSA at IC was modelled
using SPSS Statistics (SPSS Inc.; Version 26.0, Chicago, IL, USA). Seven significant (α = 0.05) regression
equations were developed (F-to-enter ≤ 0.050, F-to-remove ≥ 0.0100), therefore the Akaike Information
Criterion (AIC) and Schwartz-Bayesian Information Criterion (BIC) were calculated for each regression
to guide model selection for the subsequent comparisons [43]. The resulting model (Equation (1))
retained the lowest AIC and BIC, and highest model fit (R2 = 0.914, R2

ADJUSTED = 0.914; p < 0.001;
standard error of the estimate = 5.10◦; df = 2434). The same MR model was used for classification by
categorizing the predicted FSA (calculated from Equation (1)) of the validation set according to the
previously mentioned FSP ranges [14].

FSA = − 89.2 + 94.4 (IV1) + 62.3 (IV2) + 17.9 (IV3)+8.8 (IV4) − 8.4 (IV5) + 3.4 (IV6) + 1.8 (IV7) (1)

where IV1 = IR_Aft, IV2 = PF_Fore, IV3 = RFD_Aft, IV4 = IR_Aft0-33%, IV5 = PF_Aft, IV6 = Ln(%RFD_Fore),
IV7 = Ln(%RFD_Aft).

Two conditional inference trees were modeled with the statistical software R (“ctree” function
of “partykit” package) [34,44,45]. The two models differed in their outcomes: one model predicted
continuous FSA (TREEPRED), while the other classified FSP (TREECLASS; defined classes: RF, MF,
FF). For both models, the significance level was set to α = 0.01 (minimum splitting criterion = 0.99).
A maximum depth of eight was achieved for TREEPRED, and TREECLASS achieved a depth of six.

Finally, two random forest models as developed by Breiman [35] were trained using the statistical
software R (“randomForest” package) [44,46]. The first model was trained for the purpose of continuous
FSA prediction (FRSTPRED) and the second for FSP classification (FRSTCLASS). A large number of
trees (n = 500) was selected for the development of the FRSTPRED and FRSTCLASS models to decrease
out-of-bag errors [47]. Variable selection was randomly initialized in order to define candidates for
each split. The final models were chosen because they had the lowest root mean squared error (RMSE;
FRSTPRED) and the highest mean accuracy (FRSTCLASS) in a 5-fold cross-validation comparison of the
different parameter settings (“caret” package) [44,48]. The important variables for the FRSTPRED and
FRSTCLASS can be seen in Figure 2, where high “Mean Decrease Gini” is associated with decreased
node impurity, and therefore higher variable importance [49].
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Figure 2. The variable importance for the random forest model of foot strike pattern classification
is presented with gray bars (scaled to the secondary x-axis), while the foot strike angle prediction
is presented in black (primary x-axis). The variables of higher importance can be seen with larger
“Mean Decrease Gini.”.
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2.6. Model Accuracy and Precision

The models for FSA (MR, TREEPRED, FRSTPRED) and FSP (MR, TREECLASS, and FRSTCLASS)
were tested with the remaining validation set (n = 1047 steps). Accuracy and precision metrics were
calculated for each of the models using the comparison of the true FSA/FSP (measured with 3D
kinematics) and the estimated FSA/FSP (i.e., estimated from LoadsolTM metrics).

For model comparison of the three approaches that predicted FSA (MR, TREEPRED, and FRSTPRED),
four performance metrics were calculated per recommendations of Galdi and Tagliaferri [50].
These included the mean squared error (MSE), RMSE, mean absolute error (MAE) and mean absolute
percentage error (MAPE) of the true versus predicted FSA outcomes. The precision of the prediction
models was quantified by calculating the limits of agreement (LoA) and bias of the predicted data
set according to Bland and Altman [51]. Specifically, the 95% LoA was calculated using the mean
difference (true FSA–predicted FSA) ± 1.96 standard deviations of the differences, and the maximum
precision was reported as the difference between the subsequent limits.

Confusion matrices were created for the FSP classification models (MR, TREECLASS, and FRSTCLASS)
utilizing the true classes (measured by kinematic FSA) and the estimated classes (i.e., the class estimated
from each model). From these confusion matrices, three metrics were computed as recommended by
Galdi and Tagliaferri [50] for model comparison. These included the model accuracy (Equation (2)),
classifier recall (Equation (3)), and classifier precision (Equation (4)).

model accuracy =
total correct

total sample (n)
× 100% (2)

classi f ier recall =
true positives o f a true class
total sample o f a true class

× 100% (3)

classi f ier precision =
true positives o f a estimated class
total sample o f a estimated class

× 100% (4)

where total correct = number of cases correctly classified, true class = true positives + false negatives of
a classifier, estimated class = true positives + false positives of a classifier

3. Results

Descriptive statistics (mean ± standard deviation) are presented in Table 2 for each of the
independent variables of each step according to their FSP class (FF, MF, RF).

Table 2. Descriptive statistics (mean ± standard deviation) are presented for each variable used in
model development, grouped by FSP (classified by measured kinematic FSA).

Variable Units FF MF RF

FSA ◦
−10.2 ± 6.6 3.0 ± 2.8 24.9 ± 8.0

IR_Fore % 96.2 ± 5.7 89.3 ± 7.0 65.4 ± 11.5
IR_Aft % 3.8 ± 5.7 10.6 ± 7.0 34.6 ± 11.5

IR_Fore0-33% % 92.5 ± 9.8 77.2 ± 12.9 31.7 ± 16.3
IR_Aft0-33% % 7.5 ± 9.9 22.8 ± 12.9 68.2 ± 16.3

PF_Fore % 95.8 ± 8.2 93.3 ± 6.1 77.0 ± 11.5
PF_Aft % 8.1 ± 12.3 22.2 ± 13.4 59.9 ± 15.3

RFD_Fore % 88.3 ± 12.8 70.0 ± 20.8 49.2 ± 16.2
RFD_Aft % 14.5 ± 16.5 40.5 ± 22.0 91.2 ± 11.0

Ln(%RFD_Fore) unit 2.69 ± 0.55 2.27 ± 0.33 2.43 ± 0.23
Ln(%RFD_Aft) unit 2.72 ± 0.41 2.89 ± 0.35 3.25 ± 0.26
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3.1. FSA Prediction

The Bland–Altman Bias and Precision of the FSA prediction models is shown in Figure 3. Further FSA
prediction model accuracy can also be seen in Table 3. In general, the FRSTPRED performed with
greater prediction accuracy than the MR or TREEPRED. The MR and FRSTPRED had minimal biases
(MR = −0.01, FRSTPRED = −0.11; Figure 3) and the maximum precision of the two methods was less than
15◦ (MR = 13.75◦, FRSTPRED = 14.30◦). A larger maximum precision was found for the TREEPRED (19.02◦).
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Table 3. Foot strike angle prediction model performance accuracy is displayed.

Multiple Regression
(MR)

Conditional Inference Tree
(TREEPRED)

Random Forest
(FRSTPRED)

MSE 26.61 23.57 13.31
RMSE 5.16 4.85 3.65
MAE 3.85 3.51 2.69

MAPE 0.32 0.45 0.33

MSE = mean squared error; RMSE = root mean squared error; MAE = mean absolute error; MAPE = mean absolute
percent error.

3.2. FSP Classification

The confusion matrices developed for each FSP classification model (MR, TREECLASS, FRSTCLASS)
are displayed in Table 4A. The associated accuracy (Equation (2)), recall (Equation (3)), and precision
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(Equation (4)) results are presented in Table 4B. All models yielded classification accuracies larger
than 90% (Table 4B). The MF condition had markedly lower recall and precision than its RF and FF
counterparts for all models calculated (Table 4B).

Table 4. Confusion matrices are displayed to indicate where correct (white) and incorrect (grey)
classifications occurred for three types of classification methods (multiple linear regression, conditional
inference tree, and random forest). Matrices are reported for the validation data set that was not
included in model training. All models classified foot strikes into three classes: RF = rear foot,
MF = mid foot, and FF = fore foot.

A
Multiple Regression

(MR)
Conditional Inference Tree

(TREECLASS)
Random Forest

(FRSTCLASS)

True
RF 621 13 0 RF 613 21 0 RF 611 23 0
MF 26 46 48 MF 14 88 18 MF 16 92 12
FF 5 8 280 FF 5 6 282 FF 3 8 282

RF MF FF RF MF FF RF MF FF
Estimated Estimated Estimated

B MR TREECLASS FRSTCLASS

Accuracy (%) ALL 90.4 93.9 94.1

Recall (%)
RF 97.9 96.7 96.4
MF 38.0 73.3 76.7
FF 95.6 96.3 96.3

RF 95.2 97.0 97.0
Precision (%) MF 68.7 76.5 74.8

FF 85.4 94.0 95.9

4. Discussion

The purposes of the current study were to compare three statistical techniques used to (i) predict
FSA and (ii) classify FSP using independent variables derived from the LoadsolTM pressure insoles.
Generally, clear differences in the three foot strike styles were noticeable by similarly stratified
independent variables (Table 2), with the exception of the variable PF_Fore. For this variable,
the differentiation between FF and MF strike types is not clear. This lack of dichotomy may be a result
of speed or flight time inconsistencies during MF strike pattern performance, which is supported by the
fact that the MF condition was the most difficult condition for participants to perform [37]. However,
the apparent stratification of the independent variables for each strike condition thus confirms the
applicability of the fore/aft LoadsolTM sensors to estimate FSA and FSP [26,27]. Supporting this, the MR
and FRSTPRED models developed for the prediction of FSA were both evidently good fits (MR = 91.4%
and FRSTPRED = 95.42% of variance explained) and the classification accuracy of FSP for all statistical
techniques was greater than 90% (Table 4B).

4.1. FSA Prediction

The three models (MR, TREEPRED and FRSTPRED) assessed for FSA prediction had comparable
performance when tested using the validation set (Figure 3 and Table 3). The most important
independent variable in the FRST model was RFD_Aft as evidenced by the highest mean decrease in
node impurity (Gini; Figure 2). Importantly, RFD_Aft is also a predictor used in the TREEPRED and MR
models. However, the specific variable importance of RFD_Aft in the MR (via beta coefficients) cannot
be interpreted because the model violated the assumption of collinearity [52]. Collinearity considered,
the overall prediction of the model should be unaffected [52].

The linear approach of the MR as suggested by Fritz and colleagues [27] appears to be appropriate
to generally explain the variance of the FSA (R2 = 0.914). In a similar application, a univariate linear
regression to determine strike index via the onset time difference of a fore and aft pressure sensor
resulted in a lower coefficient of determination (R2 = 0.836) [26]. Although participants were asked to
perform RF, MF, and FF foot strikes, Cheung and colleagues [26] did not carry out further analyses to
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confirm the performance of the FSPs or if there was a stratified model fit. Importantly, a strong linear
relationship between the strike index and 3D FSA kinematics is supported in literature, however the
relationship appears to be driven primarily by FF and RF strike types [14,16]. Upon visual inspection,
those foot strikes that fell closer to the MF range of FSA had the largest standard errors [16]. A similar
visual phenomenon is seen in the current study’s data, however the more extreme FF and RF also
appear to be indicative of greater prediction errors (Figures 3 and 4). The methodological inclusion of
the extreme FF and RF conditions in the current study make it possible to see the potential that there
are two linear relationships (Figure 4). Thus, greater accuracy in FSA prediction using MR may be
gained from developing a model for the RF and FF FSPs independently.
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Figure 4. The relationship between the true foot strike angle (FSA) and that predicted by the multiple
regression is shown for the distribution of the foot falls included in the study. The strike patterns can
be discerned from the following scale: fore foot: FSA < −1.6◦; mid foot: −1.6◦ ≤ FSA ≤ 8.0◦; rear foot:
FSA > 8.0◦.

Importantly, the midfoot and more extreme RF strikes are not as well predicted by the MR than by
the FRSTPRED (Figure 3). However, both models exhibit higher numbers of residuals outside of the
Bland–Altman limits of agreement at the extremes of FF foot strike pattern. Additional proportional
bias may be evidenced in the extreme FF range of the MR. However, because these extreme foot strike
patterns were considered “exaggerated” to the participants (as was their instruction), the bias present
there may not influence the practical application of such models. Further, the stratification seen in
the TREEPRED Bland–Altman makes it apparent that it’s use for continuous FSA prediction is limited
to the number of outcomes (i.e., maximum tree depth) included in the model (Figure 3). Ultimately,
the TREEPRED appears to be better suited for discrete classification problems, whereas the FRSTPRED is
arguably the most appropriate model for prediction problems that include a large range of FSAs or
number of MF strikes.

4.2. FSP Classification

Although the overall classification accuracy of the MR was greater than 90%, the MF strike was
only properly classified with 38% recall (Table 4). Conversely, TREECLASS and FRSTCLASS classified
the MF strike with approximately 73% and 75% recall (Table 4). This is similar to the findings of
Delgado-Gonzalo and colleagues [53], who found that the MF condition was classified with the least
recall and precision using accelerometer-based inputs. Importantly, the MF strike pattern in the current
study may have been classified with the least accuracy because it had the least number of samples
in the training set (MF = 197, RF = 1495, FF = 650). Supporting this theory, the RF pattern classified
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with the highest recall in the MR and TREECLASS methods (98–99%) and was the greatest sample
contributor in the training set. Further, the most important variable for the FRSTCLASS was RFD_Aft
(Figure 2), which is consistent with the first splitting node variable of TREECLASS. The models may be
best suited to distinguish between RF and FF strikes primarily due to the lack of independent variable
or sensor differentiation regarding the middle region of the foot. Thus, a three-part sensor insole that
highlights the central region of the foot (thus allowing a variable such as the mid-region rate of force
development) may be better suited for MF classifications. However, Lieberman and colleagues [9]
found that habitually shod runners primarily perform RF strike patterns, therefore the current models
should serve recreational runners well.

For populations of shod runners who have consciously altered or retrained their running foot
strike pattern (i.e., those investigated by Cheung and Davis [11]), the higher accuracy of the FRSTCLASS

may provide further confidence in the MF classifications. However, the future use of simple methods
like the MR or TREECLASS methods should not be discounted because equal class sizes in the training
set may improve the recall of MF classifications and overall model accuracy.

4.3. Application

The results of the current study support that a two sensor (fore and aft) pressure insoles can be
used to predict and classify foot strike with sufficient accuracy. Compared to previous works with the
aim of estimating FSA using IMU sensors [15], the current results boast lower bias when compared to
a reference 3D motion capture camera system (FRSTPRED of current study = −0.11◦ vs. IMU = 3.9◦)
and only slightly worse precision (FRSTPRED of current study = 14.30◦ vs. IMU = 10.6◦). This raises
the potential of an insole sensor to provide the holistic pairing of kinetic and kinematic information
regarding performance and injury indicators during running. An ankle joint torque MR prediction
model has already been developed with adequate accuracy (R2

ADJUSTED = 0.831, RMSE = 6.91 Nm)
using the independent input of 99-sensor pressure insoles [54]. Further, vertical GRF from pressure
insoles have been used to predict the 3D GRF components using MR and Artificial Neural Networks,
supporting that power and injury related variables can be considered a possibility via simple wearable
sensors [55]. From an application standpoint, although many independent variables are used in the
models of the current study, they all are derived from a single system. The use of a single system thus
reduces the necessity of the synchronization and additional processing power of a supplementary
system. A larger range of running conditions could be studied in the future, which may allow for the
reduction of independent variables and further encourage the potential to transition toward “real time”
foot strike pattern and angle detection.

The current study thus lays the framework for FSA and FSP detection in insoles with larger
numbers of sensors (like those used by Billing et al. and Fong et al. [54,55]). This framework may be
useful in the push to define and detect running power accurately. The calculation of power during
running is a controversial topic due to the complexity of the human biomechanical system, and many
of the current commercial systems do not have proven validity in calculating the metric [56]. Therefore,
a kinetic approach may exceed current IMU-based calculation methods (i.e., StrydTM foot pods) due to
the immense information a multi-sensor pressure insole can provide.

5. Conclusions

The current study supports the feasibility of two-sensor pressure insoles to detect FSA and FSP,
and therefore aids in the research and coaching of running movements, as well as consumer-based
shoe prescription. Simple machine learning techniques can be used to predict and classify runners’
foot strike patterns with accuracies greater than 90%. However, foot falls that are a true MF strike
are incorrectly classified more often than RF or FF strikes by these methods. A greater accuracy can
be accomplished with the application of a more complex machine learning technique like a FRST.
The current study was limited in its collection of MF steps, therefore more MF steps or using over- or
under-sampling techniques may improve the classification of the MF pattern in the future. Further,
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the machine learning techniques should be applied to running with higher ecological validity that
encompasses variable metabolic intensities (i.e., speeds), and limited changes of direction.
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