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Abstract

Iron (Fe) and manganese (Mn) are nutritional components of rice, plays an important role in

its physiological processes and can minimize absorption of cadmium (Cd) in rice. Fe, Mn,

and Cd transporters such as CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, OsHMA3, and

OsNAAT1 regulate uptake of Cd in rice. However, the effect of exogenous application of Fe,

and Mn on the accumulation of Cd and relative expression (RE) of these transporters in rice

has not been investigated. Therefore, a hydroponic culture experiment was conducted to

investigate the impact of Fe and Mn on Cd uptake and RE of these transporters in rice. The

results showed that the Fe and Mn application significantly decreased Cd in the roots and

shoots of rice. Whereas, Cd concentration in the rice significantly increased with increasing

Cd concentration in the solution. The addition of manganese in the culture medium can

reduce the cadmium content of rice roots by 11.9–82.3% and shoots by 11.6–85.0%, while

the addition of iron in the culture medium can reduce the cadmium content of rice roots and

shoots by 26–65% and 9–683% respectively. Meanwhile, application of sufficient doses of

Fe and Cd in solution culture increased RE of CAL1, OsNRAMP5, OsNRAMP1, OsIRT1,

and OsNAAT1 in roots, whereas expression level of OsHMA3 was decreased. Similarly,

expression level of CAL1, OsNRAMP5, and OsNRAMP1 significantly increased in roots in

high Cd and Mn deficient treatments. This may be concluded that the Cd increases expres-

sion of CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, and OsNAAT1 but decreases OsHMA3

expression in rice roots, which resulted in increased Cd uptake in hydroponically grown rice.

Introduction

Rice (Oryza sativa L.) is the staple food for more than half of the world’s population [1]. Cd

pollution in rice has posed a serious threat to human health especially in Asian countries [2].

Cd can severely affect several human organs and systems such as the reproductive system,

respiratory system, kidneys and skeletal system and can cause severe health problems such as

Itai-Itai disease [2, 3]. Thus, minimizing Cd uptake by rice through fertilizer/nutrient manage-

ment is an easy and effective method [4, 5].

Fe is an essential micronutrient and has effectively decreased Cd toxicity in different plant

species [6–8]. Exogenous application of Fe can reduce Cd content in rice and improve rice

growth and yield [8, 9]. Manganese is a key supplement for plant growth, which plays an
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important role in enzyme activation, biotic redox reactions, splitting of H2O, and decontami-

nation O2 free radicals [10, 11]. Fe and Mn both alleviated Cd toxicity by reducing Cd accumu-

lation and by upholding redox regulation that prevents Cd-inducible damage to root growth

and photosynthesis [12]. Fe and Mn can form iron plaque on the surface of rice roots sequester

Cd on roots [1, 13]. However, molecular studies showed that Cd translocation into rice occurs

via Fe metabolic pathways which may be affected by Fe concentration in substrates [14, 15].

Rice accumulates more Cd than other cereal crops may be due to higher expression and

functionality of the OsNRAMP5 gene (responsible for Cd uptake by roots) [3]. Furthermore,

several rice genes have been identified which take part in xylem loading and phloem redistri-

bution of Fe and Cd at different locations in the rice plant. For example, OsIRTI and OsN-
RAMP5 mediate uptake of Cd from the rhizosphere into root cells [15]. OsHMA3 is involved

in Cd compartmentalization into vacuoles in root cells [16]. It was found that the expression

of OsHMA3 was up-regulated under Cd stress in rice roots than that of control [17]. Several

genes have been reported, which affects the uptake, transportation, and accumulation of

Mn and Cd in rice. Cd from the root surface is primarily taken into root cells as a ‘hitchhiker’

via the Mn transporter OsNRAMP5 [15]. CAL1 (cadmium accumulation in leaf 1) mainly

expressed in root exodermis and xylem parenchyma cells and sequesteres Cd in the cytosol,

seems to minimize Cd content in cytosol there by carrying long-distance Cd transport through

xylem vessels. CAL1 did not show any effect on the accumulation of Cd in rice grain [18].

Thus, effect of exogenous application of Fe and Mn on the accumulation of Cd as well as rela-

tive expression of CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, OsNAAT1, and OsHMA3 in rice

has not been investigated. Therefore, the present experiment was conducted to find out the

impact of Fe and Mn cations on uptake of Cd in rice and expression level of aforementioned

genes under combined application of Fe, Mn and Cd.

Materials and methods

Plant growth and treatments

A hydroponic pot experiment was conducted at greenhouse of the Chinese Academy of Agri-

cultural Sciences Beijing (40˚ 0’ 8.6364’’ N, 116˚ 21’ 57.5208’’ E). The seeds of the “Huang Hua

Zhan” rice variety, collected from Changsha city were surface sterilized for 15 minutes in 30%

(v/v) H2O2 solution, thoroughly washed with deionized water and then soaked in distilled

water in the dark for 48 hours. Rice seeds were then sandwiched into two filter papers that

were placed vertically in petri dishes. The young seedlings were then transferred into beakers

containing hydroponic solution for three weeks. After three weeks rice seedlings were trans-

ferred to pots for four weeks in a full-strength Hoagland nutrient solution (pH 5.5), consisting

of 0.116 mg L−1 NH4NO3, 0.0499 mg L−1 NaH2PO4•2H2O, 0.087 mg L−1 K2SO4, 0.111 mg L−1

CaCl2, 0.418 mg L−1 MgSO4•7H2O, 0.091 mg L−1 (NH4)6MoO24•4H2O, 1.098 mg L−1 H3BO3,

0.0445 mg L−1 ZnSO4•7H2O, 0.0416 mg L−1 CuSO4•5H2O. The pH of the nutrient solution

was set to 5.5 using morpholinoethanesulphonic acid (MES) and the solution was changed

after every three days. In the full strength, Hoagland solution seedlings were treated with 0, 10,

20, and 30 mg L−1 Cd (supplied as CdSO4). While 0, 0.2, 0.4 and 0.6 mg L−1 Fe as FeSO4.7H2O

with full-strength Hoagland solution were supplied for four weeks. The experiment had two

factors, the first factor was Fe (Fe0, Fe0.2, Fe0.4 and Fe0.6) and the second was Cd (Cd0, Cd10,

Cd20 and Cd30). The interactions of Fe and Cd combination resulted in 16 treatments, each

replicated three times. The treatments combinations were Fe0Cd0 (no Fe and Cd applied),

Fe0Cd10, Fe0Cd20, Fe0Cd30, Fe0.2Cd0, Fe0.2Cd10, Fe0.2Cd20, Fe0.2Cd30, Fe0.4Cd0,

Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30, Fe0.6Cd0, Fe0.6Cd10, Fe0.6Cd20 and Fe0.6Cd30. For Mn

and Cd experiment the same procedure was followed. Cd was supplied as 0, 10, 20 and 30 mg
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L−1 Cd (CdSO4), while Mn treatments were as 0, 0.5, 1.0, and 2.5 in the form of MnSO4. Here

the two factors were Mn (Mn0, Mn0.5, Mn1 and Mn1.5) and Cd (Cd0, Cd10, Cd20 and

Cd30). Thus, interaction of Mn and Cd treatments also resulted in 16 combination as follows:

Mn0Cd0 (no Mn and Cd supply), Mn0Cd10, Mn0Cd20, Mn0Cd30, Mn0.5Cd0, Mn0.5Cd10,

Mn0.5Cd20, Mn0.5Cd30, Mn1.0Cd0, Mn1.0Cd10, Mn1.0Cd20, Mn1.0Cd30, Mn2.5Cd0,

Mn2.5Cd10, Mn2.5Cd20, and Mn2.5Cd30. The experiment was carried out in a greenhouse

with 70% humidity, the temperature varying between 25–35˚C, with light exposure of 12–14 h

d−1. The photographs of the experiment are shown in S1 Fig.

Chemical analysis of roots and leaves

The rice roots and leaves were harvested at the end of the experiment, cleaned with tap water

followed by a wash with distilled water In order to achieve a constant weight, samples were

oven-dried at 100˚C. A stainless steel grinder was used to crush dried rice plant materials (i.e.

roots and shoots) into fine powder and accurately weighed (0.5 g) into clean, dry digestion

tubes (100 ml). Then 6 ml of concentrated nitric acid (HNO3) and 3 ml of hydrogen peroxide

(H2O2) were added and left overnight in the digestion tubes. The tubes were then placed in a

high-pressure sealed digestion microwave where the temperature was set at 200˚C and kept

for two hours. The tubes were put on a heating block after digestion in the microwave and

kept for around two to three hours. The solutions were then cooled at room temperature,

diluted to 50 ml with ultra-pure water containing 5% HNO3; the samples were gently shaken

and then filtered [19]. The total Fe, Mn Subsequently and Cd in digested solutions were mea-

sured by inductively coupled plasma mass spectrometry (ICP-MS).

RNA extraction and QRT-PCR

The total RNA was obtained from four weeks old seedlings. Samples of fresh roots and shoots

were collected using Trizol reagent (Life, Japan). For each sample, approximately 2μ of RNA

was used for reverse transcription with a PrimerScript 1st strand cDNA synthesis Kit (Takara,

Japan). The QRT-PCR assays were carried out using SYBR Premix Ex Taq (Takara, Dalian,

China) on the AB17500 PCR system (Life Technologies, USA). The expression levels of target

genes were normalized to that of OsActin. All QRT-PCR assays were performed in three inde-

pendent replications. Relative gene expression levels were detected using the 2–ΔΔCT method

[20]. The primers used in this study are listed in Table 1.

Quality control

To ensure the accuracy of the results, a standard reference material (GBW08513) from the

National Research Center for Standards of China was used. The metals recovery rate ranged

from 95% to 104%.

Statistical analysis

Descriptive statistics were conducted by Microsoft Excel 2016. Analysis of variance (ANOVA)

was conducted by XLSTAT software [21]. Mean data was tested by Duncan’s multiple range

test at (p< 0.05), conducted with the XLSTAT.

Results

Effect of Fe, Mn and Cd on biomass of rice roots and shoots

Results showed that the biomass of roots and shoots increased under high Fe and low Cd levels

(Fig 1). Relative to Fe0Cd0, the roots biomass was increased by 31.4% in Fe0.2Cd0 while
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average increased 67.3% was recorded from Fe0.2Cd0, Fe0.4Cd0, and Fe0.6Cd0 treatments.

However, it can be noted that the high doses of Cd combine with Fe also increased roots and

shoots biomass. Application of Mn significantly promoted crop growth. Roots and shoots bio-

mass was increased with increasing Mn concentration in the solution. The roots and shoots

biomass increased by 22% and 12.7% on average in Mn0.5Cd0, Mn1Cd0 and Mn1.5Cd0

respectively as compared to Mn0Cd0 treatment (Fig 2).

Effect of Fe on Cd uptake by rice root and shoot

Roots and shoots Cd concentration was ranged from 0.20–9.96 mg kg−1 and 0.02–2.49 mg

kg−1 respectively. At the low Cd level treatment, the Cd in roots and shoots decreased with

increase in Fe concentration. The lower Cd in roots were found in Fe0Cd0, Fe0.2Cd0,

Fe0.4Cd0, and Fe0.6Cd0 with an average value of 0.29 mg kg−1. The highest Cd 9.96 mgkg−1

in the roots was found in Fe0Cd30 treatment (Fig 3). Moreover, Cd concentrations in shoots

Table 1. Primers used for relative genetic expression.

Primer code Base sequence (5’ to 3’)

CAL1-Q-F AGTCGCGTGTTCTCCTTTGT

CAL1-Q-R CATGACAGCAGCTTGCAAAT

OsNAAT1-Q-F GGAGGGAATCCATGATGATG

OsNAAT1-Q-R GGCAGAAGGATTTGATCCTCTC

OsIRT1-Q-F GAACCGCGTCGTCGTTCAG

OsIRT1-Q-R CCATCCCCTCGAACATCTGG

OsIRT2-Q-F TCATGCTCACGTTCCACACG

OsIRT2-Q-R GAGAACCTGCACAATGACGC

OsNramp1-Q-F TCTCTGTCTCCGGCACTGTA

OsNramp1-Q-R CATCAGGTTCCGAAGCCACT

OsNramp5-Q-F GAAGTGGCTTCGGAACCTGA

OsNramp5-Q-R GAAGCTCGTGCTCAGGAAGT

OsHMA2-Q-F GAGGGAGGGAGGTGTCAGAA

OsHMA2-Q-R TGGTGATCTTCTCACTGCCG

OsHMA3-Q-F AGAACAGCAGGTCGAAGACG

OsHMA3-Q-R ATTGCTCAAGGCCATCTGCT

OsLCT1-Q-F GAGTTCTTCGTCAGAGCTAC

OsLCT1-Q-R CAGTGCTGGATGACGAATTG

https://doi.org/10.1371/journal.pone.0243174.t001

Fig 1. Effect of Fe and Cd interaction on root and shoot biomass (g). Here, Fe and Cd indicates 0, 0.2, 0.4 and 0.6 mg L−1 Fe as

FeSO4.7H2O and 0, 10, 20 and 30 mg L−1 Cd (supplied as CdSO4). The data presented are mean ± standard deviation (n = 3). Mean values

followed by different letter are significantly different using Duncan’s multiple range test at 5% level.

https://doi.org/10.1371/journal.pone.0243174.g001
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were lower in Fe0Cd0, Fe0.2Cd0, Fe0.4Cd0, and Fe0.6Cd0 as compared to other treatments.

The highest total Cd content in shoot was found in Fe0.2Cd30 treatment 2.49 mg kg−1 fol-

lowed by Fe0Cd30, Fe0.4Cd30 and Fe0.6Cd30 than Fe0Cd0 (Fig 3).

Effect of Mn on Cd uptake by rice roots and shoots

In Mn0Cd0, Mn0Cd10, Mn0Cd20 and Mn0Cd30 treatments, the total Cd content in roots

were 0.13, 3.09, 7.54, 9.78 mg kg−1 respectively, while the total Cd concentration in shoots

were 0.03, 0.74, 1.29, 2.27 mg kg−1 respectively. Under the low Cd level treatments, the Cd con-

tent of roots and shoots decreased with the increase in Mn concentration in solution. The

range of total Cd reduce ratio was 11.9–82.3% in roots and 11.6–85.0% in shoots respectively.

The concentration of Cd in roots and shoots under Mn0.5Cd0, Mn1Cd0 and Mn1.5Cd0

treatments was non-significantly different than Mn0Cd0. While, in Mn0Cd10, Mn0Cd20 and

Mn0Cd30 treatments, the average Cd content was 49.9 and 44.3 times higher than Mn0Cd0 in

roots and shoots respectively. Overall, the lowest Cd contents in the roots were found in plants

treated with Mn1.0Cd0, Mn0.5Cd0, Fe0Cd0 and Mn1.5Cd0, while the highest Cd content in

roots was found in Mn0Cd30 treatment. In the shoots the concentration of Cd was found low-

est in Mn1.5Cd0, Mn1Cd0, Fe0Cd0 and Mn0.5Cd0, and greatest Cd content was found in

Mn0Cd30 with the value of 2.27 mg kg−1 (Fig 4).

Genes expression in rice roots and shoots under Fe and Cd addition

CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, OsNAAT1, and OsHMA3 are considered as impor-

tant Cd transporters. The results showed that the different levels of Fe and Cd in the solution

Fig 2. Effect of Mn and Cd interaction on root and shoot biomass (g). Here, Mn and Cd indicates 0, 0.5, 1 and 1.5 mg L−1 Mn as MnSO4

and 0, 10, 20 and 30 mg L−1 Cd (supplied as CdSO4).

https://doi.org/10.1371/journal.pone.0243174.g002

Fig 3. Effect of Fe and Cd interaction on Cd accumulation in rice root and shoot.

https://doi.org/10.1371/journal.pone.0243174.g003
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had a substantial effect on the level of expression of genes in both rice roots and shoots. In the

roots CAL1 expression increased significantly by 0.72–12.4 times in the Fe0.2Cd0, Fe0.4Cd0,

and Fe0.4Cd0 treatments relative to Fe0Cd0 (Fig 5A). While the expression of CAL1 in the

Fe0Cd10, Fe0Cd20, and Fe0Cd30 treatments increased by 9.5–52.5 times than Fe0Cd0.

Whereas, in Fe0.2Cd20, Fe0.2Cd30, Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30, Fe0.6Cd10,

Fe0.6Cd20, and Fe0.6Cd30 the CAL1 expression in roots increased by 7.6–68.4 times. OsN-
RAMP5 and OsNRAMP1 are crucial transporters of Fe and Cd that carry Fe and Cd from the

surface of the root into root cells. OsNRAMP5 expression increased by 0.5–3.0 times in roots

treatments under Fe0.2Cd0, Fe0.4Cd0, and Fe0.6Cd0 relative to Fe0Cd0. The relative expres-

sion of OsNRAMP5 also increased in the roots by 9.5–18.6 times in the Fe0Cd10, Fe0Cd20,

and Fe0Cd30 treatments. Under Fe0.2Cd20, Fe0.2Cd30, Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30,

Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30 treatments, the expression level of OsNRAP5 increased

by 3.6–22.8 times in roots compared with Fe0Cd0 (Fig 5B). The expression of OsNRAMP1 in

roots decreased by 34.2%-96.5% in Fe0.2Cd0, Fe0.4Cd0, and Fe0.4Cd0 treatments whereas, it

increased by 63.2%-296% under Fe0Cd10, Fe0Cd20, and Fe0Cd30 treatments. The expression

of OsNRAMP1 also decreased by 22.1%-73.2% in Fe0.2Cd10, Fe0.2Cd30, Fe0.4Cd20,

Fe0.4Cd30, Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30 treatments than Fe0Cd0 (Fig 6C). While

Fig 4. Effect of Mn and Cd interaction on Cd accumulation in roots and shoots of rice.

https://doi.org/10.1371/journal.pone.0243174.g004

Fig 5. Effect of Fe and Cd interaction on relative genetic expression of CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, OsNAAT1, and OsHMA3 in rice roots.

https://doi.org/10.1371/journal.pone.0243174.g005
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relative expression of OsNRAMP1 enhanced by 190% and 2.85% under Fe0.2Cd20 and

Fe0.2Cd40 treatments respectively (Fig 5C). The relative expression of OsIRTI in the roots

decreased by 7.65% and 1% in the Fe0.4Cd0, and Fe0.6Cd0 treatments respectively, while it

increased by 84.6% under Fe0.2Cd0 treatment as compared to Fe0Cd0 treatment. However,

the expression increased by 3.8–8.6 times in Fe absence and Cd sufficient treatments such

as Fe0Cd10, Fe0Cd20, and Fe0Cd30. In the Fe and Cd sufficient treatments (Fe0.2Cd20,

Fe0.2Cd30, Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30, Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30) the

expression of OsIRT1 in roots enhanced by 54.2%-210% (Fig 5D). Compared to Fe0Cd0,

in the Fe0.2Cd0, Fe0.4Cd0, and Fe0.6Cd0 treatments, the relative expression of OsNAAT1
increased by 2.6–4.4 times. Whereas, the expression values for OsNAAT1 were 6.1–20.7

times higher in the Fe0Cd10, Fe0Cd20, and Fe0Cd30 treatments than Fe0Cd0. In the

Fe0.2Cd20, Fe0.2Cd30, Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30, FE0.6Cd10, Fe0.6Cd20, and

Fe0.6Cd30 treatments the expression of OsNAAT1 increased by 141%-348% (Fig 5E). The

relative expression of OsHMA3 reduced by 81.5% and 41.6% in the Fe0.2Cd0, Fe0.4Cd20

treatments respectively, while the relative expression of OsHMA3 enhanced by 71.2% in

Fe0.6Cd0 treatment as compared to Fe0Cd0. The OsHMA3 expression level also decreased

by 72.8% and 33.1% under Fe0.2Cd10 and Fe0.2Cd30 treatments respectively (Fig 5F). The

greatest expression of OsHMA3 was recorded under the Fe0.2Cd20 treatment and it was

enhanced by 34.4 times. Under the treatments Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30,

Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30 the OsHMA3 expression increased by 0.7–4.74

times in roots than that of Fe0Cd0.

Genes expression in rice roots and shoots under Mn and Cd application

The application of Mn and Cd in the nutrient solution showed a significant impact on the

expression levels of CAL1, OsNRAMP5 and OsNRAMP1 in roots. The relative expression of

CAL1 in the roots was reduced by 718%, 29.6%, and 32.1% under Mn0.5Cd0, Mn1.5Cd0 and

Mn0Cd20 treatments respectively as compared to Fe0Cd0 (Fig 6A). In the Mn0Cd10 and

Mn0Cd30 treatments gene expression was increased by 2 and 1.1 fold respectively as relative

to Mn0Cd0. Similarly, under the Mn0.5Cd20, Mn0.5Cd30, Mn1Cd10, Mn1Cd20, Mn1Cd30,

Mn1.5Cd10, and Mn1.5Cd20 treatments the expression of CAL1 also enhanced by 169%-357%

as compared to Mn0Cd0, OsNRAMP5 expression decreased by 38.4%, 13.1% and 47.2% respec-

tively under the treatments Mn0.5Cd0, Mn1.5Cd0 and Mn0Cd20, whereas it was increased by

492% and 68.3% respectively in the treatments Mn0Cd10 and Mn0Cd30. The genes expression

of OsNRAMP5 was also increased by 52.7%-202% in Mn0.5Cd20, Mn0.5Cd30, Mn1Cd10,

Mn1Cd20, Mn1Cd30, Mn1.5Cd10, Mn1.5Cd20, and Mn1.5Cd30 treatments (Fig 6B). The

expression of OsNRAMP1 in Mn0.5Cd0 and Mn1Cd0 treatments enhanced by 177% and

97.6% respectively. Although OsNRAMP1 expression was decreased by 33.4%, 84.5% and

Fig 6. Effect of Mn and Cd interaction on relative genetic expression of CAL1, OsNRAMP5, and OsNRAMP1 in rice roots.

https://doi.org/10.1371/journal.pone.0243174.g006
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78.5% in Mn1.5Cd0, Mn0.5Cd10, and Mn0Cd20 treatments respectively. Whereas, its expres-

sion was enhanced by 159%-868% in Mn0.5Cd20, Mn0.5Cd30, Mn1Cd10, Mn1Cd20,

Mn1Cd30, Mn1.5Cd10, Mn1.5Cd20, and Mn1.5Cd30 treatments (Fig 6C).

Discussion

Compared to Fe0Cd0 treatment, the roots biomass was increased by 31.4% in Fe0.2Cd0 treat-

ment, while shoots biomass in Fe0.2Cd0, Fe0.4Cd0, and Fe0.6Cd0 was 67.3% higher than

Fe0Cd0 on average (Fig 1). Similarly, roots and shoots biomass was increased in Mn0.5Cd0,

Mn1Cd0 and Mn1.5Cd0 treatments containing excessive Mn and Cd deficient doses (Fig 2).

Adhikari [22], found that supply of both Fe and Cd in hydroponic experiment significantly

affected plant growth and yield, as well as accumulation of Cd in plant tissues. Furthermore, it

was confirmed that the dry matter production of rice shoot was highest at the highest activity

level of Fe [22]. It was found that the addition of Fe in the soil increased root and shoot dry

weight of rice [8]. Moreover, it has been reported that the exogenous application of Mn at the

rate from 0.05 μM to 800 μM under hydroponic experiment can reduce accumulation of Cd

in under and above ground plant parts in rice [23]. However, increasing Cd concentration in

solution has reduced roots and shoots biomass under Fe and Mn addition (Figs 1 and 2). It

was confirmed that the plant growth was inhibited under Cd stress in four rice cultivars as

compared to normal conditions [24]. Root growth was limited and number and length of

roots and tillers was also decreased by Cd in the rice cultivars [24].

At the low Cd level treatments, the Cd in roots and shoots decreases with increase in

Fe concentration. Such as Cd concentrations in shoots were lower in Fe0Cd0, Fe0.2Cd0,

Fe0.4Cd0, and Fe0.6Cd0 as compared to other treatments (Fig 3). It is in consistence with

that Fe and Mn could decrease Cd uptake and minimize Cd inducible rhizotoxicity [12]. Exog-

enous Fe application can significantly decrease Cd concentration in rice roots and shoots [25].

It was further confirmed that Fe2+ cations could compete with Cd2+ ions for adsorption sites at

the roots surface and as a result uptake of Cd in rice is decreased [26]. Consistence with our

results [27, 28], it was observed that under a Fe-sufficient supply, Cd concentration in rice

stem and leaves was reduced. Fe fertilization directly and effectively increased Fe content and

decreased Cd contamination to some extent. The reason may be Fe2+ competes with Cd for

the same binding sites and follow similar transport pathways on the surface of roots cells [29].

Also, Fe oxides have a significant ability for Cd adsorption and can effectively immobilize Cd

[30]. However, the highest Cd concentration of 9.96 mg kg−1 in the roots was found in

Fe0Cd30 treatment (Fig 3). The highest total Cd content in shoot was found in Fe0.2Cd30

treatment 2.49 mg kg−1 followed by Fe0Cd30, Fe0.4Cd30 and Fe0.6Cd30 than Fe0Cd0 (Fig 3).

It was reported that Cd content in DCB extracts enhanced with increasing Cd and Fe addition

[25]. Furthermore, roots and shoots Cd concentration enhanced with enhancing Cd supply

[25]. It was further reported that FeSO4 fertilizer significantly enhanced cadmium content in

roots as well as shoots of rice than CK [31]. The reason was may be due to the Fe transporter

OsIRT1 in the cell membrane which mainly expressed in rice roots directly carrying Fe2+ via

cell membrane and Cd2+ as well [31–33]. A similar finding was found by [34], which stated

that Cd2+ bound to the apoplastic membrane and remains in the root cell wall after desorption

while saturated Cd2+ from the solution influx across the root cell plasma membrane was medi-

ated by the transporter. Furthermore, Fe deficiency induces the expression of IRTI in Arabi-
dopsis which may assisted translocation of Cd2+ [34].

The Cd content of the roots and shoots decreased with increase of Mn concentration in

solution under the low Cd level treatments. The range of total Cd reduction was 11.9–82.3% in

roots and 11.6–85.0% in shoots. In the shoots the concentration of Cd was found the lowest in
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Mn1.5Cd0, Mn1Cd0, Fe0Cd0 and Mn0.5Cd0 (Fig 4). Qin [35], noted that rice plant height

was significantly increased and decreased Cd toxicity to normal level under Mn dose of 0.5 mg

L−1. The roots Cd content in two rice genotypes were significantly reduced by the increased

MnSO4 and EDTA•Na2Mn application in solution than CK [11]. The findings are in agree-

ment with that the application of 40 μM Fe and 2 μM Mn increased biomass and reduced Cd

concentration in rice under Cd stress of 5 and 25 mM. Furthermore, it was concluded that Fe

and Mn alleviated Cd toxicity by decreasing Cd content in rice and by regulating redox poten-

tial which hinders damage to root growth and photosynthesis caused by Cd [12]. Moreover,

application of 0.3 mM MnSO4 in hydroponic solution reduced cadmium absorption in roots

and shoots by 40% and 60% respectively in rice seedlings [36]. Because, Mn is a divalent cation

that is absorbed by plants through an active transport mechanism which comes in competition

with Cd2+ as Mn and Cd contains similar pathways for plant transport and accumulation [36].

While, in Mn0Cd10, Mn0Cd20 and Mn0Cd30 treatments, the average Cd content was 49.9

and 44.3 times higher than Mn0Cd0 in roots and shoots respectively. Moreover, the highest

Cd content in the shoot was found in Mn0Cd30 treatment with the value of 2.27 mg kg−1 (Fig

4). It was confirmed that Cd accumulation in roots was directly associated with the Cd content

in solution [22]. Therefore, two possible mechanisms may exist for the accumulation of Cd in

combination with Fe and Mn. First may be due to the desorption of Cd2+ ions from the root

cell wall and then mediated by Cd transporters IRTI [34], such as OsIRT1 and other transport-

ers in our experiment. Secondly, various studies reported that the formation of Fe and Mn

plagues on the roots had no significant effect on the uptake of Cd in plants [37–39]. Huang

[39] noted that Phytolacca acinosa Roxb (P. acinosa) plants treated with 50 mg L−1 Cd accumu-

lated higher level of Cd as compared to plants exposed to 2 mg L−1 Cd, especially in the plague

treatments (p< 0.05). Moreover, it was reported that DCB extractable Cd in the roots and

shoots of Kandalar. Obovata (S.L.) significantly enhanced with an increasing Cd supplementa-

tion [38]. Thus, the results may depend on several factors such as amount of metal plaque, the

concentration of metal and the pH in the culture solution [13, 38, 39].

Relative expression of genes were significantly affected by Fe and Cd in the solution. The

expression of CAL1 enhanced by 0.7–12.4 times under the Fe0Cd10, Fe0Cd20, and Fe0Cd30

treatments than Fe0Cd0. Whereas, in the Fe0.2Cd20, Fe0.2Cd30, Fe0.4Cd10, Fe0.4Cd20,

Fe0.4Cd30, Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30 treated plants the CAL1 expression in roots

increased by 7.6–68.4 times (Fig 5A). Luo [18] found CAL1 is a defensin-like protein and local-

ized in root exodermis and xylem parenchyma cells. CAL1 expression in the roots was induced

by exposure to Cd, with the near-isogenic line (NIL) containing the TN1 allele showing a

greater response to Cd than the NIL(CJ06) control line [18]. In addition, it was reported that

CAL1 was preferentially expressed in root and leaf sheath of rice seedlings. It was further con-

firmed that expression of CAL1 was significantly induced under Cd exposure in near-isogenic

line NIL(TNI) in root and expression in various tissues except for leaf blades [18]. The expres-

sion of OsNRAMP5 enhanced by 0.5–3.0 times under Fe0.2Cd0, Fe0.4Cd0, and Fe0.6Cd0 treat-

ments in roots than Fe0Cd0 treatment. While, in the Fe0Cd10, Fe0Cd20, and Fe0Cd30

treatment the relative expression of OsNRAMP5 also increased by 9.5–18.6 times in roots.

The expression level of OsNRAMP5 enhanced by 3.6–22.8 times in roots under Fe0.2Cd20,

Fe0.2Cd30, Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30, Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30 treat-

ments than Fe0Cd0 (Fig 5B). These results suggest that a synergistic effect may have existed

between Cd concentration in solution and relative expression of OsNRAMP5. The results are in

consistent that gene expression OsNRAMP5 in roots was up-regulated under two doses of Cd

treatments (1 μmol L−1 and 5 μmol L−1 Cd) [40]. Meanwhile, OsNRAMP1 expression level

reduced by 34.2%-96.5% in Fe0.2Cd0, Fe0.4Cd0, and Fe0.4Cd0 treatments whereas, increased

by 63.2%-296% under Fe0Cd10, Fe0Cd20, and Fe0Cd30 treatments in roots (Fig 5C). The
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results are in accordance with that the expression of OsNRAMP which was induced by Cd treat-

ment or by Fe inadequacy in both roots and shoots [41]. Overexpression of OsNRAMP1 in rice

roots enhanced the accumulation of Cd in leaves [14]. Cd accumulation in the shoot of rice

increased due to higher expression of OsNRAMP1, this showed that OsNRAMP1 could uptake

and transport Cd in addition to Fe [42]. It was confirmed that among the seven members of the

NRAMP family in rice, expression of OsNRAMP1 was increased in roots and shoots under Cd

stress, whereas on contrary our results OsNRAMP5 (Os07g0257200) expression was decreased

in both tissues in presence of Cd [43]. It was further confirmed that the expression of OsN-
RAMP1 in yeast cells significantly increased the accumulation of Cd (5-fold) than that of con-

trol [44]. The relative expression of OsIRTI in Fe0Cd10, Fe0Cd20, and Fe0Cd30 treatments

increased by 3.8–8.6 times. In the Fe and Cd sufficient treatments (Fe0.2Cd20, Fe0.2Cd30,

Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30, Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30) the expression of

OsIRT1 in roots increased by 54.2%-210% (Fig 5D). It has been documented that various trans-

porters regulated Fe transportation in IRT and NRAMP families involved in Cd transport by

rice [14, 45]. It was confirmed that Fe(II) mediated transporter such as OsIRT1 and OsIRT2
take part in Cd uptake in Fe-deficient rice grown in hydroponic culture [33]. The expression of

OsIRT1 was found higher in roots and was up-regulated under lower Fe conditions [46]. In

addition to Fe and Cd also enters into the root cell through OsIRT1 [33]. Compared to Fe0Cd0,

the relative expression of OsNAAT1 in the Fe0Cd10, Fe0Cd20, and Fe0Cd30 enhanced by 6.1–

20.7 times. Whereas, in the Fe0.2Cd20, Fe0.2Cd30, Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30,

FE0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30 treatments OsNAAT1 expression increased by 141%-

348% (Fig 5E). Similar findings have been revealed by [47] which states that OsNAAT1 was

highly up-regulated under Fe deficiency and Cd stress both in roots and shoots [47]. Further-

more, it was confirmed that when 1 mM Cd was added to the nutrient solution, Cd concentra-

tion in both naat1 roots or shoots was about 50% higher than that those in wild-type seedlings

[48]. The relative expression of OsHMA3 reduced by 81.5% and 41.6% in Fe0.2Cd0, Fe0.4Cd20

treatments respectively, while the relative expression of OsHMA3 enhanced by 71.2% in

Fe0.6Cd0 treatment as compared to Fe0Cd0. Whereas, its expression was also decreased by

72.8% and 33.1% under Fe0.2Cd10 and Fe0.2Cd30 treatments respectively (Fig 6F). Under

treatments Fe0.4Cd10, Fe0.4Cd20, Fe0.4Cd30, Fe0.6Cd10, Fe0.6Cd20, and Fe0.6Cd30 treat-

ments the OsHMA3 expression was increased by 297%-474% than that of Fe0Cd0. It was con-

firmed that the application of Fe chelates in hydroponic culture did not significantly affect

OsHMA3 expression [28]. The results are in accordance with [49], who stated the higher expres-

sion of OsHMA3 in the root. Furthermore it was confirmed that expression of OsHMA3 was

significantly increased in excessive Fe treatment [27]. Lu [50] reported, that overexpression of

OsHMA3 significantly reduced Cd translocation from roots to shoots and enhanced Cd toler-

ance. When Cd enters into the cytosol, OsHMA3 sequestered Cd into vacuole [51]. However,

[49] discovered an allele of OsHMA3 which failed to transport Cd into vacuole in high Cd accu-

mulating cultivars. Therefore in the present experiment, it may be possible that OsHMA3 failed

to sequester Cd in a vacuole. That’s why accumulation of Cd was found higher in Fe0.2Cd30,

Fe0Cd30, Fe0.4Cd30 and Fe0.6Cd30 treatments. Furthermore, it was confirmed that OsHMA3
expression was directly proportional to Cd concentration in the medium [52].

The application of Mn and Cd in the nutrient solution showed a significant impact on

expression levels of CAL1, OsNRAMP5 and OsNRAMP1. Compared to Mn0Cd0 treatment, the

relative expression of CAL1 in the Mn0Cd10 and Mn0Cd30 treatments increased by 20.9 and

11.8 times. Meanwhile, the expression of CAL1 under the Mn0.5Cd20, Mn0.5Cd30, Mn1Cd10,

Mn1Cd20, Mn1Cd30, Mn1.5Cd10, and Mn1.5Cd20 treatments also enhanced by 169%-357%

(Fig 6A). It was confirmed that CAL1 expression in the roots was significantly induced by expo-

sure to Cd [18]. The results are in accordance with that expression of CAL1 was also found
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high in various tissues except for leaf blades while in node I, and the adjoining flag leaf sheath

its expression was significantly higher. In addition, higher Cd concentration was observed in

seedling leaf blade and mature plant straws. Thus, it was suggested that CAL1 might specifically

carry Cd from roots to shoots, but not from shoot to grain [18]. This shows that the application

of Mn significantly affects CAL1 expression, however we don’t know the reason behind this.

Therefore, further trials may be conducted to know the mechanism behind it.

Compared to Mn0Cd0, the expression of OsNRAMP5 increased by 492% and 68.3% in

Mn0Cd10 and Mn0Cd30 treatments respectively. The expression of OsNRAMP5 also increased

by 52.7%-202% in under Mn0.5Cd20, Mn0.5Cd30, Mn1Cd10, Mn1Cd20, Mn1Cd30,

Mn1.5Cd10, Mn1.5Cd20, and Mn1.5Cd30 treatments (Fig 6B). It was confirmed that the defi-

ciency of Fe2+ and M2+ induced the up-regulation of OsNRAMP5 [53]. However, [43] reported

that OsNRAMP5 was not up-regulated under Mn deficiency. While, a recent study showed that

the expression of OsNRAMP5 was remarkably enhanced 2.33–5.67 folds in roots of three rice

genotypes at Mn phytotoxicity condition than that of Mn deficient condition [54]. Thus, our

experiment showed that both Mn and Cd affects the expression of OsNRAMP5. Therefore, fur-

ther studies can be carried out to find the mechanism behind. It was suggested that the fluctua-

tion of OsNRAMP5 expression level may be different among rice genotypes and different

hydroponic solution systems [54]. As the OsNRAMP1 expression enhanced by 159%-868%

in Mn0.5Cd20, Mn0.5Cd30, Mn1Cd10, Mn1Cd20, Mn1Cd30, Mn1.5Cd10, Mn1.5Cd20, and

Mn1.5Cd30 treatments than Mn0Cd0 (Fig 6C). Previous studies confirmed that the expression

of OsNRAMP1 was up-regulated under Fe deficiency in rice [42] and Mn deficiency in Arabi-

dopsis [55]. Similarly, [43] reported that expression of OsNRAMP1 in roots and shoots of rice

increased during Cd exposure. Thus the present experiment indicated that the expression of

OsNRAMP1 was affected by both Mn and Cd cations. In a recent study it has been showed that

OsNRAMP1 was predominantly expressed in root plus leaf as well as fixed plasma film restricted

protein [41]. OsNRAMP1 articulation was instigated by exposure to Cd and Fe inadequacy.

Immunostaining demonstrated that OsNRAMP1 confined in all root cell excluding central vas-

culature, and in leaf mesophyll cell [41]. The knockout of OsNRAMP1 brought about notewor-

thy reductions in root take-up of Cd and Mn and their amassing in rice shoot and grain, and

expanded affectability to Mn insufficiency. The knockout of OsNRAMP1 showed less effect on

Cd and Mn take-up compared to knockout of OsNRAMP5, while knockout of the two qualities

brought about enormous declines in the take-up of the Cd and Mn. While, OsNRAMP1 plays an

essential role in take-up of manganese and cadmium in rice and the role of OsNARAMP5 and

OsNRAMP1 are comparative yet not excess [41]. Thus it can be concluded that in the present

experiment, variations in expression of all the genes may also be affected by the rice variety and

hydroponic solution.

Conclusions

This study demonstrated the expression levels of cadmium-related genes in rice under condi-

tions of cadmium pollution and their relationship with iron and manganese nutrition were

ascertained. It may be concluded that the application of Fe and Mn cations in rice under Cd

exposure significantly decreased Cd concentration in roots and shoots. Increasing level of Cd

in solution significantly increased Cd concentration in rice roots and shoots. Expression level

of CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, and OsNAAT1 were increased with sufficient Cd

and Fe and/or Mn insufficient treatments while OsHMA3 expression decreased. In order to

find the Fe and Mn effects on Cd, further research should be conducted under different condi-

tions and under different doses of Fe and Mn and the deep insight process involved during Cd

absorption and transportation.
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Supporting information

S1 Fig. Experimental photograph. Fe and Cd indicates 0, 0.2, 0.4 and 0.6 mg L−1 Fe as FeS-

O4.7H2O and 0, 10, 20 and 30 mg L−1 Cd (supplied as CdSO4).

(PNG)

S2 Fig. Experimental photograph. Mn and Cd indicates 0, 0.5, 1 and 1.5 mg L−1 Mn as

MnSO4 and 0, 10, 20 and 30 mg L−1 Cd (supplied as CdSO4).

(PNG)
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