Table 2.
Comparative classification performance of our proposed network with the other state-of-the-art methods used in endoscopy.
| Authors | Deep network | Accuracy, % | F1, % | mAPa, % | mARb, % |
| Zhang et al (2017) [44] | SqueezeNet [57] | 77.84 | 76.74 | 76.77 | 76.73 |
| Hicks et al (2018) [45] | VGG19 [54] | 85.15 | 85.29 | 85.88 | 84.72 |
| Fan et al (2018) [36] | AlexNet [16] | 80.08 | 80.49 | 80.70 | 80.28 |
| Takiyama et al (2018) [8] | GoogLeNet [58] | 84.59 | 85.14 | 85.29 | 84.99 |
| Byrne et al (2019) [5] | InceptionV3 [55] | 87.92 | 88.45 | 87.87 | 89.05 |
| Jani et al (2019) [46] | MobileNetV2 [59] | 88.53 | 88.51 | 88.34 | 88.69 |
| Lee et al (2019) [39] | ResNet50 [56] | 89.55 | 90.60 | 90.70 | 90.50 |
| Vezakis et al (2019) [40] | ResNet18 [56] | 89.95 | 90.35 | 90.72 | 89.99 |
| Owais et al (2019) [10] | CNNc + LSTMd [28,56] | 92.57 | 93.41 | 94.58 | 92.28 |
| Cho et al (2019) [42] | InceptionResNet [60] | 84.78 | 84.53 | 84.15 | 84.92 |
| Dif et al (2020) [38] | ShuffleNet [61] | 89.63 | 89.14 | 88.67 | 89.63 |
| Song et al (2020) [43] | DenseNet201 [27] | 92.12 | 92.42 | 92.91 | 91.93 |
| Guimarães et al (2020) [37] | VGG16 [54] | 85.72 | 85.80 | 86.24 | 85.37 |
| Hussein et al (2020) [41] | ResNet101 [56] | 90.24 | 91.14 | 91.52 | 90.78 |
| Klang et al (2020) [47] | Xception [62] | 86.05 | 84.88 | 84.19 | 85.58 |
| Proposed method | DenseNet + LSTM + PCAe + KNNf | 96.19 | 96.99 | 98.18 | 95.86 |
amAP: mean average precision.
bmAR: mean average recall.
cCNN: convolutional neural network.
dLSTM: long short-term memory.
ePCA: principal component analysis.
fKNN: k-nearest neighbor.