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a b s t r a c t

We study the problem of a policymaker who aims at taming the spread of an epidemic while
minimizing its associated social costs. The main feature of our model lies in the fact that the disease’s
transmission rate is a diffusive stochastic process whose trend can be adjusted via costly confinement
policies. We provide a complete theoretical analysis, as well as numerical experiments illustrating the
structure of the optimal lockdown policy. In all our experiments the latter is characterized by three
distinct periods: the epidemic is first let to freely evolve, then vigorously tamed, and finally a less
stringent containment should be adopted. Moreover, the optimal containment policy is such that the
product ‘‘reproduction number × percentage of susceptible’’ is kept after a certain date strictly below
the critical level of one, although the reproduction number is let to oscillate above one in the last
more relaxed phase of lockdown. Finally, an increase in the fluctuations of the transmission rate is
shown to give rise to an earlier beginning of the optimal lockdown policy, which is also diluted over
a longer period of time.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

During the current Covid-19 pandemic, policymakers are deal-
ng with the trade-off between safeguarding public health and
amming the negative economic impact of severe lockdowns. The
ight against the virus is made especially hard by the absence of
vaccination and the consequent random horizon of any policy,
s well as by the extraordinariness of the event. In particular,
he lack of data from the past, the difficulty of rapidly and
ccurately tracking infected, and super-spreading events such as
ass gatherings, give rise to a random behavior of the trans-
ission rate/reproduction number of the virus (see, e.g., Hotz
t al., 20201). In this paper we propose and study a model for the
ptimal containment of infections due to an epidemic in which
oth the time horizon and the transmission rate of the disease
re stochastic.
In the last months, the scientific literature experienced an ex-

losion in the number of works where the statistical analysis and
he mathematical modeling of epidemic models is considered, as
ell as the economic and social impact of lockdown policies is

nvestigated. A large bunch of papers provides numerical studies
elated to the Covid-19 epidemics in the setting of classical epi-
emic models or of generalization of them. Among many others,

∗ Corresponding author.
E-mail addresses: salvatore.federico@unige.it (S. Federico),

iorgio.ferrari@uni-bielefeld.de (G. Ferrari).
1 Refer also to the website https://stochastik-tu-ilmenau.github.io/COVID-
9/index.html.
ttps://doi.org/10.1016/j.jmateco.2020.102453
304-4068/© 2020 Elsevier B.V. All rights reserved.
we refer to Alvarez et al. (2020), that studies numerically optimal
containment policies in the context of a Susceptible–Infected–
Recovered (SIR) model (cf. Kermack and McKendrick, 1927); Kant-
ner (2020) which also allows for seasonal effects; Toda (2020),
which estimates the transmission rate in various countries for
a SIR model with given and fixed transmission rate; Aspri et al.
(2020), which combines a careful numerical study with an elegant
theoretical study of optimal lockdown policies in the SEAIRD
(susceptible (S), exposed (E), asymptomatic (A), infected (I), re-
covered (R), deceased (D)) model; Bayraktar et al. (2020), where
a detailed numerical analysis is developed for a SIR model of the
Covid-19 pandemic in which herd immunity, behavior-dependent
transmission rates, remote workers, and indirect externalities
of lockdown are explicitly considered; Acemoglu et al. (2020),
where – in the context of a multi-group SIR model – it is in-
vestigated the effect of lockdown policies which are targeted
to different social groups (especially, the ‘‘young’’, the ‘‘middle-
aged’’ and the ‘‘old’’); Gollier (2020), in which a multi-risk SIR
model with heterogeneous citizens is calibrated on the Covid-19
pandemic in order to study the impact on incomes and mortality
of age-specific confinements and Polymerase chain reaction (PCR)
tests; Favero et al. (2020), which calibrates and tests a SEIRD
model (susceptible (S), exposed (E), infected (I), recovered (R),
deceased (D)) of the spread of Covid-19 in an heterogeneous
economy where different age and sectors are related to distinct
risks.

A theoretical study of the optimal confinement policies in
epidemic models is usually challenging because of the nonlinear

https://doi.org/10.1016/j.jmateco.2020.102453
http://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2020.102453&domain=pdf
mailto:salvatore.federico@unige.it
mailto:giorgio.ferrari@uni-bielefeld.de
https://stochastik-tu-ilmenau.github.io/COVID-19/index.html
https://stochastik-tu-ilmenau.github.io/COVID-19/index.html
https://doi.org/10.1016/j.jmateco.2020.102453
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tructure of the underlying dynamical system. The first results on
control-theoretic approach to confinement policies are perhaps
hose presented in Chapter 4 of Behncke (2000), where it is
hown that the optimal policy depends only on the shadow price
ifference between infected and susceptible. In the context of
n optimal timing problem, Huberts and Thijssen (2020) use a
ontinuous-time Markov chain model to study the value and op-
imal exercise decision of two (sequential) options: the option to
ntervene on the epidemic and, after intervention has started, the
ption to end the containment policies. Control-theoretic analysis
s also presented recently (Kruse and Strack, 2020; Miclo et al.,
020). In Miclo et al. (2020) the authors study a deterministic SIR
odel in which the social planner acts in order to keep the trans-
ission rate below its natural level with the ultimate aim not to
verwhelm the national health-care system. The minimization of
social cost functional is instead considered in Kruse and Strack
2020), in the context of a deterministic SIR model over a finite
ime-horizon. The resulting control problem is tackled via the
ontryagin maximum principle and then a thorough numerical
llustration is also provided.

Inspired by the deterministic problems of Kruse and Strack
2020) and Miclo et al. (2020) (see also Acemoglu et al., 2020;
lvarez et al., 2020, among others), and motivated by the need of
ncorporating random fluctuations in the disease’s transmission
ate, in this paper we consider a stochastic control-theoretic
ersion of the classical SIR model of Kermack and McKendrick
1927). A population with finite size is divided into three differ-
nt groups: healthy people who are susceptible to the disease,
nfected individuals, and people who have recovered (and are
ot anymore susceptible) or dead. However, differently to the
lassical SIR model, we suppose that disease’s transmission rate
s time-dependent and stochastic. In particular, it evolves as a
eneral diffusion process whose trend can be adjusted by a social
lanner through policies like social restrictions and lockdowns.
he randomness in the transmission rate is modeled by a Wiener
rocess representing all those factors affecting the transmission
ate and that are not under the direct control of the regulator.
he social planner faces the trade-off between the expected social
nd economic costs (e.g., drops in the gross domestic product)
rising from severe restrictions and the expected costs induced by
he number of infections that – if uncontrolled – might strongly
mpact the national health-care system and, more in general, on
he social well-being. The social planner aims at minimizing those
otal expected costs up to the time at which a vaccination against
he disease is discovered. In our model, such a time is also random
nd independent of the Wiener process.
We provide a complete theoretical study of our model by

howing that the minimal cost function (value function) is a clas-
ical twice-continuously differentiable solution to its correspond-
ng Hamilton–Jacobi–Bellman (HJB) equation, and by identifying
n optimal control in feedback form.2 From a technical point of
iew, the main difference between the models in Acemoglu et al.
2020), Alvarez et al. (2020), Bayraktar et al. (2020), Kruse and
track (2020) and Miclo et al. (2020) and ours, is that we deal
ith a stochastic version of the SIR model, instead of a deter-
inistic one. As a matter of fact, in the aforementioned works

he transmission rate is a deterministic control variable, while it
s a controlled stochastic state variable in our paper. Moreover,
ur formulation is also different from that of other stochastic SIR

2 The aforementioned regularity of the value function is a remarkable result
n its own. Indeed, although the state process is degenerate (as the Wiener
rocess only affects the dynamics of the transmission rate), we can show that the
o-called Hörmander’s condition (cf. Nualart, 2006) holds true for any choice of
he model’s parameters. This then ensures the existence of a smooth probability
ransition density for the underlying (uncontrolled) stochastic process, which in
urn enables to prove substantial regularity of the value function.
2

models where the random transmission rate is chosen in such
a way that only the levels of infected and susceptible people
become affected by noise, with the transmission rate itself not
being a state variable (see, e.g., Jiang and Yu, 2011; Tornatore
et al., 2005 and references therein). To the best of our knowledge,
ours is the first work considering the transmission rate as a
diffusive stochastic state variable and providing the complete
theoretical analysis of the resulting control problem.

In addition to its theoretical value, the determination of an
optimal control in feedback form allows us to perform numer-
ical experiments aiming at showing some implications of our
model. For the numerical analysis we specialize the dynamics
of the transmission rate, that we take to be mean-reverting and
bounded between 0 and some γ > 0 (cf. (4.1)). In this case study,
the containment policies employed by the social planner have
the effect of modifying the long-run mean of the transmission
rate, towards which the process converges at an exponential rate.
Moreover, we take a separable social cost function (cf. (4.2)). This
is quadratic both in the regulator’s effort and in the percentage
of infected people.

An interesting effect which is in fact common to all our numer-
ical experiments is that the optimal lockdown policy is character-
ized by three distinct periods. In the first phase it is optimal to let
the epidemic freely evolve, then the social restrictions should be
stringent, and finally should be gradually relaxed in a third period.
We also investigate which is the effect of the maximal level L
of allowed containment measures (i.e., the lockdown policy can
take values in [0, L]) on the final percentage of recovered, which
in fact turns out to be decreasing with respect to L. This then
suggests that the case L = 1 – which leads in a shorter period
to the definitive containment of the disease with the smallest
percentage of final recovered — might be thought of as optimal in
the trade-off between social costs and final number of recovered.

We observe that if the epidemic spread is left uncontrolled,
then its reproduction number (Rt )t fluctuates around 1.8 and the
final percentage of recovered (i.e. the total percentage of infected
during the disease) is approximately 72% of the society after circa
7 months (in all our simulations the initial infected were 1% of the
population). On the other hand, when L = 1, under the optimal
policy we have a relative reduction of circa 30% of the total per-
centage of recovered individuals, and the reproduction number
drops below 0.6 in the period of severe lockdown (circa 60 days).
Moreover, the optimal containment is such that the so-called
‘‘herd immunity’’ is reached as the product RtSt (reproduction
number × percentage of susceptible) becomes strictly smaller
than the critical level of one, even if Rt oscillates at around 1.7 in
the last more relaxed phase of lockdown. Finally, we observe that
an increase of the fluctuations of the transmission rate β have
the effect of anticipating the beginning of the lockdown policies,
of diluting the actions over a longer period, and of keeping a
larger level of containment in the long run. This can be explained
by thinking that an higher uncertainty in the transmission rate
induces the policymaker to act earlier and over a longer period
in order to prevent positive larger shocks of β .

The rest of the paper is organized as follows: In Section 2.1 we
set up the model and the social planner problem. In Section 3 we
develop the control-theoretic analysis and provide the regularity
of the minimal cost function and an optimal control in feedback
form. In Section 4 we present our numerical examples, while
concluding remarks are made in Section 5. Finally, the Appendix
collects the proof of some technical results needed in Section 3.

2. Problem formulation

2.1. The stochastic controlled SIR model

We model the spread of the infection by relying on a gener-
alization of the classical SIR model that dates back to the work
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y Kermack and McKendrick (1927). The society has population
and it consists of three different groups. The first group is

ormed by those people who are healthy, but susceptible to the
isease; the second group contains those who are infected, while
he last cohort consists of those who are recovered or dead. In line
ith the classical SIR model, we assume that, once recovered, an

ndividual stays healthy for ever. We denote by St the percentage
of individuals who are susceptible at time t ≥ 0, by It the
percentage of infected, and by Rt the fraction of recovered or
dead. Clearly, St + It + Rt = 1 for all t ≥ 0.

The fraction of infected people grows at a rate which is pro-
portional to the fraction of society that it is still susceptible to the
disease. In particular, letting βt be the instantaneous transmission
rate of the disease, during an infinitesimal interval of time dt ,
each infected individual generates βtSt new infected individuals.
It thus follows that the percentage of healthy individuals that get
infected within dt units of time is ItβtSt .

Notice that the instantaneous transmission rate βt measures
the disease’s rate of infection, as well as the average number
of contacts per person per time. In this regard, βt can be thus
influenced by a social planner via policies that effectively cap the
social interaction, like social distancing and lockdown.

During an infinitesimal interval of time dt , the fraction of
infected is reduced by αIt , since infected either recover from the
disease, or die because of it at a rate α > 0.

According to the previous considerations, the dynamics of St
and It can be thus written as

dSt = −βtSt Itdt, t > 0, S0 = x, (2.1)

and

dIt =
(
βtSt It − αIt

)
dt, t > 0, I0 = y, (2.2)

where (x, y) ∈ (0, 1)2 are given initial values such that3 x + y ∈

(0, 1).
Notice that for any t ≥ 0, and for any choice of (βt )t we can

write

St = xe−
∫ t
0 βuIudu and It = ye−αt+

∫ t
0 βuSudu, (2.3)

and therefore St > 0 and It > 0 for all t ≥ 0. Moreover, summing
up (2.1) and (2.2) we have d(St + It ) = −αIt < 0 for all t > 0,
which then implies that St + It < 1 for all t ≥ 0.

We depart from the classical SIR model by assuming that
the transmission rate βt is time-varying, stochastic, and may be
controlled. More precisely, we let (Ω,F,F := (Ft )t , P) be a
complete filtered probability space with filtration F satisfying
the usual conditions, and we define on that a one-dimensional
Brownian motion (Wt )t . For a given and fixed L ≥ 0, and for any
(ξt )t belonging to

A :=
{
ξ : Ω × [0,∞) → [0, L], (ξt )t

F − progressively measurable
}
,

we assume that the transmission rate evolves according to the
stochastic differential equation

dβt = b(βt , ξt )dt + σ (βt )dWt , t > 0, β0 = z > 0. (2.4)

The process (ξt )t influences the trend of the transmission rate and
it should be interpreted as any effort devoted by the social plan-
ner to the decrease of the transmission rate. In this sense, ξ = 0
corresponds to the case of no effort done to decrease the disease,

3 The choice of considering x+y < 1 – i.e. of having an initial strictly positive
ercentage of recovered – is only done in order to deal with an open set in the
ubsequent mathematical formulation of the problem. As a matter of fact, such
condition is not restrictive from the technical point of view as our results still
pply if x + y < ℓ, for some ℓ > 1, thus covering the case x + y = 1 as well.
3

whereas the case ξ = L corresponds to the maximal effort. To fix
ideas, ξt may represent a percentage of social/working lockdown
at time t and L corresponds to the maximal implementable value
of such lockdown (e.g. 60%, etc.). On the other hand, the Brownian
motion (Wt )t models any shock affecting the transmission rate
and which is not under the control of the social planner.

Regarding the dynamics of (βt )t we make the following stand-
ing assumption.

Assumption 2.1.

(i) For every ξ ∈ A, there exists a unique strong solution to
(2.4) and it lies in an open interval I ⊆ (0,∞).

(ii) b : I ×[0, L] → R is bounded, infinitely many times contin-
uously differentiable with respect to its first argument, and
has bounded derivatives of any order; that is, there exists
Kb > 0 such that

sup
n∈N

sup
(z,ξ )∈I×[0,L]

⏐⏐ ∂n
∂zn

b(z, ξ )
⏐⏐ ≤ Kb.

(iii) σ : I → (0,∞) is bounded, infinitely many times contin-
uously differentiable with respect to its first argument, and
has bounded derivatives of any order; that is, there exists
Kσ > 0 such that

sup
n∈N

sup
z∈I

|σ (n)(z)| ≤ Kσ .

A reasonable dynamics of the transmission rate (βt )t is the
mean-reverting

dβt = ϑ

(
β̂
(
L − ξt

)
− βt

)
dt + σβt (γ − βt )dWt ,

t > 0, β0 = z ∈ (0, γ ), (2.5)

for some ϑ, γ , σ > 0, β̂ ∈ (0, γ ). In this case, in can be shown
that 0 and γ are unattainable by the diffusion (βt )t , which then
takes values in the interval I = (0, γ ) for any t ≥ 0. The level

can be seen as the natural transmission rate of the disease,
owards which the transmission rate reverts at rate ϑ when
≡ 0. Finally, the level γ is the maximal possible transmission

ate of the disease, and σ is a measure of the fluctuations of
βt )t around β̂ . We will employ this dynamics in our numerical
llustrations (cf. Section 4). Notice that dynamics (2.5) fulfills all
he requirements of Assumption 2.1; this is shown, for the sake
f completeness, in Proposition A.3 in the Appendix. Moreover, if
t ≡ L, then the transmission rate defined through (2.5) reaches 0
symptotically, as its drift is negative and its diffusion coefficient
tays bounded. Hence, under the maximal lockdown policy, the
isease is asymptotically eradicated.

emark 2.2. A modeling feature that needs some discussion
egards the nature of the control rule in (2.5). In our formulation,
he policymaker adjusts ξ continuously over time with the aim
f decreasing the trend of the transmission rate. However, moti-
ated by the real-world strategies employed during the Covid-19
risis, one can very well imagine a model where regulatory con-
traints are introduced once the reproduction number Rt = βt/α
ecomes larger than a certain value, say R⋆. Within this setting,
natural question would be: which is the optimal R⋆ and the
ptimal size of interventions? A possible answer to this question
ould be found by proposing a model where the policymaker
nstantaneously reduces the level of β via lockdown policies and
aces proportional and/or fixed costs for its actions. This would
ives rise to a singular or impulsive stochastic control problem;
ee Alvarez (2001), Ferrari (2018) and Belak et al. (2017) and ref-
rences therein. Given the underlying multi-dimensional setting,
e expect that the optimal trigger level R⋆ would be a function
f the current values of (St , It ). However, the proof of such a
onjecture would require the thorough study of acomplex (non
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onvex) three-dimensional degenerate singular/impulse stochas-
ic control problem that clearly requires techniques different from
hose employed in this work.

.2. The social planner problem

The epidemic generates social costs, that we assume to be
ncreasing with respect to the fraction of the population that is
nfected. These costs might arise because of lost gross domestic
roduct (GDP) due to inability of working, because of an over-
tress of the national health-care system etc. The social planner
hus employs policies (ξt )t in the form, e.g., of social distancing or
ockdown in order to adjust the growth rate of the transmission
ate β , with the aim of effectively flattening the curve of the
nfected percentage of the society. Such actions however come
ith a cost, which increases with the amplitude of the effort.
ssuming that a vaccination against the disease is discovered
t a random time τ exponentially distributed with parameter
o > 0 and independent of (Wt )t4 (see also Remark 2.4), the
ocial planner aims at solving

inf
ξ∈A

E

[∫ τ

0
e−δtC

(
It , ξt

)
dt
]
. (2.6)

Here, δ ≥ 0 measures the social planner’s time preferences, and
C : [0, 1] × [0, L] → [0,∞) is a running cost function measuring
the negative impact of the disease on the public health as well
as the economic/social costs induced by lockdown policies. The
following requirements are satisfied by C .

Assumption 2.3.

(i) (y, ξ ) ↦→ C(y, ξ ) is convex and continuous on [0, 1] × [0, L].
(ii) For any y ∈ [0, 1] we have that ξ ↦→ C(y, ξ ) is nondecreas-

ing.
(iii) For any ξ ∈ [0, L] we have that y ↦→ C(y, ξ ) is nondecreas-

ing.
(iv) There exists K > 0 such that for any ξ ∈ [0, L] we have that

|C(y, ξ ) − C(y′, ξ )| ≤ K |y − y′
|, ∀(y, y′) ∈ [0, 1]2.

(v) y ↦→ C(y, ξ ) is semiconcave5 on [0, 1], uniformly with
respect to ξ ∈ [0, L]; that is, there exists K > 0 such that
for any ξ ∈ [0, L] and any µ ∈ [0, 1] one has

µC(y, ξ ) + (1 − µ)C(y′, ξ ) − C
(
µy + (1 − µ)y′, ξ

)
≤ Kµ(1 − µ)|y − y′

|
2
, ∀(y, y′) ∈ [0, 1]2.

Without loss of generality, we also take C(0, 0) = 0. Convexity
f y ↦→ C(y, ξ ) captures the fact that the social costs from the dis-
ase might be higher if a large share of the population is infected
ince, for example, the social health-care system is overwhelmed.
he fact that ξ ↦→ C(y, ξ ) is convex describes that marginal costs
f actions are increasing because, e.g., an additional lockdown
olicy might have a larger impact on an already stressed society.
inally, the Lipschitz and semiconcavity property of C(·, ξ ) are
echnical requirements that will be important in the next section.

An application of Fubini’s theorem, employing the indepen-
ence of τ and (Wt )t , allows to rewrite the problem defined in
2.6) as

inf
ξ∈A

E

[∫ τ

0
e−δtC

(
It , ξt

)
dt
]

= inf
ξ∈A

E

[∫
∞

0
e−λtC

(
It , ξt

)
dt
]
, (2.7)

here λ := λo + δ.

4 We implicitly require that the underlying probability space (Ω,F,F :=

Ft )t , P) is rich enough to accommodate also such an exponential time τ .
5 A function f : Rn

→ R, n ≥ 1, is called semiconvex if there exists a constant
≥ 0 such that f (x) +

K
|x|2 is convex; it is semiconcave if −f is semiconvex.
2

4

emark 2.4. The assumption that a vaccination against the dis-
ase is discovered at an exponential random time τ , independent
f (Wt )t , has the technical important effect of leading to a time-
omogeneous social planner problem (cf. (2.7)). From a modeling
oint of view, such a requirement is clearly debatable, as it
resupposes that the decision maker does not take into account
he scientific progress in the epidemic’s treatment. In order to
ake care of this, we now propose an alternative more realistic
ormulation which, however, comes at the cost of substantially
ncreasing the mathematical complexity of the social planner
roblem.
Suppose that the social planner has full information about the

urrent technological level Qt achieved in the disease’s treatment
nd assume, for example, that this evolves according to the SDE:

Qt = µ(Qt )dt + η(Qt )dBt , Q0 = q ∈ R+,

or suitable µ and η, and for a standard Brownian motion (Bt )t
ndependent of (Wt )t . The process (Bt )t models all the exoge-
ous shocks affecting the technological achievements (e.g., new
cientific discoveries in related fields), while µ measures the
nstantaneous trend of the research. Define then a continuous-
ime Markov chain (Mt )t with two states, 0 and 1, where 0 means
hat the vaccination is not available and 1 that a treatment has
een instead found. We assume that 1 is an absorbing state and
hat the Markov chain has transition rate from state 0 to state 1
iven by (λ(t,Qt ))t . Here, λ : R+ × R+ ↦→ R+ is such that Λt :=∫ t
0 λ(s,Qs)ds < ∞, a.s. for any t ≥ 0, and it is nondecreasing in
ts second argument. This latter condition clearly means that the
arger the technological level is, the faster the disease is treated.

Within this setting, the problem can be then still be written
s

inf
∈A

E

[∫ τ

0
e−δtC

(
It , ξt

)
dt
]
,

here (It )t and (ξt )t are as defined above in this section, but

τ := inf{t ≥ 0 : Mt = 1}.

he independence of Q with respect to W then leads to the
equivalent formulation

V (x, y, z, q) := inf
ξ∈A

E

[∫
∞

0
e−δt−ΛtC

(
It , ξt

)
dt
]
,

which defines a four-dimensional stochastic control problem.
Clearly, this problem is much more challenging than (2.7) and
its analysis, requiring different techniques and results, is left for
future research.

Another interesting future work might concern an extension
of the previous model in which the social planner can also in-
crease the technological level Q by supporting the research of a
vaccination. Assuming that such an investment comes at propor-
tional cost, this problem can be modeled in terms of an intricate
stochastic control problem where the transition rate λ of the
Markov chain is controlled through a singular control.

In order to tackle Problem (2.7) with techniques from dynamic
programming, it is convenient to keep track of the initial values
of (St , It , βt )t . We therefore set

O :=
{
(x, y, z) ∈ R3

: (x, y) ∈ (0, 1)2, x + y < 1, z ∈ I
}
,

and, when needed, we stress the dependency of (St , It , βt ) with
respect to (x, y, z) ∈ O and ξ ∈ A by writing (Sx,y,z;ξt , Ix,y,z;ξt , β

z;ξ
t ).

Indeed, due to (2.3) and the autonomous nature of (2.4), we have
that St and It depend on (x, y, z) and on ξ through βt , while βt
depends only on z and directly on ξ . We shall also simply set
(Sx,y,zt , Ix,y,zt , βz

t ) := (Sx,y,z;0t , Ix,y,z;0t , β
z;0
t ) to denote the solutions
to (2.1), (2.2), and (2.4) when ξ ≡ 0.
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Then, for any (x, y, z) ∈ O, we introduce the problem’s value
function

V (x, y, z) := inf
ξ∈A

E

[∫
∞

0
e−λtC

(
Ix,y,z;ξt , ξt

)
dt
]
. (2.8)

The latter is well defined given that C is nonnegative. In the next
section we will show that V solves the corresponding dynamic
programming equation in the classical sense, and we also provide
an optimal control in feedback form.

3. The solution to the social planner problem

We introduce the differential operator L acting on functions
belonging to the class C1,1,2(R3):(
Lϕ
)
(x, y, z) := xyz

(
ϕy − ϕx

)
(x, y, z) − αyϕy(x, y, z)

+
1
2
σ 2(z)ϕzz(x, y, z). (3.1)

Next, for any (y, z, p) ∈ (0, 1) × I × R, define

C⋆(y, z, p) := inf
ξ∈[0,L]

(
C(y, ξ ) + b(z, ξ )p

)
, (3.2)

which is continuous on [0, 1] × I × R. Indeed, by
Assumptions 2.1-(ii) and 2.3-(iv), there exists a constant K > 0
uch that

C⋆(y′, z ′, p′) − C⋆(y, z, p)|

≤ sup
ξ∈[0,L]

(
|C(y′, ξ ) − C(y, ξ )| + |b(z ′, ξ ) − b(z, ξ )| |p′

|

+ |b(z, ξ )| |p′
− p|

)
≤ K

(
|y′

− y| + |z ′
− z| |p′

| + |p′
− p|

)
.

By the dynamic programming principle, we expect that V
should solve (in a suitable sense) the Hamilton–Jacobi–Bellman
(HJB) equation

λv(x, y, z) = (Lv)(x, y, z) + C⋆(y, z, vz(x, y, z)), (x, y, z) ∈ O.

(3.3)

In order to show that V indeed solves (3.3) in the classical
sense, we start with the following important preliminary results.
Their proofs are standard in the literature of stochastic control
(see, e.g., Pham, 2009; Yong and Zhou, 1999), upon employing
Assumptions 2.1 and 2.3.

Proposition 3.1. There exists K > 0 such that, for each q :=

(x, y, z), q′
:= (x′, y′, z ′) ∈ O

(i) 0 ≤ V (q) ≤ K and |V (q) − V (q′)| ≤ K |q − q′
|; i.e., V is

bounded and Lipschitz continuous on O;
(ii) for any µ ∈ [0, 1] and for some K > 0

µV (q)+(1−µ)V (q′)−V
(
µq+(1−µ)q′

)
≤ Kµ(1−µ)|q − q′

|
2
;

i.e., V is semiconcave on O.

Moreover, V is a viscosity solution to the HJB equation (3.3).

Proof. The first claim of (i) above follows from the fact that C
s nonnegative and bounded on [0, 1]2; the second claim of (i)
s due to Proposition 3.1 in Yong and Zhou (1999), whose proof
an be easily adapted to our stationary setting. Analogously, the
emiconcavity property of (ii) can be obtained by arguing as in
roposition 4.5 of Yong and Zhou (1999). Finally, Theorem 5.2
f Yong and Zhou (1999) (again, easily adapted to our stationary
etting) or Proposition 4.3.2-(2) of Pham (2009) leads to the
iscosity property. □
 v

5

The semiconcavity of V , together with the fact that V solves
the HJB equation (3.3) in the viscosity sense, yields the following
directional regularity result.

Proposition 3.2. Vz exists continuous on O.

Proof. Let (x, y, z) ∈ O. By semiconcavity of V , there exists the
left and right derivatives of V along the direction z at (x, y, z)
that we denote, respectively, by V−

z (x, y, z), V+
z (x, y, z). Moreover,

again by semiconcavity, we have the inequality V−
z (x, y, z) ≥

V+
z (x, y, z). Assuming, by contradiction, that V is not differen-

tiable with respect to z at (x, y, z) means assuming that V−
z (x, y, z)

> V+
z (x, y, z). Hence, we can apply Lemma A.1 in the Appendix

and find a sequence of functions (ϕ̃n)n ⊂ C2(O) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ̃n(x̄, ȳ, z̄) = V (x̄, ȳ, z̄),
ϕ̃n

≥ V in a neighborhood of (x̄, ȳ, z̄),
|Dϕ̃n(x̄, ȳ, z̄)| ≤ L̃ < ∞,

ϕ̃n
zz(x̄, ȳ, z̄)

n→∞
−→ −∞.

(3.4)

Then, the viscosity subsolution property of V (cf. Proposition 3.1)
yields

λV (x̄, ȳ, z̄) ≤ (Lϕ̃n)(x̄, ȳ, z̄) + C⋆(ȳ, z̄, ϕ̃n
z (x̄, ȳ, z̄)).

Taking the limit as n → ∞ and using (3.4) we get a contradiction.
We have thus proved that Vz exists at each arbitrary (x, y, z) ∈ O.

Now we show that Vz is continuous. Take a sequence (qn)n ⊂

O such that qn
→ q ∈ O, and let ηn

= (ηnx , η
n
y , η

n
z ) ∈ D+V (qn),

the latter being nonempty due to the semiconcavity of V . Since
Vz exists at each point of O, we have ηnz = Vz(qn). Since V
is semiconcave, the supergradient D+V is locally bounded as a
set-valued map, and therefore there exists a subsequence (qnk )k
such that ηnk → η = (ηx, ηy, ηz). By Cannarsa and Sinestrari
(2014, Prop. 3.3.4-(a)), we have η ∈ D+V (q), and again, since
Vz exists, we have ηz = Vz(q). Hence, we have proved that
from any sequence (qn)n ⊂ O converging to q, we can extract
a subsequence (qnk )k ⊂ O such that Vz(qnk ) → Vz(q). By usual
arguments on subsequences, the claim follows. □

We can now prove the main theoretical result of our paper,
which ensures that V is actually a classical solution to the HJB
equation (3.3). In turn, this provides a way to construct an optimal
control in feedback form.6

Theorem 3.3. The following hold:

(i) V ∈ C2(O) and solves the HJB equation (3.3) in the classical
sense.

(ii) Let

ξ̂ (x, y, z) := argmin
ξ∈[0,L]

(
C(y, ξ )−b(z, ξ )Vz(x, y, z)

)
, (x, y, z) ∈ O.

(3.5)

6 Notice that, in order to define a candidate optimal control in feedback form,
ne actually only needs the existence of the derivative Vz . For instance, in the
eterministic problem tackled in Federico and Tacconi (2014) only the regularity
f the directional derivative is exploited to prove a verification theorem in the
ontext of viscosity solutions. However, here we can improve the regularity of
due to the stochastic nature of our problem, and therefore prove a classical

erification theorem.
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If the system of equations7⎧⎨⎩
dSt = −βtSt Itdt, S0 = x,
dIt =

(
βtSt It − αIt

)
dt, I0 = y,

dβt = b(βt , ξ̂ (St , It , βt ))dt + σ (βt )dWt , β0 = z,

(3.6)

admits a unique strong solution (S⋆t , I
⋆
t , β

⋆
t )t , then the control

ξ ⋆t := ξ̂
(
S⋆t , I

⋆
t , β

⋆
t

)
, (3.7)

is optimal for (2.8) and (β⋆t )t is the optimally controlled trans-
mission rate; that is,

V (x, y, z) = E

[∫
∞

0
e−λtC

(
I⋆t , ξ

⋆
t

)
dt
]
.

Proof. Proof of (i) — Step 1. Recall (3.2) and define F (x, y, z) :=

C⋆(y, z, Vz(x, y, z)). Due to Proposition 3.2 and the continuity of
C⋆ on (0, 1)×I×R, we have that F is continuous on O. Moreover,
since C is bounded on [0, 1] × [0, L], Vz is bounded on O by
Proposition 3.1-(i), and b(·, ξ ) is bounded (cf. Assumption 2.1-(ii)),
there exists K > 0 such that

|F (x, y, z)| ≤ K , ∀(x, y, z) ∈ O. (3.8)

Set now

v(x, y, z) := E

[∫
∞

0
e−λtF

(
Sx,y,zt , Ix,y,zt , βz

t

)
dt
]
, (x, y, z) ∈ O.

(3.9)

Although not uniformly elliptic, the differential operator L
defined in (3.1) is hypoelliptic, meaning that the so-called Hör-
mander’s condition is satisfied (cf. the proof of Proposition A.2 in
the Appendix and Eq. (A.4) therein). In fact, by Proposition A.2
in the Appendix, for any q := (x, y, z) ∈ O the (uncontrolled)
process (Qq

t )t := (Sx,y,zt , Ix,y,zt , βz
t ) admits a transition density

p(t, q, ·), t > 0, which is absolutely continuous with respect
to the Lebesgue measure in R3, infinitely many times differen-
tiable, and satisfying the Gaussian estimates (A.2) and (A.3). As a
consequence, by Fubini’s theorem we can write

v(x, y, z) =

∫
∞

0
e−λt

( ∫
O
F
(
x′, y′, z ′

)
× p(t, x, y, z; x′, y′, z ′)dx′dy′dz ′

)
dt,

and recalling (3.8), and applying the dominated convergence
theorem, one shows that v ∈ C2(O).

For (x, y, z) ∈ O, let now τn := inf{t ≥ 0 : |(Sx,y,zt , Ix,y,zt , βz
t )| ≥

n}, n ∈ N, and notice that the strong Markov property yields

e−λ(t∧τn)v(Sx,y,zt∧τn , I
x,y,z
t∧τn , β

z
t∧τn ) +

∫ t∧τn

0
F
(
Sx,y,zu , Ix,y,zu , βz

u

)
du

= E

[∫
∞

0
e−λtF

(
Sx,y,zt , Ix,y,zt , βz

t

)
dt
⏐⏐⏐Ft∧τn

]
.

Since v ∈ C2(O), we can apply Itô’s formula to the first addend
on the left-hand side of the latter, take expectations, observe that
the stochastic integral has zero mean (by definition of τn and the
fact that vx is continuous), and finally find

E

[∫ t∧τn

0
e−λu(Lv + F − λv

)(
Sx,y,zu , Ix,y,zu , βz

u

)
du
]

+ v(x, y, z)

7 Since b is bounded, by the method of Girsanov’s transformation, the system
has a weak solution, which is also unique in law (see Karatzas and Shreve,
1991, Ch. 5, Propositions 3.6 and 3.10 and also Karatzas and Shreve, 1991, Ch.
5, Remark 3.7). For the sake of brevity, we do not investigate further existence
and uniqueness of strong solutions, even if this might be done by employing
finer results (e.g., see the seminal paper Veretennikov, 1979).
 s
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= E

[∫
∞

0
e−λtF

(
Sx,y,zt , Ix,y,zt , βz

t

)
dt
]
; (3.10)

that is, by (3.9),

E

[∫ t∧τn

0
e−λu(Lv + F − λv

)(
Sx,y,zu , Ix,y,zu , βz

u

)
du
]

= 0.

Dividing now both left and right-hand sides of the latter by t ,
invoking the (integral) mean-value theorem, letting t ↓ 0, and
using that t ↦→ (Sx,y,zt , Ix,y,zt , βz

t ) is continuous, we find that v is a
classical solution to

λϕ = Lϕ + F on O. (3.11)

Proof of (i) — Step 2. Let (x, y, z) ∈ O, and (Kn)n be an increasing
sequence of open bounded subsets of O such that

⋃
n∈N Kn = O.

Defining the stopping time

ρn := inf{t ≥ 0 :
(
Sx,y,zt , Ix,y,zt , βz

t

)
/∈ Kn}, n ∈ N,

we set

vn(x, y, z) := E

[ ∫ ρn

0
F
(
Sx,y,zu , Ix,y,zu , βz

u

)
du

+ e−λρnV
(
Sx,y,zρn

, Ix,y,zρn
, βz

ρn

)]
. (3.12)

If (x, y, z) /∈ Kn, then v̂n(x, y, z) = V (x, y, z) as ρn = 0 a.s.
Take then (x, y, z) ∈ Kn. By the same arguments as in Step 1
and considering that V is continuous on Kn, the function v̂n is
a solution to

λϕ = Lϕ + F , on Kn, ϕ = V on ∂Kn. (3.13)

Since also V is a viscosity solution to the same equation and
since uniqueness of viscosity solution holds for such a problem
(cf., e.g., Crandall et al., 1992), we have v̂n = V on Kn. Because
n ↑ ∞ for n ↑ ∞ (as the boundary of O is unattainable for
Sx,y,zt , Ix,y,zt , βz

t

)
), by taking limits as n ↑ ∞ in (3.12) we find that

(x, y, z) = lim
n↑∞

v̂n(x, y, z) = v(x, y, z), (x, y, z) ∈ O,

where the last equality follows by dominated convergence upon
recalling that V is bounded. But then V = v on O, and therefore
V ∈ C2(O) and solves (3.11) by Step 1. That is, V is a classical
solution to the HJB equation (3.3).

Proof of (ii). The optimality of (3.7) follows by a standard
verification theorem based on an application of Itô’s formula
and the proved regularity of V (see, e.g., Chapter 3.5 in Pham,
2009). □

4. A case study with numerical illustrations

In this section we illustrate numerically the results of our
model, with the aim of providing qualitative properties of the
optimal containment policies in a case study.

We use the mean-reverting model for the dynamics of β , i.e.

dβt = ϑ

(
β̂
(
L − ξt

)
− βt

)
dt + σβt (γ − βt )dWt ,

t > 0, β0 = z ∈ (0, γ ), (4.1)

for some L, ϑ, γ , σ > 0, β̂ ∈ (0, γ ). Notice that such a choice of
the dynamics of β fulfills all the requirements of Assumption 2.1
(see Proposition A.3 in the Appendix). Moreover, we assume that
the social planner has a quadratic cost function of the form

C(y, ξ ) =

(
y
ȳ

)2

+
1
2
ξ 2. (4.2)

he latter can be interpreted as a Taylor approximation of any
mooth, convex, separable cost function with global minimum in
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0, 0). In (4.2), ȳ ∈ (0, 1) represents, e.g., the maximal percentage
f infected people that the health-care system can handle.
Notice that in this case for any (x, y, z) ∈ O one has (cf. (3.5))

ξ (x, y, z) =

⎧⎪⎨⎪⎩
L, if Vz(x, y, z) > L

ϑβ̂
,

ϑβ̂Vz(x, y, z), if Vz(x, y, z) ∈ [0, L
ϑβ̂

],

0, if Vz(x, y, z) < 0.

(4.3)

Our numerics is based on a recursion on the nonlinear equa-
tion(
λ− L

)
v(x, y, z) = C⋆(y, z, vz(x, y, z)), (x, y, z) ∈ O,

which is solved by the value function in the classical sense (cf.
Theorem 3.3). Namely, starting from v[0]

≡ 0 we use the recursive
algorithm:(
λ− L

)
v[n+1]

= C⋆(y, z, v[n]
z ), n ≥ 1

and those equations are solved by Monte Carlo methods based on
the Feynman–Kac formula

v[n+1](x, y, z)

= E

[∫
∞

0
e−λtC⋆

(
Ix,y,zt , βz

t , v
[n]
z (Sx,y,zt , Ix,y,zt , βz

t )
)
dt
]
,

(x, y, z) ∈ O.

Such an approach is needed because of the lack of appropriate
boundary conditions on the HJB equation, as the boundary ∂O is
unattainable for the underlying controlled dynamical system.

We take a day as a unit of time. In our experiments we assume
that the average length of an infection equals 18 days, so that α =
1
18 (see also Alvarez et al., 2020; Bayraktar et al., 2020, and Kruse
and Strack, 2020), the level of the maximal possible transmission
rate of the disease is γ = 0.16, the natural transmission rate
f the disease is β̂ = 0.1, towards which the transmission rate

(βt )t reverts at rate ϑ = 0.1 when ξ ≡ 0, σ = 1, so that the
luctuations of (βt )t are (at most) of order 10−2. Furthermore,
we set λ = 1/365,8 and we fix ȳ = 0.1 in (4.2). Finally,
n all simulations we assume that at day zero about 1% of the
opulation is infected.
In all the subsequent pictures we show the mean paths of

he considered quantities, with their 95% confidence interval. The
onte Carlo average has been performed by employing 6000

ndependent simulations.
In Section 4.1, we compare the optimal social planner pol-

cy with the case of no restrictions; in Section 4.2 we consider
trategies in which the containment measures are limited to a
ixed percentage L ∈ [0, 1] and provide a comparison between
them; in Section 4.3 we study the effect of the fluctuations of the
transmission rate on the problem’s solution.

4.1. The optimal social planner policy

We compare the optimal social planner policy with the case
of no restrictions (see Fig. 1). In the optimal social planner policy
severe lockdown measures (larger than 40%) are imposed for
a period of circa 63 days, starting on day 79; then, it follows
a gradual reopening phase. The final percentage of recovered
individuals is about 50%, in contrast to 72% which is the total
percentage of recovered individuals in the case of no restrictions.

8 Our choice of the value of λ = λo + δ can be justified by assuming that
t takes at least a year to develop a vaccine (i.e. 1/λo ≥ 365) and that the
intertemporal discount rate of the social planner δ is negligible with respect to
vaccination discovery rate. Indeed, a typical value for the annual discount rate
δ is 5% which is clearly such that 0.05

≪
1 .
365 365

7

Table 1
Optimal social planner policy with different values of limited containment L.

L = 0.8 L = 0.6 L = 0.4 L = 0.2

First day of containment 54 54 54 54
Recovered 52% 58% 61% 68%

Furthermore, the cases of optimal lockdown and no lockdown
show a substantial difference in the evolution of the reproduction
number Rt :=

βt
α
: in the case of lockdown policies at work, in

the most restrictive period, the latter is significantly decreased
to values around 0.6. Another relevant quantity to analyze is
RtSt . Indeed, recalling (2.2), it is easy to see that the percentage
of infected naturally decreases at exponential rate α(RtSt − 1)
if RtSt is maintained strictly below 1. We observe that, under
the suboptimal action ‘‘no lockdown’’, RtSt lies below one from
day 85 on. On the other hand, the optimal containment policy is
such that RtSt < 1 from day 75 on. As a consequence, Rt can
let oscillate strictly above one (actually, around 1.7) during the
final phase of partial reopening so that the negative impact of
lockdowns on the economic growth can be partially dammed.

4.2. The optimal social planner policy with limited containment

In many countries, a vigorous lockdown could not always
be feasible, especially for long periods. Further, as pointed out
by recent literature (for instance see Aspri et al., 2020), grad-
ual policies of longer duration but more moderate containment
exhibit large welfare benefits comparable to the ones obtained
by a drastic lockdown. For this reason, we consider a strategy
in which the containment measures are limited to a fixed per-
centage L ∈ [0, 1]. Notice that L = 0.7 in Alvarez et al. (2020),
L = {0.7, 1} in Acemoglu et al. (2020) and Bayraktar et al. (2020).
A comparison of the optimal social planner policy with limited
containment L ∈ {0.2, 0.4, 0.6, 0.8} is shown in Fig. 2 and a
summary is contained in Table 1.

Clearly, the larger L is, the smaller are the social costs (by
definition of the value function). Our experiment shows that for
L = 0.4, 0.6, 0.8, 1, the final percentage of recovered (hence
of the total amount of infected) in average ranges from 52%
(case L = 0.8) up to 68% (case L = 0.2). In all the cases, the
optimal containment starts at the maximal rate and the first day
of containment is substantially the same (around day 54).

Different ceilings L on the containment strategies also affect
the values and the fluctuations’ size of the reproduction number
βt
α
: smaller values of L correspond to milder variation of the

reproduction number Rt of size 0.3, whereas larger values of L
lead to rapid changes of Rt which reaches levels smaller than 1
(less than 0.8 for L = 0.8 and less than 0.6 for L = 1). In all
the cases, RtSt lies strictly below 1 after a certain date, which is
decreasing with respect to L (see the last column in Figs. 1 and
2). Notice that without any containment policies, RtSt decreases
on time due to a natural ‘‘herd-immunity’’ effect. On the other,
when lockdowns are in place, we observe a faster decrease ofRtSt
which is forced by the initial vigorous policymaker’s actions. The
final relaxation of the latter then allows for an increase of RtSt ,
which is however constrained below the critical level of 1. Such
an effect is monotone decreasing with respect to L.

4.3. The role of uncertainty

The main new feature of our model is to consider a (con-
trolled) stochastic transmission rate in the framework of the
classical SIR model. In this section we study numerically how
an increase of the fluctuations of the transmission rate affects
the optimal solution. In particular, in Fig. 3 the volatility σ takes
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Fig. 1. Comparison between the optimal social planner policy (upper panel) and the case of no restrictions (lower panel). The figures in the first column show
the (average) evolution of the containment policy through the value of the optimal control ξt ; the ones in the second column show the (average) evolution of the
instantaneous reproduction number Rt =

βt
α
; the ones in the third column show (average) evolution of the percentage of susceptible (in blue), infected (in red) and

recovered (in green) individuals; the ones in the fourth column show the (average) evolution of the product Rt · St . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Comparison between the optimal social planner policy with limited containment L. The figures in the first row show the evolution of the (average) containment
policy through the value of the optimal control ξt ; the figures in the second row show the (average) evolution of the instantaneous reproduction number Rt =

βt
α
;

the figures in the third row show the evolution of the (average) percentage of susceptible (in blue), infected (in red) and recovered (in green) individuals; the figures
in the fourth row show the (average) evolution of the product Rt · St . The limited level of containment varies with the columns: the first column treats the case
L = 0.8, the second column the case L = 0.6, the third column the case L = 0.4 and the last column the case L = 0.2. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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c
b

Fig. 3. Comparison between the optimal social planner policy with different σ , when L = 1. The figures in the first row show the evolution of the (average)
ontainment policy through the value of the optimal control ξt ; the figures in the second row show the evolution of the (average) percentage of susceptible (in
lue), infected (in red) and recovered (in green) individuals. The level of σ varies with the columns: the first column treats the case σ = 1, the second column the

case σ = 5, the third column the case σ = 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
W

values 1, 5 and 10, thus leading to fluctuations of β of order
10−2, 5×10−2, and 10−1, respectively (indeed, recall that σ (β) =

σβ(γ − β) attains its maximum at γ /2 and γ = 0.16).
We observe from Fig. 3 that larger fluctuations of β have the

effect of anticipating the beginning of the lockdown policies, and
of diluting the actions over a longer period. Indeed, when σ = 5
and σ = 10, the optimal lockdown policy starts around day 46
and 42, respectively, in contrast to day 54 of the case σ = 1.
Moreover, when σ increases, the maximal employed lockdown
intensity reduces and the level of containment stabilizes at a
larger value in the long run. This can be explained by thinking
that an increase in the fluctuations of the transmission rate in-
duces the policymaker to act earlier and over a longer period in
order to prevent positive large shocks of β . However, in order to
dam the social costs resulting from a longer period of restrictions,
the maximal intensity of the lockdown policy should be reduced.

Moreover, such a spread of the optimal lockdown policy gives
rise to an increase of the final percentage of recovered (which is
circa 58% and 60% when σ = 5 and σ = 10, respectively, and
circa 50% when σ = 1).

5. Conclusions

We have studied the problem of a policymaker which during
an epidemic is challenged to optimally balance the safeguard of
public health and the negative economic impact of severe lock-
downs. The policymaker can implement containment policies in
order to reduce the trend of the disease’s transmission rate, which
evolves stochastically in continuous time. In the context of the
SIR model, our theoretical analysis allows to identify the minimal
social cost function as a classical solution to the corresponding
dynamic programming equation, as well as to provide an optimal
control in feedback form.

In a case study in which the transmission rate is a (con-
trolled) mean-reverting diffusion process, numerical experiments
show that the optimal lockdown policy is characterized by three
distinct phases: the epidemic is first let freely evolve, then vig-
orously tamed, and finally a less stringent containment should
be adopted. Interestingly, in the last period the epidemic’s re-
production number is to let oscillate strictly above one although
9

the product ‘‘reproduction number × percentage of susceptible’’
is kept strictly below the critical level of one. Hence, under the
optimal containment policy, the percentage of infected decreases
naturally at an exponential rate and the social planner is then
allowed to substantially relax the lockdown in order not to incur
too heavy economic costs. Moreover, we show that an increase
in the fluctuations of the transmission rate gives rise to an earlier
beginning of the optimal lockdown policy, which is also diluted
over a longer period of time.

We believe that our work is only a first step in enriching
the SIR model of a stochastic controlled component and in un-
derstanding the policymaker’s problem of optimally balancing
the safeguard of public health and social wealth. There is still
much to be done in order to incorporate other features like the
partial detectability of the transmission rate or the role of public
investment on the discovery of a vaccination (see Remark 2.4 on
this). We leave the analysis of the resulting challenging problems
for future work.
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Appendix. Technical results

Lemma A.1. Let O′ be an open neighborhood of 0 = (0, 0, 0) ∈ R3.
Let W : O′

→ R be a semiconcave function such that W−
z (0) >

+
z (0). Then there exists a sequence of functions (ϕn)n ⊂ C2(O′)

such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕn(0) = W (0) = 0,
ϕn

≥ W in a neighborhood of 0,
|Dϕn(0)| ≤ L < ∞,

ϕn
zz(0)

n→∞
−→ −∞.

(A.1)

Proof. Since W is semiconcave, there exists C0 ≥ 0 such that

Ŵ : O′ ˆ ( 2 2 2)

→ R, W (x, y, z) := W (x, y, z) − C0 x + y + z ,
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s concave. Fix such a C0. Since W−
z (0) > W+

z (0), also Ŵ−
z (0) >

Ŵ+
z (0) and it is clear that it is equivalent to show the claim for Ŵ .
y Rockafellar (1970, Theorem 23.4), it follows that there exist

= (ηx, ηy, ηz), ζ = (ζx, ζy, ζz) ∈ D+W (0) such that ηz > ζz .

Set

g(q) := ⟨η, q⟩ ∧ ⟨ζ, q⟩

and notice that Ŵ (0) = 0 = g(0) and that, by concavity,

Ŵ (q) ≤ g(q) ∀q ∈ O′.

Define

A := Span{η − ζ}⊥,

and denote by Π : R3
→ A the orthogonal projection on A. Given

q ∈ R3 we then have the decomposition

q = Πq +
η − ζ

|η − ζ|
s, s =

⟨q, η − ζ⟩

|η − ζ|
.

efine, for q ∈ O′,
n(q) := g(Πq) + ψn(s),

where

ψn
: R → R, ψn(s) = −

n
2
s2 +

1
2

⟨η + ζ, η − ζ⟩

|η − ζ|
s.

his sequence realizes (A.1). Indeed, the first two properties hold
y construction; in particular the second one is due to the fact
hat we have

(q) = g(Πq) +

⎧⎪⎨⎪⎩
⟨ζ,η−ζ⟩

|η−ζ|
s if s ≥ 0,

⟨η,η−ζ⟩

|η−ζ|
s if s < 0.

As for the last two properties, we notice that

Dϕn(q) = Πη (= Πζ) +
η − ζ

|η − ζ|

dψn

ds
(s),

so

ϕn
z (q) = ⟨Πη, (0, 0, 1)⟩ +

⟨
η − ζ

|η − ζ|
, (0, 0, 1)

⟩
dψn

ds
(s)

= ⟨Πη, (0, 0, 1)⟩ +
ηz − ζz

|η − ζ|

dψn

ds
(s),

ϕn
zz(q) =

ηz − ζz

|η − ζ|

d2ψn

ds2
(s),

which then imply them. □

Denote by q = (q1, q2, q3) := (x, y, z) an arbitrary point of
O. For any multi-index α := (α1, α2, α3) ∈ N3 we denote by
|α| =

∑3
i=1 αi and Dαq = ∂ |α|/∂

α1
q1 . . . ∂

α3
q3 , with the convention

that ∂0 is the identity.

Proposition A.2. For any q ∈ O the (uncontrolled) process
(Qq

t )t := (Sx,y,zt , Ix,y,zt , βz
t ) admits a transition density p which

is absolutely continuous with respect to the Lebesgue measure in
R3, infinitely many times differentiable, and satisfies the Gaussian
estimates

p(t, q; q′) ≤
C0(t)(1 + |q|)m0

t
n0
2

e−
D0(t)|q

′
−q|

2

t ,

∀t > 0, q′
= (x′, y′, z ′) ∈ O, (A.2)

Dαqp(t, q; q′)| ≤
Cα(t)(1 + |q|)mα

nα e−
Dα (t)|q′

−q|
2

t ,

t 2

10
∀t > 0, q′
= (x′, y′, z ′) ∈ O. (A.3)

Here, C0, D0, Cα , and Dα are increasing functions of time.

roof. Given f , g ∈ C1(R3
;R3), define the Lie bracket

f , g] :=

3∑
j=1

( ∂g
∂qj

f −
∂ f
∂qj

g
)
.

Then, for any given and fixed q ∈ O, we set

µ(q) :=

(
−xyz

xyz − αy
b(z, 0)

)
and Σ(q) :=

( 0 0 0
0 0 0

0 0 σ (z)

)
nd denoting by Σi, i = 1, 2, 3, the columns of the matrix Σ ,
e construct recursively the set of functions L0 := {Σ1,Σ2,Σ3},

k+1 := {[µ, ϕ], [Σ1, ϕ], [Σ2, ϕ], [Σ3, ϕ] : ϕ ∈ Lk}, k ≥ 0. We
also define L∞ := ∪k≥0Lk. We say that the Hörmander condition
holds true at q ∈ O if

Span
{
ϕ(q), ϕ ∈ L∞

}
= R3. (A.4)

irect calculations show that

0(q) = {Σ3}(q) =

{( 0
0
σ (z)

)}

1(q) =
{
[µ,Σ3]

}
(q) =

{( xyσ (z)
−xyσ (z)

σz(z)b(z, 0) − σ (z)bz(z, 0)

)}
nd

2(q) =
{
[µ, [µ,Σ3]], [Σ3, [µ,Σ3]]

}
(q)

=

⎧⎪⎨⎪⎩
⎛⎜⎝ xy(2b(z, 0)σz (z) − ασ (z) − σ (z)bz (z, 0))

xy(σ (z)bz (z, 0) − 2b(z, 0)σz (z))
b(z, 0)2σzz (z) − σ (z)b(z, 0)bzz (z, 0) + σ (z)bz (z, 0)2 − σz (z)b(z, 0)bz (z, 0)

⎞⎟⎠ ,
⎛⎜⎝ xyσ (z)σz (z)

−xyσ (z)σz (z)
b(z, 0)σ (z)σzz (z) − σ (z)2bzz (z, 0) − b(z, 0)σz (z)2 + σ (z)bz (z, 0)σz (z)

⎞⎟⎠
⎫⎪⎬⎪⎭

Hence, the matrix associated to (L0 ∪ L1 ∪ L2)(q) has the sub-
matrix formed by all its rows and its first three columns with
determinant −αx2y2σ 3(z) < 0. Hence, (A.4) holds true onO given
the arbitrariness of q.

Therefore, by Theorem 2.3.3 in Nualart (2006), for any t >
0 the uncontrolled process (Sx,y,zt , Ix,y,zt , βz

t )t admits a transition
density p which is absolutely continuous with respect to the
Lebesgue measure in R3, and infinitely many times differen-
tiable. Moreover, Theorem 9 and Remark 11 in Bally (2003) (see
also Kusuoka and Stroock, 1985) show that p satisfies the Gaus-
sian estimates (A.2) and (A.3). This completes the proof. □

Proposition A.3. The dynamics of β as in (4.1) satisfy Assump-
tion 2.1.

Proof. For any z ∈ R and ξ ∈ [0, L], recall that b(z, ξ ) =

ϑ (̂β(L − ξ ) − z) and define

σ (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if z ∈ (−∞, 0],

σ z(γ − z) if z ∈ (0, γ ),

0 if z ∈ [γ ,∞).

(A.5)

Then, for (ξt )t ∈ A, introduce the stochastic differential equation

dβ̃t = b(̃βt , ξt )dt + σ̃ (̃βt )dWt , β̃0 = z ∈ R. (A.6)

Because b and σ̃ are Lipschitz-continuous and have sublinear

growth, uniformly with respect to ξ , for any (ξt )t ∈ A there
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xists a unique strong solution to (A.6) starting at z ∈ R (see,
.g., Theorem 7 in Chapter V of Protter, 2004). We denote such a
olution by (̃βξ,zt )t . Since ξ ↦→ b(z, ξ ) is decreasing, by Theorem
4 in Chapter V of Protter (2004), we have
L,z
t ≤ β̃

ξ,z
t ≤ β̃

0,z
t , ∀t ≥ 0 a.s., (A.7)

here (̃βL,z
t )t and (̃β0,z

t )t ) are, respectively, the solution to (A.6)
ith ξt ≡ L and with ξt ≡ 0. On the other hand, by Feller’s test

for explosion (cf. Proposition 5.22 in Chapter 5.5 of Karatzas and
Shreve, 1991), it can be checked β̃L,z

t > 0 for all t ≥ 0 a.s. and
β

0,z
t < γ for all t ≥ 0 a.s. Hence, by (A.7), we get β̃ξ,zt ∈ (0, γ )

for all t ≥ 0 a.s. This proves that the SDE (4.1) admits a unique
strong solution which lies within the open interval I = (0, γ ) (cf.
ssumption 2.1-(i)).
Given the boundedness of the interval I = (0, γ ), using the

expression of b and (A.5) it is straightforward to verify that (ii)
and (iii) of Assumption 2.1 are satisfied as well. □
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