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Abstract

The evolution of cross-feeding among individuals of the same species can help generate

genetic and phenotypic diversity even in completely homogeneous environments. Cross-

feeding Escherichia coli strains, where one strain feeds on a carbon source excreted by

another strain, rapidly emerge during experimental evolution in a chemically minimal envi-

ronment containing glucose as the sole carbon source. Genome-scale metabolic modeling

predicts that cross-feeding of 58 carbon sources can emerge in the same environment, but

only cross-feeding of acetate and glycerol has been experimentally observed. Here we use

metabolic modeling to ask whether acetate and glycerol cross-feeding are especially likely

to evolve, perhaps because they require less metabolic change, and thus perhaps also less

genetic change than other cross-feeding interactions. However, this is not the case. The

minimally required metabolic changes required for acetate and glycerol cross feeding affect

dozens of chemical reactions, multiple biochemical pathways, as well as multiple operons or

regulons. The complexity of these changes is consistent with experimental observations,

where cross-feeding strains harbor multiple mutations. The required metabolic changes are

also no less complex than those observed for multiple other of the 56 cross feeding interac-

tions we study. We discuss possible reasons why only two cross-feeding interactions have

been discovered during experimental evolution and argue that multiple new cross-feeding

interactions may await discovery.

Author summary

The evolution of cross-feeding interactions, where one organism thrives by consuming

the excretions of others, can create diversity even in simple and homogeneous environ-

ments. In past work, we had predicted that 58 cross-feeding interactions could evolve in

populations of E. coli grown in glucose minimal media, yet only two have been experi-

mentally observed, those involving acetate and glycerol. We hypothesized that multiple

mutations might be required for the evolution of computationally predicted but not

experimentally observed cross-feeding interactions. To answer this question, we devel-

oped a method that searches for the minimal number of metabolic changes required for

individuals to change their metabolic state (from an ancestral glucose-consuming state to
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an evolved state that produces or consumes other metabolite). We observed that the meta-

bolic changes required for the evolution of acetate and glycerol cross-feeding are no less

complex than those required for the evolution of the other predicted cross-feeding inter-

actions, which suggests that multiple cross-feeding interactions may still await discovery.

Introduction

One trillion microbial species have been predicted to inhabit our planet [1]. To understand

how life on earth became so enormously diverse is a central goal of ecology and evolutionary

biology. For many decades, most biological diversity was thought to arise when populations

become physically subdivided [2], allowing mutations to accumulate independently in each

subpopulation. More recently, biologists have increasingly accepted that populations can also

diversify without any physical barrier [3–7] when organisms specialize and adapt to different

niches available in a heterogeneous environment [8,9]. For instance, when apples were intro-

duced to North America, some apple maggot flies changed their plant host from hawthorn to

apple. Today, apple maggot fly populations feed on hawthorns or apples. Such emerging eco-

logical barriers can lead to the creation of new species.

Remarkably, diversity can also evolve in homogeneous environments [6,7,10–12]. Perhaps

the most striking example involves stable genetic polymorphisms that originated in popula-

tions of Escherichia coli cultured in homogeneous batch or chemostat environments. Initially

isogenic populations of an ancestral E. coli strain developed genetic polymorphisms which

coexisted over hundreds of generations in eleven out of fifteen evolution experiments per-

formed in a chemostat [10]–a culturing device in which a cell culture is kept in a constant envi-

ronment with the continuous addition of fresh medium and the removal of culture liquid

containing leftover nutrients, metabolic waste products, and microbial cells. The chemical

environment used in these experiments was a minimal medium containing glucose as the only

carbon source. Diverse strains isolated after approximately 800 generations from one of these

parallel experiments showed that glucose-acetate and glucose-glycerol cross-feeding enabled

the coexistence of these strains. That is, one strain consumed the primary carbon source pres-

ent in the medium (glucose) and excreted a secondary carbon source (acetate or glycerol),

whereas the other strains fed on the excreted secondary carbon source. Genome sequencing of

the ancestral and evolved strains [13] revealed almost 600 mutations in the evolved strains.

Approximately 30 repeatedly mutated genes encode enzymes involved in glucose uptake, cen-

tral metabolism, fermentative pathways, the TCA cycle, glyoxylate shunt and phospholipid

biosynthesis. The ancestral strain itself harbored further regulatory mutations in genes

required for acetate and glycerol catabolism, which may have predisposed it to evolve acetate

and glycerol cross-feeding interactions [13,14]. The polymorphisms that evolved in the other

parallel experiments have not been so thoroughly analyzed, but it has been shown that acetate

cross-feeding was also responsible for the maintenance of five other polymorphism [15].

Similar cross-feeding emerged when the experiment was performed in batch culture, an

environment different from a chemostat, where nutrients get depleted, waste products accu-

mulate, and cell densities rise over time, before a sample of the culture is transferred into fresh

medium. In this experiment, an isogenic population of E. coli cultured in a minimal glucose

medium also diversified into coexisting strains which persisted for at least 10000 generations

in nine out of twelve populations [12]. Genome sequencing of two such strains in one of these

populations showed that they emerged after 6500 generations and coexisted due to glucose-

acetate cross-feeding [11]. Their emergence was possibly facilitated by the population’s hyper-

mutator phenotype–the clones harbored on average 199 mutations [16].
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Experiments like these suggest that E. coli readily diversifies genetically and metabolically in

a completely homogeneous environment by filling niches that do not exist in the environment

but are created by the organism itself. We are interested in finding out how much microbial

diversity can be created through such cross-feeding by characterizing the whole spectrum of

molecules (beyond acetate and glycerol) that can be cross-fed. In recent work we discovered

through metabolic modeling that all metabolic systems have a large potential for the evolution

of cross-feeding interactions. For example, we found that when E. coli feeds on glucose, 58

metabolites can be excreted as by-products of metabolism. Each of these metabolites can in

turn serve as a carbon source that can help sustain a stable community of cross-feeding strains.

Among these metabolites are acetate and glycerol, for which cross-feeding was observed exper-

imentally. In other words, metabolic modeling predicts 56 additional cross-feeding interac-

tions, which raises the question why none of these interactions have been observed

experimentally. Possibly, many other such polymorphisms have indeed evolved but went

undetected, because currently no systematic experimental screen for cross-feeding interactions

exists. (The cross-feeding strains were detected through colony morphologies on agar plates,

and substantial biochemical and genetic work was needed to prove that their polymorphisms

resulted from cross-feeding.) A second possible reason is that not all predicted cross-feeding

polymorphisms can evolve with the same likelihood. For example, metabolites may differ in

the number of metabolic changes or DNA mutations needed to turn a strain into a producer

or consumer of the metabolite. Here we explore this second possibility. That is, we ask whether

glucose-acetate and glucose-glycerol cross-feeding have been observed because they are much

more likely to evolve than other cross-feeding interactions.

Ideally, to quantify the likelihood that a given cross-feeding interactions evolves, it would

be necessary to know all mutations that give rise to the evolution of a producer or consumer

strain, the probability that each mutation takes place, and the mutation’s fitness effect in every

genetic background and in the population in which it occurs. This amount of information is

not within reach of current technology, especially because the genetic changes leading to

cross-feeding may be complex and involve changes in metabolic enzymes, regulatory mole-

cules, and transport proteins [13,16]. The problem is aggravated by the fact that the same phe-

notypic change, such as the emergence of cross-feeding, can often be achieved through

multiple and perhaps myriad different combinations of genotypic changes [17–19].

Faced with these obstacles, we here take a phenomenological approach, in which we esti-

mate the likelihood for a cross-feeding interaction to emerge through the amount of metabolic

change that an ancestral strain must experience to bring forth a producer and consumer strain

for the cross-fed metabolite. In other words, we use an assumption of parsimony: The pro-

ducer and consumer strains most likely to evolve from an ancestor are those that are metaboli-

cally most similar to the ancestor.

More specifically, we perform the following analysis for each of 58 metabolites that can

form the basis of a stable cross-feeding polymorphism in a chemostat inoculated with a single

ancestral E. coli strain and supplied with a glucose-minimal medium. We analyze genome

scale metabolic model of E. coli (iJO1366, [20]) to identify the distribution of metabolic fluxes–

the rates at which enzymatic reactions proceed–that are most similar between a producer

strain of the metabolite and the ancestor, as well as between the consumer strain of this metab-

olite and the ancestor. We use multiple measures of similarity, among them the number of

reactions that require a change in flux, and we assume that a producer or consumer strain is

more likely to emerge if this number is small. Our analysis shows that acetate and glycerol

cross-feeding do not require exceptionally small metabolic changes compared to the 56 other

metabolites we consider.
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Results

Complex metabolic changes are needed for the evolution of glucose-acetate

and glucose-glycerol cross-feeding

The four stably co-existing and cross-feeding E. coli strains that evolved from an ancestral

strain in a glucose-limited chemostat showed genetic and physiological differences with

respect to glucose, acetate, and glycerol uptake and metabolism [10]. Our first analysis pre-

pares the ground by modeling the ancestral and evolved flux distributions of E. coli that are rel-

evant to reconstruct the lab-evolved glucose-acetate and glucose-glycerol cross-feeding

interactions. We began by modeling the metabolic behavior of the ancestral strain using a

modified version of Flux Balance Analysis (FBA) known as parsimonious FBA (pFBA),

together with the iJO1366 genome scale metabolic network of E. coli (see Methods).

Flux balance analysis is a computational method for predicting metabolic fluxes for all reac-

tions in a genome-scale metabolic network. Essentially, FBA identifies a flux distribution that

results in maximal biomass growth while fulfilling a set of constraints. These include the

assumption that metabolism operates in a steady-state, where the production and consump-

tion of each metabolite are exactly balanced. The constraints also include assumptions about

the reversibility of reactions, as well as about maximally possible rates of nutrient transport.

Generally, there is multiple alternative flux distributions that fulfill all constrains and permit

maximal growth. Among them, parsimonious FBA [21] identifies the flux distribution that

minimizes the sum of all metabolic fluxes, which can be viewed as a proxy for the total expres-

sion level of metabolic enzymes. In other words, pFBA assumes that a metabolism must

achieve maximal growth subject to minimal cost. This cost minimization increases consistency

between computational predictions and transcriptomic and proteomic data [21].

We applied pFBA to determine the flux distribution of the ancestral strain from which

cross-feeding emerged under the conditions in which its evolution had been observed experi-

mentally [10]. (Further below, we determine the ancestral flux distribution with an alternative

method and show that our observations are robust to the method used to find the ancestral

flux distribution.) Specifically we assumed a chemically minimal environment where sufficient

glucose–the sole carbon source–is available to allow growth at the dilution rate of the chemo-

stat in the experiments that inspired this work (0.2 h-1) [10]. (See methods for details.) Fig 1B

illustrates part of the resulting flux distribution graphically for central carbon metabolism.

After having obtained this ancestral flux distribution we predicted the flux distributions of

the evolved cross-feeding strains. We used the same metabolic network of E. coli (iJO1366) to

model ancestral and cross-feeding strain. This modeling decision reflects the observation that

cross-feeding strains can emerge in little evolutionary time [10,11], and that metabolic differ-

ences between strains are not due to differences in their enzyme-coding genes, but result from

mutations that affect the expression of these genes or the activity of the encoded enzymes. In

addition, we assumed that evolution is most likely to bring forth producer and consumer

strains whose flux distribution differs as little as possible from the ancestor.

We first focused on the origin of the strain that produces acetate. Experimentally, this strain

was found to consume more glucose than the ancestor, and to excrete acetate and glycerol into

the environment. To disentangle the metabolic changes that are required for acetate and glyc-

erol production, we modeled two separate producer strains: an acetate producer and a glycerol

producer. To model the acetate producer strain, we imposed non-zero (1 mmol gDW-1 h-1)

acetate excretion on this strain and allowed the strain to consume more glucose than the

ancestral strain, because it could otherwise not persist in the chemostat. Specifically, we set glu-

cose consumption to the minimal amount required to satisfy the acetate excretion constraint

and to allow growth at the dilution rate value.
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To reflect our parsimony (minimal metabolic change) assumption, we assumed that acetate

production in this strain is achieved via the smallest possible flux rearrangement relative to the

ancestral strain. More specifically, we used Regulatory On/Off Minimization (RooM), an opti-

mization method that finds the flux distribution which minimizes the number of reactions

whose flux needs to change from the ancestral distribution such that the strain can produce

acetate.

Fig 1. Metabolic changes required for the evolution of the acetate and glycerol cross-feeding strains. (A) Minimal number of reactions requiring a change in flux in

the ancestor for acetate and glycerol cross-feeding to evolve. Most reactions requiring a flux change belong to glycolysis and gluconeogenesis, the pentose phosphate

pathway, the citric acid cycle or from transport processes. The remaining reactions (‘others’) come from multiple pathways that comprise oxidative phosphorylation,

alternate carbon metabolism, pyruvate metabolism, glycine and serine metabolism, alanine and aspartate metabolism, folate metabolism, anaplerotic reactions, or that

are unassigned to a pathway. In the table we also include the number of genes associated with the reactions requiring a flux change, the number of operons into which

these genes fall, as well as the number of regulons. (B) Central carbon metabolism of E. coli. Every orange circle represents a metabolite and every line a reaction. Thick

grey lines indicate a non-zero flux in the ancestral strain (|ai|>0.001 mmolgDW-1 h-1). (C) to (F) As in (B), but each panel shows reactions with non-zero flux in cross-

feeding strains (blue for producers, red for consumers) in addition to non-zero fluxes in the ancestor (grey). (S1 Fig allows ‘zooming in’ to see metabolite names,

reaction names, and flux values.) Panels (G) to (J) show, on the left of each panel, the number of reactions that are activated in a producer (blue) or consumer (red)

relative to the ancestor (‘on’), or the reactions that are inactivated relative to the ancestor (‘off’, grey). On the right of each panel, the amount of flux change is shown for

reactions that change their flux relative to the ancestor.

https://doi.org/10.1371/journal.pcbi.1008433.g001
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We modeled the evolution of the second cross-feeding strain, the acetate consumer, analo-

gously. Experimentally, this strain was found to consume glucose but distinguished itself from

the ancestor and the other evolved strains by its large acetate consumption capacity. We mod-

eled the acetate consumer strain by disallowing glucose consumption completely and permit-

ting only acetate consumption, because it allows us to identify the metabolic changes that are

associated with a change in carbon source most clearly. (We also repeated the analysis allowing

the acetate consumer strain to consume both acetate and glucose, which led to the same con-

clusions. See S2 Fig)

Again, we applied RooM to identify the smallest number of reactions whose flux needs to

change to bring forth an acetate consumer strain. We then repeated this entire procedure for

both the glycerol producer and consumer. Fig 1C–1F show the flux through central carbon

metabolism in the producers (in blue) and consumers (in red) on top of the flux distribution

identified for the ancestral strain (in grey). We found that acetate (glycerol) production and

consumption requires changes in fluxes through at least 41 (45) and 60 (43) reactions (Fig 1A

and S1 Text). In other words, the required flux change, even though it is the minimally neces-

sary change, is complex.

This complexity is also evident in different kinds of predicted flux changes. Some reactions

are active (non-zero flux) in the ancestor but inactive (‘off’) in the evolved strain. Other reac-

tions are active (‘on’) only in the evolved strain. Yet other reactions change only their flux mag-

nitude in the evolved strain. Fig 1G–1J show the numbers of reactions in these three

categories. Although the majority of reactions (65–95%) change only their flux magnitude,

between 2 and 21 reactions need to be turned on or off to allow the production or consump-

tion of acetate and glycerol.

In addition to comprising different kinds of changes, the changed fluxes fall into various

metabolic subsystems, including glycolysis and gluconeogenesis, the pentose phosphate

pathway, the citric acid cycle, and transport (Fig 1A). Thus, it is unlikely that they could be

brought forth by one or few mutations, an assertion that is corroborated by our next

analysis.

To find out how flux changes might be related to genetic changes, we used the Gene-Pro-

tein-Reaction association (GPR) map available for the metabolic model of E. coli iJO1366. The

GPR map is only one-to-one in the simplest case, where a gene product catalyzes one reaction.

Alternatively, a gene product may catalyze more than one reaction; the products of multiple

genes may be needed to catalyze one reaction; or the products of different genes may catalyze

the same reaction. The 41 reactions requiring a flux change to bring forth acetate producer

strain are linked to 90 genes, which fall into 52 operons and 35 regulons. Fig 1A shows the

number of genes, operons and regulons associated with the reactions requiring a flux change

for the evolution of the acetate consumer and glycerol cross-feeding strains. The changes

involve multiple operons and regulons. Consistent with the prediction that one or few muta-

tions could not bring about all these changes, experimentally evolved cross-feeding strains har-

bored hundreds of mutations. Multiple repeatedly mutated genes [13] were involved in

glycolysis and gluconeogenesis, the TCA cycle, and transport, which are three of the subsys-

tems where we also observe most of the reactions changes. Only a limited number of mutated

genes [13] directly map onto metabolic reactions that we predict to require a flux change (S3

Text and S1 File), and transcriptomic changes [13,14] also show very limited agreement with

computational predictions (see S3 Text, S3 Fig and S2 File). This is unsurprising, because of

the ambiguity of gene-reaction associations, and because gene expression change poorly

reflects metabolic flux change for several reasons, for example because mRNA and enzyme

abundance correlate poorly [22–27].
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Acetate and glycerol cross-feeding does not require exceptionally little

metabolic change

A previous analysis of the metabolic network of E. coli showed that 56 distinct cross-feeding

interactions other than the experimentally described glucose-acetate and glucose-glycerol

interactions can evolve and lead to stable polymorphic communities [28]. (Note that our work

only considers cross-fed metabolites that can either diffuse through the cell membrane or that

can be excreted or imported by an E. coli transport protein.) This raises the question why only

the latter two types of cross-feeding polymorphisms have been described. One possible answer

is that the evolution of acetate and/or glycerol cross-feeding requires fewer metabolic changes

than cross-feeding involving other metabolites, and is thus more likely to evolve. To find out,

we repeated the analysis from the previous section, but replaced the secondary carbon sources

acetate and glycerol with each of the other 56 metabolites that could potentially be cross-fed.

The minimal metabolic distances between ancestor and producer, as well as between ances-

tor and consumer, as obtained with RooM, are shown in Fig 2A. The mean producer-ancestor

distance equaled 57±15 reactions with changed flux. The corresponding consumer-ancestor

distance equaled 62±17 reactions. In 41 out of the 58 cross-fed metabolites (those situated

above the diagonal in Fig 2A), the producer of a given metabolite can evolve more easily than

its consumer, requiring fewer flux changes. The correlation observed between ancestor-pro-

ducer and ancestor-consumer distances can be explained by the large overlap of reactions

requiring a flux change during the evolution of producer and consumer strains, even though

the magnitude and direction of the change differs between producer and consumer (S1 Text).

Fig 2B shows 58 carbon sources ranked by the likelihood that cross-feeding evolves for them.

Based on our minimal change criterion, cross-feeding of 18 carbon sources can evolve more easily

than acetate cross-feeding–it requires fewer reaction changes in producer and consumer. In con-

trast, cross-feeding of only three carbon sources is easier to evolve than glycerol cross-feeding. In

sum, acetate and glycerol are not exceptional in their potential to evolve in cross-feeding.

Thus far, we have used the sum of the ancestor-producer and ancestor-consumer distances

as a proxy of the likelihood of the cross-feeding interaction to evolve. By doing so we are inher-

ently assuming that producers and consumers evolve independently from each other. This is

strictly not correct, because the producer needs to evolve before the consumer does, otherwise

the consumer will lack a carbon source on which to feed. However, because a more complex

model (S5 Text) yields essentially identical predictions (see S5 Fig), we will continue to use the

sum of metabolic distances below.

Fig 2B uses bars with different colors to distinguish reactions that are activated (‘turned

on’), inactivated (‘turned off’), and that change flux magnitude relative to the ancestor. Just as

for acetate and glycerol cross-feeding (Fig 1G–1J), most reactions change their flux quantita-

tively rather than qualitatively (being turned on or off). Of special interest are those reactions

that change flux qualitatively, because it is possible that such flux change is more difficult to

achieve genetically, for example because fewer mutations eliminate a gene than modulate its

activity [29]. For acetate cross-feeding to emerge, 23 reactions are turned on or off, a number

that is lower for five other carbon sources. Likewise, for glycerol-cross feeding to emerge, 20

reactions are turned on or off, a number that is lower in four other carbon sources. Thus, even

if the number of reactions turned on or off were the most appropriate measure of metabolic

distance, acetate and glycerol cross-feeding would not be exceptional in their metabolic dis-

tance to the ancestor. Cross-feeding of other carbon sources requires even fewer qualitative

changes than cross-feeding of acetate and glycerol.

The reactions which change flux overlap to some extent across different cross-fed carbon

sources. Specifically, out of the 2583 reactions present in E. coli model iJO1366, 392 (390)
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reactions are required to change their flux to convert the ancestor into a producer (consumer)

of at least one of the 58 carbon sources. Nine (four) reactions require a flux change for the evo-

lution of every producer (consumer) (see S2 Text for a list of these reactions). 36 (40) changing

reactions are shared among 80% of all producer (consumer) strains. This overlap suggests that

the mutations required to create producer and consumer strains of different metabolites may

also overlap.

In sum, if metabolic distance is an appropriate proxy for the likelihood that cross feeding

evolves, acetate and glycerol cross-feeding are not exceptionally likely to evolve compared to

cross-feeding on 56 other carbon sources. This is further supported by our observation that

the reactions that require a flux change for the evolution of producers or consumers overlap

among different cross-fed carbon sources.

Fig 2. Metabolic distance between the ancestor and cross-feeding strains. (A) The ancestor-producer and ancestor-consumer distances (measured as the number of

reactions requiring a flux change) obtained when performing RooM are given on the x- and y- axes respectively. Every circle in the plot corresponds to one metabolite

with cross-feeding potential. Acetate and glycerol are shown as orange and green circles respectively. The diagonal line is shown as a visual guide. A circle on the line

indicates that the same number of reactions needs to change their flux to create the corresponding producer and consumer strain. Blue and red histograms show the

distribution of the ancestor-producer and ancestor-consumer distances, respectively. (B) The y-axis shows acronyms for the 58 metabolites that can lead to stable cross-

feeding interactions, ranked according to decreasing probability of evolving cross-feeding, as quantified by the total RooM-predicted distance (sum of ancestor-

producer and ancestor-consumer distances) shown on the x-axis. Different bar colors indicate the number of reactions classified as turned ‘on’ in the producer relative

to the ancestor (blue), turned ‘on’ in the consumer relative to the ancestor (red), turned ‘off’ in either the producer or consumer relative to the ancestor (dark grey), as

well as reactions requiring a flux change in either producer or consumer relative to the ancestor (‘flux change magnitude’, in light grey). Black circles show the total

distances obtained when we used RooM-het (explained in the following section) to minimize strain distances.

https://doi.org/10.1371/journal.pcbi.1008433.g002
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Can a heterogeneous ancestral population affect the likelihood that cross-

feeding emerges?

Thus far we assumed that the ancestral population is homogeneous, i.e., it is composed of phe-

notypically identical individuals. This is why we modeled it with a single flux distribution pre-

dicted through pFBA. However, bacterial populations are often phenotypically heterogeneous.

This heterogeneity may arise from genetic differences among individuals in a population, or

from noisy gene expression in genetically homogeneous (isogenic) populations. Likewise, in

the chemostat experiment that inspired this work, the isogenic ancestral strain may have been

phenotypically heterogeneous, or it may have diversified genetically before cross-feeding

emerged. Such heterogeneity can affect ecological and evolutionary processes.

In this section we ask how such heterogeneity might affect the evolution of cross-feeding.

To this end, we developed a method we call “RooM-het” which allows us to identify the cross-

feeding strains that most likely evolve from a heterogeneous ancestral population. As opposed

to RooM, RooM-het does not use a single (ancestral) flux distribution as reference. Instead, it

identifies two minimally distant flux distributions simultaneously, each fulfilling a different set

of constraints (See Fig 3A and ‘Methods‘ for details).

We applied RooM-het to identify producer and consumer strain for each of our 58 carbon

sources that can lead to cross feeding. Assuming a heterogeneous ancestral population led to a

lower distance to the ancestor in producer and consumer strains. However, the distance reduc-

tion was only modest (two changed reactions on average, S6 Fig). As in the previous section,

we used the sum of the ancestor-producer and ancestor-consumer distances as a proxy of the

likelihood that the different cross-feeding interactions emerge. The black circles in Fig 2B

show the total distance to the ancestor as obtained with RooM-het. Taking into account popu-

lation heterogeneity affects the likelihood of cross-feeding only modestly, changing the rank of

acetate (glycerol) cross-feeding from 19-th (4-th) to 18-th (5-th) most likely to evolve. Thus,

Fig 3. Impact of a heterogeneous ancestral population on the evolutionary outcome. (A) Explanation of the RooM and RooM-het methods. The figure shows a

hypothetical flux space where the fluxes through reaction i (Ji) and j (Jj) are shown. Different carbon source consumption and production rates impose different

constraints that affect the allowable solution space of ancestor, producer and consumer strains differently. The allowable solution space corresponds to the space of flux

distributions that fulfill a set of constraints, here shown as grey, blue and red areas for the ancestor, producer and consumer respectively. To perform RooM we first

identified an ancestral flux distribution with pFBA (here represented as the grey circle labeled ApFBA). We used this flux distribution as a reference to identify the

producer (blue circle labeled PROOM) and consumer (red circle labeled CROOM) flux distributions that would require the minimal number of flux changes. In contrast,

RooM-het requires no ancestral reference flux distribution. When using this method to identify a producer flux distribution, the method returns two flux distributions,

one that satisfies all the constraints of being a producer, and another that satisfies all the constraints of being an ancestor. The same holds when predicting a consumer

flux distribution. In the figure, the resulting producer and consumer flux distributions are shown as blue and red circles labeled PROOM−het and CROOM−het. The two

distinct ancestral flux distributions that result when identifying the producer and consumer distribution are labeled AROOM−het. (B) Sum of the ancestor-producer and

ancestor-consumer distances (vertical axis) as a function of the glucose consumed by the ancestral population (horizontal axis). Predictions for acetate and glycerol are

shown in orange and green, respectively. Grey circles correspond to predictions for one of the twenty metabolites with a predicted likelihood of being subject to evolved

cross-feeding greater than that observed for acetate when either RooM or RooM-het are performed at the minimal glucose consumption rate of 2.14 mmol gDW-1 h-1.

https://doi.org/10.1371/journal.pcbi.1008433.g003
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acetate and glycerol cross-feeding are not especially likely to evolve even when heterogeneous

ancestral populations are considered. This result also suggests that our initial results (Fig 1) are

insensitive to the ancestral flux distribution used.

Greater glucose consumption can modify the likelihood of cross-feeding

interactions to emerge

Thus far, we assumed that the ancestral strain was maximally efficient in consuming glucose,

that is, it consumed the minimal amount of glucose required for persistence in the chemostat

at a dilution rate of 0.2 h-1. Reducing this efficiency, that is, allowing more than this minimal

glucose consumption, may affect metabolism in multiple ways [30]. It may open alternative

ways of metabolizing carbon, increase the production of waste products, and in doing so,

increase population heterogeneity. Here we explore how such increased glucose consumption

may affect the likelihood of observing different cross-feeding interactions. We focus on 20

metabolites, which comprise acetate and the 19 metabolites (including glycerol) whose likeli-

hood to be cross-fed is higher than acetate based on either RooM or RooM-het.

In this analysis, we employed again RooM-het but now we varied the ancestral glucose con-

sumption from the minimum required for growth at 0.2 h-1(2.14 mmol gDW-1 h-1) to a value

of 3.1 mmol gDW-1 h-1, which corresponds to the glucose consumption required by the gluco-

nate (glcn) producer strain, which has the highest glucose requirement.

As the ancestor consumes increasing amounts of glucose, the metabolic change required

for the emergence of producer and consumer strains decreases substantially (S7 Fig). For

example, when glucose consumption is minimal (2.14 mmol gDW-1 h-1) the mean ancestor-

producer distance for the twenty metabolites of interest equals 41±7 changed reactions, which

reduces to 25±8 reactions when glucose consumption increases by only 7% (2.3 mmol gDW-1

h-1). This ancestor-producer distance declines to zero for all carbon sources above some

threshold of glucose consumption, meaning that the ancestor already produces the cross-fed

metabolite without any flux change when it consumes a sufficient amount of glucose. The

mean ancestor-consumer distance also decreases substantially (from 44±10 to 29±6 reactions

with a 7% increase of glucose consumption), but it generally does not decline to zero. The rela-

tive proportion of reactions that are activated, inactivated, or that merely changed flux magni-

tude relative to the ancestor does not change as glucose consumption increases (S7 Fig).

In sum, ancestor-producer and ancestor-consumer distances become smaller when the

ancestor can consume more glucose than minimally necessary to persist in the chemostat. Fig

3A provides a geometric intuition for this observation. Increasing glucose consumption by the

ancestral strain results in a larger allowable solution space for this strain (grey area in Fig 3A),

because the carbon it consumes can be metabolized in a greater number of alternative (and

possibly less efficient) ways. As the allowable solution space for the ancestor increases, the dis-

tance to the producer’s and consumer’s solution space cannot increase as well—it can only

remain unchanged or decrease.

The extent to which ancestor-producer and ancestor-consumer distances decrease when

the ancestor consumes more glucose depends on the cross-fed metabolite (Fig 3B). This

dependency may also affect the ranking of metabolites most likely to be involved in the evolu-

tion of cross-feeding as glucose consumption changes. For example, Spearman’s correlation

coefficient of these ranks varies from a minimum of 0.42 (when changing glucose consump-

tion from 2.3 to 2.5 mmol gDW-1 h-1) to a maximum of 0.89 (when changing glucose con-

sumption from 2.7 to 2.9 mmol gDW-1 h-1). Acetate cross-feeding evolution ranks highest

among all glucose consumption rates (i.e., it shows the lowest distance to the ancestor) when

glucose is consumed at a rate of 2.5 mmol gDW-1 h-1 (orange circles in Fig 3B). Even then,
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however, cross-feeding involving dihydroxyacetone (dha), D-gluconate (glcn), glycolate

(glyclt) and glyceraldehyde (glyald) are more likely to evolve. Glycerol ranks highest (fourth)

at a glucose consumption rate of 2.3 mmol gDW-1 h-1(green circles in Fig 3B), where it is out-

ranked by dihydroxyacetone (dha), glyceraldehyde (glyald), and 5-dehydro-D-gluconate

(5dglcn).

In sum, even at elevated glucose consumption, cross-feeding of several metabolites is more

likely to evolve than cross feeding of acetate and glycerol. However, this likelihood is sensitive

to glucose consumption, which shows that interactions between a metabolism and its environ-

ment are critical to determine the likelihood that cross-feeding emerges.

Discussion

Based on our previous predictions that 58 different metabolites can sustain stable communities

of cross-feeding E. coli bacteria which emerge in a glucose limited chemostat [28], we here

identified the minimal amount of metabolic change (numbers of reactions with changed meta-

bolic flux) required for the emergence of each such cross-feeding interaction. We used this

amount of change as a proxy for the likelihood of cross-feeding to evolve, with more change

implying a lower likelihood of evolution. Regardless of the cross-fed carbon source, the

required change was complex. It involved multiple biochemical reactions, metabolic pathways,

operons, and regulons. These observations are consistent with a large number of mutations

and regulatory changes observed in experimentally identified cross-feeding communities

[13,16].

Most importantly, our analysis predicts that the experimentally observed cross-fed metabo-

lites acetate and glycerol are not the most likely to be involved in cross-feeding interactions.

Multiple other metabolites can evolve cross feeding through similar or less metabolic change.

This prediction is independent of how we quantified the amount of metabolic change (S4 Text

and S4 Fig), how we computed the likelihood of cross-feeding to emerge (S5 Text and S5 Fig),

or whether we took the heterogeneity of an ancestral population into account (S6 Fig). How-

ever, we note that the amount of metabolic change required to evolve cross feeding interac-

tions is sensitive to the amount of glucose consumed by the ancestral population, and the

extent of this sensitivity depends on the cross-fed metabolite. Thus, the likelihood to evolve

cross-feeding depends not only on the reaction complement of a metabolism, but also on

interactions between this metabolism and the environment.

For two reasons, cross-feeding may emerge more easily in chemostats than in batch culture.

First, theory shows that for cross-feeding to evolve in batch cultures, the secondary carbon

source has to be produced at a high rate [31], which reduces the likelihood that cross-feeding

emerges. Second, in chemostats operating at low dilution rates (such as the ones we are consid-

ering) mutants with high affinity for the available carbon source are favored and will accumu-

late in the population [32–34]. Because such mutants consume a lot of the carbon source, they

may not metabolize all of it completely, and may thus excrete metabolic by-products (similarly

to what occurs in overflow metabolism [35]). In other words, just as for our analysis of excess

glucose consumption, producer strains can emerge with little or no metabolic flux changes,

which also facilitate the emergence of consumer strains (Fig 3B).

Our analysis has two main limitations. First, we assumed that the most frequently evolving

producers and consumers are those requiring the least amount of metabolic change, which we

used as a proxy for the smallest amount of genetic change. However, it is well known that the

relationship between genetic and phenotypic (metabolic) change is not straightforward.

Whereas some DNA mutations may affect only one biochemical reaction, others may affect

multiple reactions. What is more, the same amount of phenotypic change in different
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individuals may be caused by different numbers or kinds of mutations [15,17,19,36,37].

Although these factors will reduce any association between metabolic change and genetic

change, one would expect some statistical association between the two whenever multiple

mutations must be responsible for the observed phenotypic change. This is probably the case

for cross-feeding, where the minimal metabolic changes affect dozens of reactions in multiple

biochemical pathways, modulating them and their regulation–which is driven by multiple reg-

ulons and operons–both qualitatively and quantitatively.

Second, we tacitly assumed that genetic change causes the metabolic differences leading to

cross-feeding. However, phenotypic plasticity may also be involved, especially for the con-

sumer strain. Once a producer strain has evolved and excreted a new metabolite, other individ-

uals in the population may sense the new metabolite and respond accordingly, possibly

through a change in gene regulation that does not require mutations. Such plasticity may be

important for yet-to-be-discovered instances of cross-feeding, but we know that it is not solely

responsible for experimentally characterized cross-feeding interactions. For example, muta-

tions in the regulatory region of gene acs, which expresses the enzyme acetyl CoA synthetase

needed for acetate uptake, occurred in all acetate consumer strains that evolved in parallel che-

mostat experiments [15]. Such parallel evolution indicates that the mutations may be required

for the evolution or maintenance of cross-feeding interaction [38]. Similarly, three mutations

are required when the acetate consumer strain that evolved in batch experiments is to invade

and coexist with the acetate producer strain [16].

There may be several reasons why only acetate and glycerol cross-feeding have been

observed experimentally, even though multiple other carbon sources may be just as likely to

evolve cross-feeding. First, we cannot exclude that other cross-feeding interactions did evolve

but went undetected, because detecting cross-feeding requires extensive genetic and biochemi-

cal analysis. In addition, cross-feeding strains must reach a sufficiently high population fre-

quency to become detectable. In previous work [28] we showed that about half of the

metabolites we study here would support lower community biomass than acetate cross-feed-

ing. Thus, the frequency of some cross-feeding strains in a population may be low and hard to

detect (see S6 Text and S9 Fig). Second, the excretion of some metabolites may have negative

effects on growth if the metabolite is toxic or if it changes the pH of the environment in unfa-

vorable ways. Third, we cannot rule out that the consumption of acetate or glycerol might give

an advantage to the consumer strain that derives from more than just their role as carbon

sources. A precedent for this possibility exists [39]. When a population of yeast cells auxotro-

phic for lysine encountered lysine limitation, coexistence of the ancestral lysine auxotroph

strain and a mutant organosulfur auxotroph repeatedly evolved. The organosulfur auxotroph

strain persisted in the population, because it consumed organosulfurs excreted by the ancestral

strain. Organosulfur auxotrophy conferred an advantage to the mutant strain, because it

recovered the proper nutrient-driven growth regulation that had been impaired in the ances-

tral strain [39]. Fourth, cross-feeding interactions may be transient. Given sufficient time, a

generalist strain that combines maximum glucose uptake with the ability to recover a second-

ary metabolite could evolve [40,41]. Evolution experiments in environments alternating

between pairs of carbon sources showed that such generalists evolve when both carbon sources

are metabolized in similar ways, whereas specialists evolved when carbon sources are metabo-

lized differently [42]. Based on this observation, one would expect that a generalist might

replace a cross-feeding polymorphism if glucose and the cross-fed metabolite are metabolically

similar. Fifth, the evolution of acetate and glycerol cross-feeding in the chemostat experiments

may have been facilitated by the initial genotype. The reason is that the ancestral genotype in

these experiments harbored regulatory mutations that prevented cells from recovering

excreted acetate and overexpressed the glycerol regulon [14,15].
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In this contribution, we only studied 58 cross-feeding interactions that can evolve in a sin-

gle minimal glucose-limited environment. Hundreds or thousands of other cross-feeding

interactions can evolve in minimal environments with different primary carbon sources [28],

and many more interactions are conceivable in complex environments. To validate such

cross-feeding predictions through long term evolution experiments that directly assay for such

cross-feeding remains an important task for future work. However, even if only a small frac-

tion of these interactions can be experimentally verified, cross-feeding will emerge as an

important source of biodiversity in unstructured and homogeneous environments.

Methods

Flux balance analysis (FBA)

Flux balance analysis (FBA) is a computational method to predict metabolic fluxes–the rate at

which chemical reactions convert substrates into products–of all reactions in a genome-scale

metabolic network [43]. It has been successfully used in many applications, for example to

study bacterial growth in different environments [44] or in response to gene deletions [45].

FBA requires information about the stoichiometry of chemical reactions in a metabolic net-

work. It makes two central assumptions. The first is that cells are in a metabolic steady-state.

The second is that cells effectively optimize some metabolic property such as biomass produc-

tion (growth). Additional constraints can be incorporated into the optimization problem that

FBA solves, in order to account for the thermodynamic and enzymatic properties of a net-

work’s biochemical reaction. The optimization problem that FBA solves can be formalized as a

linear programming problem [43,46] in the following way:

Max vgrowth

s:t: Sv ¼ 0

li � vi � ui

Here, S is the stoichiometric matrix, a matrix of size m×r that mathematically describes the

stoichiometry of the modeled network’s metabolic reactions. The integer m denotes the num-

ber of metabolites, and r denotes the number of biochemical reactions in the network. These

reactions include all known metabolic reactions that take place in an organism, which are

called internal reactions. They also include reactions that represent the exchange (import or

export) of metabolites with the external environment. Furthermore, they include a biomass

growth reaction, which is a “virtual” reaction that reflects in which proportion biomass precur-

sors are incorporated into the biomass of the modeled organism [20,43,46]. Each entry Sij of

the stoichiometric matrix contains the stoichiometric coefficient with which metabolite i par-

ticipates inreaction j. The vector v is a vector (of size r) whose entries vi represent the metabolic

flux through reaction i in the network. vgrowth specifies the flux through the biomass growth

reaction. Fluxes through biochemical reactions are restricted by lower and upper bounds that

constrain the flux through each reaction in the network. These bounds are given by the vari-

ables l and u, respectively, which are vectors of size r.

Identification of the flux distribution that characterizes the ancestral strain

Cross-feeding interactions evolve when E. coli cells are grown in a glucose-minimal chemostat

environment [10]. In this experiment, the ancestral strain, i.e., the strain present at the

PLOS COMPUTATIONAL BIOLOGY Evolution of cross-feeding interactions in E. coli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008433 November 30, 2020 13 / 21

https://doi.org/10.1371/journal.pcbi.1008433


beginning of the experiment, is able to grow at a rate equal to the dilution rate of the chemostat

(0.2 h-1) while consuming the only carbon source present (glucose).

Mirroring these conditions, we used the genome scale metabolic model of E. coli iJO1366

[20] and simulated a minimal chemical environment containing glucose as the sole source of

carbon. We set glucose consumption to a maximum of 10 mmol gDW-1 h-1, an arbitrary value

based on typical glucose uptake rates in E. coli [20,46]. We assumed that ammonium, calcium,

chloride, cobalt, copper, iron, magnesium, manganese, molybdate, nickel, oxygen, phosphate,

potassium, protons, sodium, sulphate and zinc are present in non-limiting amounts. More-

over, we assumed that our (simulated) ancestral strain was able to grow at a dilution rate of 0.2

h-1. Then, we used parsimonious Flux Balance Analysis (pFBA) [21] to identify the flux distri-

bution that best describes the ancestral strain.

pFBA is a variation of FBA. It embodies the hypothesis that organisms have evolved the abil-

ity to grow at a maximally possible rate but at a minimal cost, for example, in the form of

enzyme expression. Its predictions are more accurate than those obtained with traditional FBA

[21]. pFBA identifies the flux distribution that satisfies a given growth rate (for example growth

at the chemostat dilution rate) while minimizing the sum of all fluxes—a proxy for the total

energetic cost of expressing enzymes and transporters. This optimization can be formalized as:

Min
X
jaij

s:t: Sa ¼ 0

li � ai � ui

agrowth ¼ 0:2

We performed pFBA in python, using the cobrapy package [47].

Using pFBA we identified a flux distribution (a for ancestral) that satisfies the growth rate

and glucose consumption constraints while minimizing the total flux. With this flux distribu-

tion, the E. coli metabolism supports growth at the dilution rate of 0.2 h-1, and completely oxi-

dizes 2.1 mmol gDW-1 h-1 of glucose consumed, excreting carbon dioxide as the sole carbon

containing metabolite.

Regulatory on/off Minimization (RooM)

RooM was originally proposed [48] to study the effects of genetic perturbations on a metabo-

lism. In the present work, we used RooM to identify the evolved flux distributions, utilizing

the ancestral flux distribution, obtained with pFBA, as a reference. RooM identifies a flux dis-

tribution that fulfills a set of constraints while minimizing the number of reactions whose flux

changes relative to a reference flux distribution. It solves a mixed integer linear programming

problem that can be formalized as follows:

Min
X

f internali

s:t: Se ¼ 0

fi 2 f0; 1g

li � ei � ui
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ei � fiðui � ðai þ bÞÞ � ai þ b

ei � fiðli � ðai � bÞÞ � ai � b

As in FBA and pFBA, S is the m×r stoichiometry matrix and li and ui are lower and upper

bounds, respectively, that constrain the flux through each reaction in the network according to

thermodynamic and capacity constraints. fi is a binary variable. It takes a value of 1 if reaction i
shows a substantial change in flux ei relative to the reference flux ai and zero otherwise, where

β specifies the amount of flux change that is considered substantial. We used an arbitrary value

of β = 0.001 mmol gDW-1 h-1, as in [48]. However, we note that our observations are not sensi-

tive to this value of beta: Changing β by up to 25-fold showed only slight differences in the

results (see S8 Fig). In our simulations, the reference flux distribution a corresponds to the

ancestral flux distribution obtained with pFBA. We considered only flux changes in internal

reactions (f internali ) for optimization with RooM, and performed RooM in python with the opti-

mization solver Gurobi [49].

RooM-het

We propose a new optimization method that we named RooM-het. We used this method to

identify the ancestral and evolved flux distributions, assuming that these distributions may be

heterogeneous in ancestral and evolved populations.

In contrast to RooM, no single flux distribution is required as a reference to perform

RooM-het. Instead, RooM-het identifies two flux distributions with a minimal distance from

each other, where each distribution fulfils a set of constraints. As in RooM, this distance refers

to the number of reactions with a significant flux difference between the two distributions.

The optimization procedure can be written as:

Min
X

f internali

s:t: Sa ¼ 0

Se ¼ 0

f 2 f0; 1g

lai � ai � ua
i

lei � ei � ue
i

ei � fiðu
a
i � ðai þ bÞÞ � ai þ b

ei � fiðl
a
i � ðai � bÞÞ � ai � b

Once again, S corresponds to the m×r stoichiometry matrix. fi is a binary variable that takes

a value of 1 when the flux through reaction i shows a substantial change between ai and ei, and

zero otherwise. Like in RooM, β (with β = 0.001) specifies the amount of flux change that is

considered substantial. lai and ua
i are lower and upper bounds, respectively, on the fluxes in the

ancestral flux distribution. They constrain the flux through each reaction in the network
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according to thermodynamic and capacity constraints. Similarly, lei and ue
i are lower and upper

bounds on the fluxes in the evolved flux distributions. Differences in the carbon sources that

the various strains consume or produce are introduced by adjusting these bounds.

In contrast to RooM, where the ancestral flux distribution is first calculated with pFBA and

then used as reference, with this method the ancestral flux distributions a and the evolved flux

distribution e strains are identified in the same optimization procedure. Repeating the optimi-

zation in order to identify different evolved flux distributions may result in the identification

of different ancestral flux distributions. This is why this method can account for potential flux

heterogeneity in the ancestral population. We solved RooM-het using the optimization solver

Gurobi [49].
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umns labeled ‘Gene id’ and ‘Gene name’ respectively). If a gene was found to be mutated in

the chemostat experiments (Kinnersley et al. 2014) we indicate the number of mutations

found in the gene (columns labeled ‘Mutations (# hits)’).
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S2 File. Experimentally observed data on gene expression changes for the 72 E. coli meta-

bolic genes whose expression changed in at least one of the cross-feeding strains. The table

includes the Blattner id for each gene (column B), the gene’s expression change in the acetate

consumer (column C), in the acetate and glycerol producer (column D), in the two glycerol

consumer strains (columns E and F), as well as the reactions associated with each gene (col-

umn G).
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S1 Fig. Metabolic changes required for the evolution of the acetate and glycerol cross-feed-

ing strains. Like Fig 1, the network corresponds to the central carbon metabolism of E. coli.
Every orange circle represents a metabolite, and every line a reaction. Thick grey, blue and red

lines indicate a non-zero flux in the ancestral, producer and consumer strains respectively.

Unlike Fig 1, one can zoom into this figure to see metabolite names, reaction names, and flux

values.

(PDF)

S2 Fig. Comparison of ancestor-consumer distances and B) the sum of ancestor-producer

and ancestor-consumer distances when the consumer strains consume (A) only the specific

secondary carbon source or (B) both glucose and the secondary carbon source. The x-axes

show the ancestor-consumer and total distances obtained when the consumer strains cannot

consume glucose but only the specific secondary carbon source (see also Fig 2A and 2B). The

y-axes show the same distances but obtained when the consumer strain consumes 1 mmol

gDW-1 h-1of glucose and the respective secondary carbon source in amounts that allow growth

at 0.2 h-1. The ancestor-producer distances used to calculate the total distances shown in (B)

are those shown on the x-axis of Fig 2A. Every grey circle represents one of 56 metabolites that

can be cross-fed. Acetate and glycerol are shown as orange and green circles, respectively.

Even though the ancestor-consumer distances change when the consumer strains consume

glucose in addition to their specific secondary carbon source, the main conclusion of this work

do not change: Multiple changes are required for any cross-feeding interaction to evolve, and

cross-feeding of multiple metabolites may evolve with higher likelihood than acetate and glyc-

erol cross-feeding.

(PDF)

S3 Fig. Comparison of gene expression data of the cross-feeding strains experimentally

evolved in glucose minimal chemostats with computationally predicted flux changes. The

light grey areas in figures (A) to (E) show the number of genes found to be up-regulated,

down-regulated, or unchanged in expression for the experimentally observed acetate producer

CV103, the acetate consumer CV101, the glycerol producer CV103, and the two glycerol con-

sumer strains CV115 and CV116. The numbers above the grey bars add up to the total number

of genes included in the metabolic model of E. coli iJO1366 (1367). Green and orange bars

show the genes predicted to be up-regulated, down-regulated or unchanged, based on flux

changes for reactions associated with these genes, as predicted by (from left to right) RooM,

MoMA, minimizing reaction subsets, and RooM-het. Green bars (overlapping the grey area)

indicate the number of genes correctly predicted to be up-regulated, down-regulated, or

unchanged (true positives). Orange bars indicate the number of genes computationally pre-

dicted but not experimentally observed to be up-regulated, down-regulated, and unchanged

(false positives). (F) Summarizes the data shown in (A) to (E). For each strain (rows) and each

gene category and prediction method (columns), the two numbers separated by a dash indicate

the number of true positives and false positives. ‘�’ indicates p<0.05, and ‘��’p<0.01, based on

a Fisher’s exact test of the null-hypothesis that the number of genes correctly predicted to be

up-regulated, down-regulated, or unchanged can be attributed to chance alone.

(PDF)

S4 Fig. Comparison of the ancestor-producer, ancestor-consumer and total distances

obtained when using different methods to identify flux distributions of cross-feeding

strains. In figures (A) to (C) flux distribution distances predicted by MoMA (on the y-axis)

are compared with distances predicted by RooM (on the x-axis). The ancestor-producer dis-

tance, the ancestor-consumer distance, and the total distance (sum of ancestor-producer and
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ancestor-consumer distances) are shown in panels (A) to (C), respectively. Every grey circle

represents one of 56 metabolites that can be cross-fed. Acetate and glycerol are shown as

orange and green circles. Panels (D) to (F) are analogous to (A) to (C), but their y-axes show

the distances predicted when minimizing the number of co-regulated reaction subsets that

change expression.

(PDF)

S5 Fig. Estimates of likelihood of cross-feeding to evolve considering the evolution of pro-

ducer and consumer strains are not independent events. (A) The cumulative probability for

the evolution of cross-feeding interactions as calculated with Eq (2) from S5 Text is plotted

against time (in generations). Every grey line corresponds to a prediction for a different metab-

olite subject to cross-feeding. Predictions for acetate and glycerol are shown in orange and

green, respectively. (B) Comparison of two proxies of the likelihood that cross-feeding evolves.

The x-axis shows the sum of the producer-ancestor and consumer-ancestor distances, which is

the proxy used in the main text. The y-axis shows the cumulative probability of cross-feeding

to evolve after 100 generations, according to the model from S5 Text, which takes into consid-

eration that the evolution of producer and consumer may not be independent events. Every

grey circle represents a prediction for a different metabolite subject to cross-feeding. Orange

and green circles correspond to predictions for acetate and glycerol, respectively. The two

proxies for the likelihood to evolve cross-feeding are highly correlated (Spearman’s r = 0.99,

P = 9.7e-74, n = 58).

(PDF)

S6 Fig. RooM-het and RooM distances comparison. (A) Ancestor-producer distances pre-

dicted with RooM and RooM-het are shown on the x and y-axes respectively. Every circle cor-

responds to one produced metabolite. The diagonal line indicates equal distances. (B) As in

(A) but for predicted ancestor-consumer distances and for consumed metabolites.

(PDF)

S7 Fig. The x-axes in all panels show the maximal amount of glucose consumed by the

ancestor. As a function of this quantity, (A) and (B) show the predicted distance of the ances-

tor to the producer and consumer, respectively. Among all reactions with a change in flux, (C),

(E) and (G) show the fraction of reactions that are turned ‘on’, ‘off’ and that change the flux

quantitatively in the producer relative to the ancestor, respectively; (D), (F) and (H) are analo-

gous to (C), (E) and (G), but for the reactions that require a flux change in the consumer rela-

tive to the ancestor. Each set of six grey circles connected by a grey line corresponds to

simulation data for one of the twenty metabolites with a predicted likelihood of being subject

to evolve cross-feeding greater than that for acetate when either RooM or RooM-het are per-

formed at the minimal glucose consumption rate of 2.14 mmol gDW-1 h-1. Predictions for ace-

tate and glycerol are shown as orange and green circles, respectively.

(PDF)

S8 Fig. The figure shows the ancestor-producer and ancestor-consumer distances (y-axis

in the upper and lower panel respectively) predicted by RooM for all 58 cross-feeding

strains, using three different values of the parameter beta, which is used in RooM to spec-

ify the amount of flux change that is considered substantial (increasing distance in one

unit). The data shows that changing beta from its default value (0.001 mmol gDW-1 h-1, green

circles) to a fifth of this value (0.0002 mmol gDW-1 h-1, yellow circles), or to five times this

value (0.005 mmol gDW-1 h-1, grey circles) has very little effect on the predicted distances.

(PDF)
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S9 Fig. The horizontal axis shows the total metabolic distance to the ancestor found with

RooM (as in Fig 2B). On the vertical axis, colored circles next to each metabolite’s acronym

indicate the product of maximal metabolite production and biomass yield, where the same

color code as in Fig 2 from [28] is used. Specifically, community biomass increases from yellow

to green to blue. The figure shows that cross-feeding interactions whose evolution requires few

metabolic changes (i.e., low ancestor-producer plus ancestor-consumer distances) usually

result in high community biomass (blue circles). Pink circles indicate carbon sources that E.

coli can excrete when growing in glucose minimal medium [50].

(PDF)
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