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ABSTRACT
The General AMBER Force Field (GAFF) has been broadly used by researchers all over the world to perform in silico simulations and
modelings on diverse scientific topics, especially in the field of computer-aided drug design whose primary task is to accurately pre-
dict the affinity and selectivity of receptor–ligand binding. The atomic partial charges in GAFF and the second generation of GAFF
(GAFF2) were originally developed with the quantum mechanics derived restrained electrostatic potential charge, but in practice, users
usually adopt an efficient charge method, Austin Model 1-bond charge corrections (AM1-BCC), based on which, without expensive ab
initio calculations, the atomic charges could be efficiently and conveniently obtained with the ANTECHAMBER module implemented
in the AMBER software package. In this work, we developed a new set of BCC parameters specifically for GAFF2 using 442 neutral
organic solutes covering diverse functional groups in aqueous solution. Compared to the original BCC parameter set, the new parameter
set significantly reduced the mean unsigned error (MUE) of hydration free energies from 1.03 kcal/mol to 0.37 kcal/mol. More excit-
ingly, this new AM1-BCC model also showed excellent performance in the solvation free energy (SFE) calculation on diverse solutes in
various organic solvents across a range of different dielectric constants. In this large-scale test with totally 895 neutral organic solvent–
solute systems, the new parameter set led to accurate SFE predictions with the MUE and the root-mean-square-error of 0.51 kcal/mol
and 0.65 kcal/mol, respectively. This newly developed charge model, ABCG2, paved a promising path for the next generation GAFF
development.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019056., s

I. INTRODUCTION

In computer-aided drug design (CADD) efforts, especially at
the stages of lead-identification and lead-optimization, a major task
is to accurately predict the binding affinities of receptors (proteins
or nucleic acids) and ligands.1–4 The prediction quality generally

depends on the free energy calculation algorithm and force field
(FF).5 The former includes various efficient end-point free energy
methods, such as LIE and MM-PBSA/GBSA,6–12 and rigorous
alchemical free energy methods, such as TI, FEP, λ-dynamics, and
other advanced-sampling-based methods.13–18 The latter includes
specific macromolecular force fields (FFs)19–23 and general FFs for
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arbitrary compounds, which may be encountered as ligands.24–27 In
the past, the accuracy and transferability issues have challenged the
general FF development. One thought has been moving from addi-
tive fixed-charge models to polarizable models28–33 because the latter
allow the electrostatic effect across different dielectric environments
(from polar to nonpolar) to be naturally handled. While polarizable
FFs are currently undergoing active development, so far they have
been seldom applied on simulating and calculating protein-ligand
binding interactions.30–32 Due to the efficiency requirement, partic-
ularly burdened by the need of a comprehensive description of the
enormous chemical space, classical pair-wise additive FFs based on
fixed point charge models not only are the current main-stream but
also are expected to prevail in the near and a perceivable future.
With the above thought, this work explores whether additive general
FFs can be further optimized to meet the accuracy and transferabil-
ity requirement, for instance reliably treating a range of polar and
nonpolar environments.

The general AMBER force field (GAFF)24,25 is the first gen-
eral FF developed in academia, primarily to model arbitrary organic
molecules. It has been widely applied on a variety of scientific
topics by researchers all over the world. So far it has been cited
more than 7600 times according to the databases of Web of Sci-
ences (https://www.webofknowledge.com, accessed on June 3, 2020)
and more than 9600 times according to Google Scholar Citation
(https://scholar.google.com, accessed on June 3, 2020). Since 2015,
the second generation of GAFF (GAFF2) has been released to the
public via the AMBER program and AmberTools. Related descrip-
tion can be found in the footer of the released gaff2.dat file and
with the completion of the remaining work on representative chem-
ical space expansion and some parameter improvement, the devel-
opment detail is soon to be submitted for publication. In a very
brief summary, compared to GAFF, GAFF2 has updated the bonded
parameters to reproduce molecular geometries, vibrational spectra,
and potential energy surfaces from higher level quantum mechan-
ics (QM) calculations on more model compounds, and updated
the non-bonded parameters to better reproduce ab initio interac-
tion energies and experimental neat liquid properties. Positive feed-
back from users (in private communications and in literature34)
also revealed the encouraging performance of GAFF2 in various
aspects. For example, Slochower et al.34 performed a free energy cal-
culation study on 43 α and β-cyclodextrin (CD) host–guest pairs
with different FFs: GAFF, GAFF2, and SMIRNOFF99Frosst.35 It
was found that GAFF2 “has statistically significant(ly) better cor-
relation with the experimental data” on the binding free energy
and enthalpy, “excellent agreement with experiment on predicted
binding entropy,” and “better model for the flexibility of the CD
cavity” compared to GAFF and SMIRNOFF99Frosst, although the
latter two are “arguably better than GAFF v2.1 on estimated bind-
ing free energies . . . based on the mean signed error relative to
experiment.”

Originally, GAFF was developed based on the restrained
electrostatic potential (RESP)36,37 charge model to assign atomic
charges, which fits atomic charges against the electrostatic poten-
tial (ESP) from the QM calculation at the HF/6-31G∗ level
of theory, just like the AMBER biomolecular FFs21,22 for the
biomolecules. For the fact that ab initio calculations are expensive,
in practice, GAFF users usually adopt the fast semiempirical method
of Austin Model 1 with bond charge corrections (AM1-BCC)38,39

to generate atomic charges. AM1-BCC charges could be efficiently
and conveniently obtained via the ANTECHAMBER40 module of
the AMBER program tools. The basic idea of AM1-BCC is to
use AM1 Mulliken charges to capture primary electronic struc-
tural features of a molecule and then apply a set of additive
bond charge corrections (BCCs) upon AM1 Mulliken charges to
emulate the HF/6-31G∗ ESP. The advantages of AM1-BCC lie
in that not only the process is convenient and efficient (because
ab initio calculations are not necessary) but also the produced atomic
charges are less dependent on the input molecular conformation.
GAFF2 was also developed based on the RESP charge model. It is
reasonable to expect that many users would still prefer employing
the AM1-BCC charge scheme instead of RESP. Therefore, in this
work, we sought to develop an optimized AM1-BCC set for GAFF2.
Specifically, we employed a solvation free energy (SFE) based strat-
egy for this optimization. In our previous development of GAFF and
GAFF2, this important physiochemical property was not directly
targeted in the parameterization process but only employed for later
validation, mostly due to the fact that the SFE calculation is much
more computationally costly than the calculation of density or heat
of vaporization. Indeed, the SFE based strategy has not been com-
monly adopted except for GROMOS 53A623 and 53A6OXY,41 which
considered the SFEs of amino acid analogues and functional groups
containing oxygen, respectively, also as the parameterization target.

SFE is a critical property in physical, chemical, and biological
processes. SFE is closely related to many other important prop-
erties, such as solubility, partition coefficient, membrane perme-
ability, and protein-ligand binding free energy in drug-discovery
projects.42 Generally, the accuracy level of the SFE calculation lim-
its the accuracy expectation for the prediction of the above prop-
erties. For example, the absolute or relative SFE calculation is an
elementary step in the thermodynamic cycle used for the absolute
or relative protein-ligand binding free energy calculation.15 More-
over, a ligand binding process can be viewed as a special dissolu-
tion process; both involve the conformation rearrangement of the
small molecule and relaxation of the environment (solvent or pro-
tein). In certain aspect, the difference between these two processes
only lies in complexity and dielectrics of the corresponding envi-
ronment. Therefore, the SFE calculation is often utilized to test
sampling algorithms and potential energy functions, as the basic
benchmark for binding free energy prediction.5 As a popular force
field, GAFF has also been extensively validated in the aspect of
SFE in water [i.e., hydration free energy (HFE)].43–54 Test studies
have been performed across the diverse categories of the organic
molecules, on different charge models (RESP, or AM1-BCC, or the
commercial Merck-Frosst version of AM1-BCC52–55), and through
various free energy methods in different molecular dynamics (MD)
programs.43–55

In principle, both van der Waals (VDW) parameters and atom
charges can be optimized against SFEs. For instance, Nerenberg
et al.55 and Jämbeck and Lyubartsev56 tried specifically tuning the
VDW interactions between the solute atoms and the oxygen atom
in water with the Lorentz–Berthelot combination rules kept or
abandoned.56 Based on our experience and general expert under-
standing in the field, we prefer to focus on the charge adjustment
because SFEs are more sensitive to atomic partial charges, whilst neat
liquid properties are more sensitive to VDW parameters. There-
fore, the VDW parameters in both GAFF and GAFF2 were mainly
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calibrated against pure liquid properties, such as density and heat
of vaporization. In terms of charge optimization, upon the initial
atomic charge assignment, three options can be taken: (1) reassign-
ing charges based on the higher level of QM theories and basis sets,
(2) applying scale factors, and (3) specifically tuning BCCs. Previ-
ous studies revealed that the atomic charges directly derived from
the higher level of the QM methods can only introduce marginal
improvement to the SFE calculation.57–60 A scale factor applied on
the QM derived atomic charges could improve the overall perfor-
mance on the SFE calculation, but different optimal scale factors may
be needed for different solvents.61 In this study, we chose the strat-
egy of optimizing the specific BCC terms in the AM1-BCC model
to focus the reduction of the systematic errors of SFEs on certain
functional groups, which were identified as the bottleneck of achiev-
ing accurate transfer free energy or binding free energy prediction.
In this work, we (1) for the first time tested the performance of
the original AM1-BCC charge model with GAFF2 on the HFEs of
a large dataset of more than 400 neutral molecules, (2) developed
a new set of AM1-BCC parameters, which significantly improves
the accuracy of the HFE calculations in explicit TIP3P water, and
(3) verified that the new AM1-BCC charge model also has an out-
standing performance on the SFE calculation in various nonpolar
and polar organic solvents, which have different dielectric constants.
The results not only enhanced the capability of the quantitative pre-
diction of key properties in CADD but also paved a feasible way
for the development of the next generation general AMBER force
field.

II. METHODS
A. Dataset preparation

The experimental data of SFEs of the neutral molecules in
water (HFEs) were taken from the FreeSolv v0.52 database,54 and
the experimental data of SFEs in organic solvents were obtained
from the Minnesota Solvation Database v2012.62 The initial struc-
tures of solutes/solvents were taken from the mol2 files in the
FreeSolv v0.52 database or from the xyz files in Minnesota Sol-
vation Database v2012, then were imported to Schrödinger Mae-
stro v11.263 for visual check and necessary manual modification,
such as setting correct bond types for the molecule structures from
the xyz files, and then all the structures were saved in the mol2
format.

B. Force fields and preparation of systems
Geometry optimization in the gas phase was performed for all

mol2 structures by Gaussian 1664 at the Hartree–Fock (HF) level of
theory with 6-31G∗ basis. The Gaussian output files were directed
to ANTECHAMBER40 to generate the corresponding topology files
(containing AM1-BCC atomic charges) and parameter files (includ-
ing bonded terms and VDW terms) using the GAFF2 force field.
The SQM module in Amber Tools was called by ANTECHAM-
BER to produce AM1 charges, which was further modified by the
predefined BCC terms (either original ones or adjusted ones in
this study) to produce the final AM1-BCC atomic charges. When
parameterizing the specific BCC terms, the corresponding values
in the file $AMBERHOME/dat/antechamber/BCCPARM.DAT were

tuned. The organic solvent molecules were processed in the same
procedure as the solute molecules. Water was treated with the
TIP3P65 model.

For each solvent–solute pair system, a single solute molecule
was solvated in a cubic box of pure solvent molecules with the
TLEAP module in AMBER18.66 The size of the simulation box
varies depending on the size of solute and the type of solvents.
The rule of thumb is that the minimum solute-box distance should
be larger than the short-range cutoff (10 Å here) to avoid image
violations. For water solvent, the minimum distance between any
solute atom and an edge of the box was set to 12 Å. For organic
solvents, the initial solution box generated by TLEAP often have
a vacuum space due to the size of solvent molecules and the need
of deleting solvent molecules to avoid steric conflicts (Fig. S4 in
supplementary material). The solution box would shrink after equi-
librium runs. Therefore, the input of the initial thickness of the
solvent shell provided to TLEAP was set individually for differ-
ent solvent–solute pairs to ensure the side sizes of cubic boxes
after equilibration were ∼39 Å, which is enough to get a solvent
shell of at least 10 Å for all of the considered solutes in this
study.

C. Simulation protocols
The thermodynamic integration (TI) modules of both cen-

tral processing unit (CPU) and graphic processing unit (GPU) ver-
sions67–69 implemented in AMBER1866 were adopted to carry out
simulations and calculate the SFEs. Periodic boundary condition and
the isothermal-isobaric NPT ensemble were produced in all simula-
tions, including both the equilibration and production phases. The
temperature was kept at 298 K using Langevin dynamics with the
collision frequency gamma_ln being set to 2.0 ps−1. The pressure
was kept at 1.013 25 bar with Monte Carlo barostat and the pres-
sure relaxation time being set to 2.0 ps. Because the bond constraint
SHAKE algorithm is disabled for TI mutations in AMBER GPU-
TI module pmemdGTI, a time step of 1 fs was used for all MD
simulations. The whole solute molecule was incorporated into the
soft-core region for both VDW and electrostatic interactions.70,71

The default soft-core potential implemented in AMBER18 package66

was applied. The single-step decoupling protocol71 was performed
at nine discrete λ windows (0.015 92, 0.081 98, 0.193 31, 0.337 87,
0.5, 0.662 13, 0.806 69, 0.918 02, and 0.984 08). The energy informa-
tion was saved every 0.5 ps for post-analysis. The Gaussian quadra-
ture rule was adopted to integrate ∂V/∂λ (marked as “DV/DL” in
AMBER output files) as described by Eqs. (1)–(3) and the weights
(wi) corresponding to the λi values were 0.040 64, 0.090 32, 0.130 31,
0.156 17, 0.165 12, 0.156 17, 0.130 31, 0.090 32, and 0.040 64 accord-
ing to Table 21.1 in the AMBER18 manual,66

V(λ) = (1 − λ)V0 + λV1, (1)

ΔG = G(λ = 1) −G(λ = 0) = ∫
1

0
⟨∂V
∂λ λ
⟩dλ ≈∑wi⟨∂V/∂λ⟩i, (2)

∂V
∂λ
= V1 − V0, (3)

where Hamiltonian V(λ) is the mixed potential of the initial state,
V0, and the final state, V1.
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After setting-up of the systems, initial equilibrations were con-
ducted at λ = 0.5 with CPU-TI for 200 ps before switching to GPU-TI
runs because AMBER CPU-TI has more tolerance for the changes
in the size of the simulation box than AMBER GPU-TI in the NPT
ensemble simulations. Five snapshots were extracted at even inter-
vals from the last 100 ps of the CPU-TI equilibration trajectory
as the starting configurations of five individual GPU-TI runs at
λ = 0.5. A 2-ns simulation was conducted for each individual GPU-
TI run, and the final snapshot was used as the starting configuration
for the two neighboring λ windows, i.e., λ = 0.337 87 and 0.662 13,
and their final snapshots of these two λ windows were used as the

starting configurations of their neighboring λ windows toward two
λ endpoints, respectively (Fig. S1). Similarly, for each independent
run of a λ window, a 2-ns MD simulation was conducted and the
beginning 0.5 ns simulation was considered as further equilibra-
tion steps, and therefore, excluded for post-analysis. The above TI
protocol is shown in Fig. S1. The SFE values were separately calcu-
lated from five replicas starting with different randomly generated
initial velocities (run1 to run5) at all λ windows. Then the arith-
metic average was used as the final SFE for each solvent–solute
pair, and the associated standard deviation was used to indicate the
precision.

FIG. 1. Performance of the original and the proposed new AM1-BCC charge models on the hydration free energies of 442 neutral solutes with different functional groups.
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D. Strategy and procedure of parameterizing
BCC terms

The HFEs of various solutes with single or multifold func-
tional groups in TIP3P water were calculated with the GAFF2
force field parameters and AM1-BCC charges. The BCC terms for
those functional groups with mean unsigned errors (MUEs) of
>0.6 kcal/mol were adjusted, and new AM1-BCC charges were re-
generated, followed by a new round of HFE calculations. The BCC
terms were verified and adjusted if needed in a sequential manner
according to the scheme shown in Fig. S2. In brief, the param-
eters for alkanes and aromatic hydrocarbons were first evaluated
and adjusted if necessary, followed by alkenes, alkynes, and other
chemical functional groups. The adjusted BCC parameters in ear-
lier steps will be applied directly in the subsequent steps. After all
optimizations targeting HFEs were done, the updated BCC terms
were directly applied to the calculations of SFEs in various organic
solvents to test their performance and transferability in different
dielectric environments. The overall procedure of developing and
validating the new AM1-BCC charge model is demonstrated in
Fig. S3.

III. RESULTS
For most solvent–solute pairs, the standard deviation of the

calculated SFE from five individual TI replicas in this study is usu-
ally <0.2 kcal/mol. Considering the uncertainty of individual exper-
imental measurements of SFEs can be up to ∼0.6 kcal/mol,54 the
precision of our TI protocol is sufficient for the parameterization
process.

A. Performance of GAFF2 with the original
and new AM1-BCC charge models on hydration
free energies

Just as GAFF, GAFF2 has been developed with the RESP
charge model for atomic partial charge assignment and the TIP3P
water model for studying the molecular properties in aqueous solu-
tion, following the similar force field parameterization strategy
in the AMBER biomolecule force field development in order to
maximize the compatibility between the biomolecular and organic
molecular force fields.21,22 The HFEs and other SFEs have not
been utilized as the targets of parameterization. The overall better

TABLE I. The performance of the original and the proposed new AM1-BCC atomic charges in combination with the GAFF2 parameters on the hydration free energies of neutral
organic solutes in TIP3P water. Expt. stands for experimental; MSE stands for mean signed error; MUE stands for mean unsigned error; PI stands for predictive index; R stands
for Pearson’s correlation coefficient; k and b stand for the slope and intercept values when fitting the calculated data (y) vs experimental data (x) with function y = kx + b.

Expt. data Original AM1-BCC New AM1-BCC (ABCG2)

Data range MSE MUE b MSE MUE b
Solutes No. (kcal/mol) (kcal/mol) (kcal/mol) PI R k (kcal/mol) (kcal/mol) (kcal/mol) PI R k (kcal/mol)

Non-cyclic alkanes 27 1.33 −0.27 0.34 0.56 0.61 0.40 1.27 −0.27 0.34 0.56 0.61 0.40 1.27
Cycloalkanes 9 1.80 −0.29 0.51 0.35 0.36 0.20 1.04 −0.29 0.51 0.35 0.36 0.20 1.04
Alkenes 23 1.92 0.71 0.71 0.79 0.80 0.74 1.02 0.10 0.26 0.88 0.86 1.02 0.07
Alkynes 5 0.87 0.59 0.59 0.43 0.60 0.27 0.80 0.01 0.15 0.95 0.96 0.49 0.16
Aromatic hydrocarbons 38 4.68 −0.80 0.81 0.96 0.98 1.36 −0.21 −0.18 0.32 0.97 0.98 1.20 0.15
Aliphatic chain + chloride 31 4.53 1.24 1.28 0.83 0.84 0.75 1.03 0.14 0.62 0.71 0.76 1.17 0.29
Aromatic ring + chloride 26 3.83 1.65 1.65 0.24 0.17 0.13 −0.31 0.22 0.55 0.89 0.84 0.81 −0.22
Aliphatic chain + bromide 14 3.17 0.93 1.02 0.73 0.83 0.34 0.57 −0.10 0.38 0.80 0.88 0.53 −0.36
Aromatic ring + bromide 4 0.99 0.53 0.53 0.08 0.46 0.47 −0.47 −0.12 0.12 1.00 0.99 1.02 −0.08
Hydrocarbon + iodide 10 2.76 −0.07 0.34 0.91 0.91 0.53 −0.39 −0.02 0.31 0.84 0.90 0.64 −0.27
Eithers 26 5.20 0.83 0.95 0.92 0.90 0.97 0.73 0.12 0.47 0.95 0.94 1.01 0.14
Alkyl alcohols 27 5.66 1.67 1.67 0.88 0.95 0.75 0.51 0.01 0.27 0.86 0.95 0.90 −0.45
Alkene + alcohols 4 0.59 2.13 2.13 0.10 0.05 0.09 −5.67 0.09 0.46 0.21 0.14 0.23 −2.97
Phenols 17 2.90 0.93 0.93 0.73 0.84 0.83 −1.25 −0.16 0.36 0.86 0.92 0.91 0.39
Ketones 21 4.35 0.27 0.37 0.97 0.94 0.74 −0.68 −0.01 0.32 0.96 0.93 0.82 −0.65
Aldehydes 16 2.20 0.02 0.44 0.90 0.81 1.16 0.53 −0.20 0.34 0.96 0.83 0.85 −0.68
Esters 41 7.82 −0.63 0.75 0.97 0.95 0.87 −1.11 −0.22 0.35 0.97 0.98 1.07 0.04
Amines 23 6.10 1.50 1.55 0.82 0.78 0.90 1.02 0.14 0.48 0.96 0.94 1.09 0.57
Anilines 8 4.02 0.34 0.47 0.85 0.89 0.80 −1.47 −0.08 0.20 0.98 0.98 0.95 −0.34
Pyrazines and pyridines 19 2.83 1.15 1.15 0.67 0.60 0.94 0.86 0.34 0.38 0.71 0.89 1.09 0.75
Nitriles 5 0.58 1.44 1.44 1.00 0.90 2.00 5.23 0.10 0.14 1.00 0.90 1.12 0.56
Nitro compounds 18 9.13 2.03 2.04 0.94 0.94 0.90 1.44 −0.11 0.37 0.98 0.98 0.94 −0.47
Nitrooxy compounds 10 6.52 2.18 2.18 0.92 0.95 0.58 0.45 0.07 0.42 0.96 0.97 0.88 −0.41
Amides 8 3.19 1.57 1.57 0.98 0.98 0.90 0.63 0.25 0.29 0.95 0.95 0.93 −0.46
Thioethers 7 0.62 1.18 1.18 0.42 0.60 0.62 0.61 −0.12 0.23 0.34 0.26 0.37 −1.06
Thiols 5 1.56 0.48 0.48 0.85 0.98 0.90 0.33 −0.06 0.20 0.85 0.97 0.66 −0.54
Sum 442 15.11 0.65 1.03 0.91 0.92 0.86 0.27 −0.03 0.37 0.98 0.98 0.98 −0.06
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FIG. 2. Predicted vs experimental data of hydration free energies of various organic solutes calculated with the GAFF2 parameters combined with (A) original AM1-BCC and
(B) new AM1-BCC (ABCG2, an abbreviation of AM1-BCC-GAFF2) proposed in this study.

performance of GAFF2/RESP on the HFE in TIP3P water than that
of GAFF/RESP has been validated by us, and will be demonstrated
in another manuscript of GAFF2 description. In this study, we
focus on the performance of the original AM1-BCC (interchange-
able as the old AM1-BCC in this manuscript) charge model with the
GAFF2 parameters on HFEs of a variety of organic solute molecules,
and the corresponding improvement after we optimize certain BCC
parameters.

As presented in Fig. 1 and Table I, the mean unsigned error
(MUE) of hydration free energies for 27 linear and branched alkanes
is 0.34 kcal/mol, and the MUE of nine cycloalkanes is 0.51 kcal/mol
both less than the default uncertainty (0.6 kcal/mol) of experimen-
tal measurements in the FreeSolv database.54 Therefore, the BCC
terms for alkanes were considered as good enough and were kept
unchanged. Except for alkanes, the rest of the functional groups
shown in Fig. 1 and Table I involved more or less adjustment of the
related BCC parameters. 12 types of functional groups with original
AM1-BCC charges show systematic errors >1.0 kcal/mol, includ-
ing chlorinated aliphatic and aromatic hydrocarbons, brominated
hydrocarbons, alcohols, amines, pyrazines and pyridines, nitriles,
nitro hydrocarbons, nitrooxy alkanes, amides, and thioethers. After
the optimization of the BCC terms, all functional groups have the
MUE ≤ 0.6 kcal/mol for the benchmarked molecules. For most
benchmarked functional groups shown in Table I, the new AM1-
BCC charge model makes the predictive index PI72,73 and Pear-
son’s correlation coefficient R increase, the slope k value closer to
1.0, and the intercept b value closer to 0.0, except for several func-
tional groups with very few data points and a narrow range of the
experimental data. For the tested 442 neutral solutes in total, the
MUE from the original AM1-BCC charge model is 1.03 kcal/mol,
and the MUE from the new AM1-BCC charge model is signif-
icantly decreased to only 0.37 kcal/mol. The predictive index PI
increases from 0.91 to 0.98. Pearson’s correlation coefficient R
increases from 0.92 to 0.98. When fitting the calculated data (y)

vs the experimental data (x) with function y = kx + b, the slope
k value increases from 0.86 to 0.98, and the intercept b value
changes from 0.27 kcal/mol to −0.06 kcal/mol. Figure 2 shows the
overall performance of the original and the newly proposed AM1-
BCC charges on the hydration free energies calculated with GAFF2
parameters.

B. Performance of the two AM1-BCC models
on solvation free energies in organic solvents

The updated BCC terms targeting HFEs were applied to the
calculations of SFEs in various organic solvents without adjusting
any BCC parameters. The calculated results compared to the exper-
imental data of 895 neutral organic solvent–solute pairs are shown
in Fig. 3. Encouragingly, the BCC terms optimized in the polar sol-
vent TIP3P water work very well for a variety of polar and nonpolar
organic solvents with different dielectric constants. Among the 895
calculated data, 66.9% have unsigned errors (UEs) <0.6 kcal/mol,
21.5% have UEs between 0.6 kcal/mol and 1.0 kcal/mol, and 12.4% of
the data have UEs >1.0 kcal/mol. The MUE of all 895 neutral organic
solvent–solute pairs is only 0.51 kcal/mol, and the root mean square
error (RMSE) is only 0.65 kcal/mol, both close to the experimental
uncertainty of SFE. The predictive index PI for all 895 pairs is 0.95,
and Pearson’s correlation coefficient is 0.94 (Table II); when fitting
the calculated data (y) vs the experimental data (x) of all 895 pairs
with function y = kx + b, the slope k is 1.06, and the intercept b is
0.31 kcal/mol (Table II).

IV. DISCUSSION
Although the first generation of GAFF was developed based on

the RESP charge model rather than the AM1-BCC charge model,
and the SFE was not utilized in the parameter calibration, the stud-
ies had shown that in terms of the SFE calculation accuracy, the
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FIG. 3. Calculated results vs the experimental data of solvation free energies of various organic solute compounds in different organic solvents: (a), saturated alkanes and
aromatic hydrocarbons as solvents; (b), alcohols as solvents; (c), ethers, ketones, and esters as solvents; and (d), nitrogen-containing solvents.

combination of GAFF and AM1-BCC was competitive in compari-
son with other FFs. For instance, an average unsigned error (AVE) of
1.03 kcal/mol to the reference experimental values was obtained for
the nitrogen-containing polar functional groups with GAFF/AM1-
BCC,46,52 while the OPLS2005 parameters and charges led to errors
greater than 1.3 kcal/mol, as revealed in the studies by Shivaku-
mar et al.43,46 In SFE calculation related to function groups like
branched alkanes, cycloalkanes, alkynes, some polar groups, and
most of the halogenated molecules, Shivakumar et al. found that
GAFF/AM1-BCC was superior to most force fields and on par with
OPLS2005.43,44 To OPLS2005 based SFE, amides were the biggest
outlier with an AUE of 2.4 kcal/mol, while GAFF led to an AUE of
1.6 kcal/mol. Notably, based on the above, Shivakumar et al. specif-
ically incorporated the SFEs of 153 molecules as the training set to
adjust the CM1A-BCC charge model for their new OPLS2.0 force
field.44

As aforementioned, GAFF2/RESP has achieved better per-
formance over GAFF/RESP on various physicochemical proper-
ties including SFE; the details on GAFF2/RESP will be described
in another manuscript. The current study was motivated by our
observation, as shown in the RESULTS section, that when GAFF2
was directly combined with the original AM1-BCC charge model,
it could lead to a systematic error greater than 1.0 kcal/mol for
the HFE calculation related to a range of functional groups, espe-
cially certain polar groups. Such a systematic error could be the
major obstacle limiting the accuracy of calculating important prop-
erties, such as solubility, transfer/partition free energy, membrane
permeability, and most importantly protein–ligand binding free
energy. Based on the hypothesis that further BCC term opti-
mization may provide a feasible way to greatly improve the per-
formance of GAFF2/AM1-BCC charge model, we employed the
HFE as the guiding target, conducted BCC reparameterization, and
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TABLE II. The performance of new AM1-BCC charges with GAFF2 parameters on the solvation free energies of neutral organic solvent–neutral organic solute pairs. Expt. stands
for experimental; MSE stands for mean signed error; MUE stands for mean unsigned error; RMSE stands for root mean square error; PI stands for predictive index; R stands for
Pearson’s correlation coefficient; k and b stand for the slope and intercept values, respectively, when fitting the calculated data (y) vs experimental data (x) with function y = kx
+ b.

Data Expt. data MSE MUE RMSE b
Solvents Solutes No. range (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) PI R k (kcal/mol)

CH CH 54 5.41 −0.26 0.46 0.57 0.93 0.93 1.09 0.16
CH CHO 295 8.44 −0.01 0.50 0.62 0.93 0.93 1.12 0.58
CH CHN 83 5.77 0.71 0.81 0.96 0.95 0.95 1.11 1.21
CH CHON 20 7.12 0.31 0.41 0.58 0.98 0.97 0.97 0.15
Alkanes CHS 5 2.54 0.17 0.51 0.54 0.89 0.95 1.36 1.59
Alkanes CHCl 14 2.95 −0.13 0.26 0.29 0.99 0.97 0.91 −0.56
Alkanes CHF, CHI, CHBr 13 4.07 −0.23 0.31 0.46 0.91 0.94 0.91 −0.69
Ethers CH 16 3.04 −0.21 0.35 0.42 0.89 0.93 1.12 0.45
Ethers CHO 39 11.03 −0.23 0.46 0.58 0.98 0.97 0.98 −0.38
Ethers CHN 23 4.35 0.03 0.44 0.53 0.96 0.94 1.11 0.51
Ethers CHON 10 6.93 −0.45 0.61 0.73 1.00 0.96 0.90 −1.00
Alcohols CH 54 7.48 −0.16 0.43 0.54 0.93 0.95 1.07 0.08
Alcohols CHO 96 10.30 −0.08 0.59 0.73 0.97 0.95 1.03 0.10
Alcohols CHN 55 5.28 0.45 0.59 0.75 0.91 0.89 1.04 0.68
Alcohols CHON 16 8.26 −0.10 0.22 0.31 1.00 0.99 0.96 −0.34
Ketones CH 5 3.21 −0.26 0.46 0.50 0.67 0.94 1.06 0.03
Ketones CHO 9 5.26 −0.59 0.60 0.69 0.98 0.98 1.00 −0.61
Ketones CHN, CHON 6 4.68 −0.11 0.32 0.37 1.00 0.99 0.79 −1.11
Esters CH 3 2.87 −0.23 0.34 0.38 0.89 0.98 1.03 −0.08
Esters CHO 26 6.24 −0.42 0.45 0.53 0.98 0.98 0.99 −0.48
Esters CHN, CHON 6 2.75 0.12 0.23 0.30 0.98 0.97 0.93 −0.32
CHN CH 8 2.14 −0.12 0.43 0.50 0.65 0.66 0.67 −1.71
CHN CHO 22 5.23 −0.26 0.55 0.63 0.97 0.92 0.85 −1.07
CHN CHN, CHON 9 3.98 −0.21 0.59 0.66 0.85 0.87 0.58 −2.55
CHON CHON 8 3.14 −0.31 0.32 0.44 0.99 0.99 1.20 0.94
Summary 895 12.87 0.01 0.51 0.65 0.95 0.94 1.06 0.31

successfully obtained a new set of BCC parameters. As shown, this
new ABCG2 charge model greatly reduced the MUE of HFE pre-
diction for a set of 442 neutral molecules from 1.03 kcal/mol to
0.37 kcal/mol, which is even less than the default uncertainty of
individual experimental measurement, 0.6 kcal/mol, in the Free-
Solv database v0.52. Moreover, the new ABCG2 charge model also
performed excellently for the SFE calculation in various polar and
nonpolar organic solvents, demonstrating a very good transferability
among different dielectric environments. The MUE of SFE predic-
tion for 895 neutral organic solvent–solute systems is as small as
0.51 kcal/mol, which is still less than the aforementioned uncer-
tainty of individual experimental measurement, 0.6 kcal/mol. Such
a significant improvement is expected to drastically boost the accu-
racy for the future protein–ligand binding free energy calculation,
which is a primary task in CADD. In summary, this new ABCG2
charge model offers not only efficiency and convenience but also
the accuracy and transferability to future in silico drug development
effort in either high-throughput screening or alchemical free energy
prediction.

Certainly, charge model optimization based on SFE alone
does not guarantee universal accuracy for all the properties or
suitability of molecular dynamics simulation on all the systems

because the FF parameters, including atomic charges, VDW, and
other parameters are more or less correlated. They should be
adjusted together in an iterative manner to get a physically faithful
and reliable FF. Here, we propose an immediate feasible applica-
tion of this new AM1-BCC charge model: using GAFF2/ABCG2
to re-evaluate properties, such as SFE and binding free energy,
employing simulation trajectories generated based on GAFF/RESP,
GAFF/old-AM1-BCC, GAFF2/RESP, or other combinations of FF
and charge model. For the purpose of binding free energy pre-
diction, we have achieved BCC parameter optimization for car-
boxylic and ammonium ions, which are frequently encountered
in both proteins and ligands. Specifically, the MUE of hydration
free energy prediction on 15 ammonium ions was reduced from
2.85 kcal/mol to 0.89 kcal/mol, and the HFE MUE of three car-
boxylic ions was reduced from 5.30 kcal/mol to 0.43 kcal/mol. The
BCC parameter optimization work on other organic ions are cur-
rently in progress, and the corresponding new BCC parameters
(together with the updated BCCs in this study) will be released to
the public via the future release of the AMBER program. In addi-
tion, we would also like to test this new AM1-BCC charge model
with other water models, such as the explicit OPC water model,74

since it has been recommended for the latest AMBER ff19SB
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protein force field.75 It is worth pointing out that such an improved
AM1-BCC charge model with good performance on SFE predic-
tion, as demonstrated in this study, also paves a feasible path to the
development of the next generation of GAFF. With the astonishing
progress in the computing power, including GPU computing in the
recent years, it is time to incorporate the computationally intensive
SFE as one of the primary targets in FF parameterization. This is
also the future plan for us as a development team of the AMBER
family.

V. CONCLUSION
GAFF2 has been released to the public through the AMBER

program and the AMBER Tools since 2015, and has been contin-
uingly enriched and improved. Currently, GAFF2 is in the final
packing stage and the detailed description about its development is
soon to be submitted for publication. In this study, we focused on
the GAFF2 performance when combined with the AM1-BCC charge
model in terms of the solvation free energy calculation. We found
that TI calculations with GAFF2/original AM1-BCC on the HFE
of 442 neutral organic solutes in TIP3P water produced a MUE of
1.03 kcal/mol. So, we optimized the BCC parameters to achieve a
new set of AM1-BCC parameters, which significantly reduced the
MUE of HFEs of the aforementioned 442 neutral organic solutes
to only 0.37 kcal/mol. We further found that this new set of AM1-
BCC charge model also led to a low MUE of 0.51 kcal/mol for
SFEs of 895 pairs of neutral organic solutes in a variety of neutral
organic solvents. This result demonstrated that the newly derived
AM1-BCC model (ABCG2) has the capability of treating different
dielectric environments. Such encouraging dielectric transferability
ensures the suitability of the new force field model for quantita-
tively predicting the important properties in CADD such as solva-
tion, transferring, and binding free energies. Moreover, the excellent
results achieved in this study point out a feasible way of devel-
oping next generation GAFF, i.e., including the computationally
intensive SFE as one of the primary parameterization targets. The
new BCC parameters optimized in this study will be released to
the public in the near future via a new version of the AMBER
program.

SUPPLEMENTARY MATERIAL

See the supplementary material for the protocol of initial equi-
libration and later λ expanding in the TI calculation (Fig. S1), the
detailed scheme of adjusting bond charge correction (BCC) param-
eters for various chemical functional groups, sequentially (Fig. S2),
the overall flow chart of conducting BCC parameterization using
hydration free energies and validation using solvation free energies
of a large number of solutes in various organic solvents (Fig. S3), the
rule and steps of setting initial box for the organic solvent–solute sys-
tems (Fig. S4), and the adjusted BCC terms with their original and
new values.
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