Skip to main content
. 2020 Nov 26;22(11):e18563. doi: 10.2196/18563

Table 4.

Classification performance comparison of our proposed method with the other handcrafted feature–based methods.

Feature descriptor and classifier Accuracy, % F1, % mAPa, % mARb, %
Local binary pattern [67]




AdaBoostM2 35.74 27.70 35.74 22.61

Multi-SVMc 43.84 42.35 42.99 41.72

RFd 57.10 53.85 54.79 52.95

KNNe 50.46 47.36 46.86 47.87
Histogram of oriented gradients [68]




AdaBoostM2 39.35 32.86 39.35 28.22

Multi-SVM 49.84 53.80 67.39 44.88

RF 61.41 63.19 68.66 58.55

KNN 53.20 54.68 58.41 51.45
Multilevel local binary pattern [69]




AdaBoostM2 44.02 37.45 44.02 32.59

Multi-SVM 55.47 53.10 54.75 51.55

RF 61.40 57.57 59.08 56.13

KNN 55.40 52.20 52.06 52.33
Proposed feature descriptor
(DenseNet + LSTMf +PCAg)





AdaBoostM2 93.39 93.66 94.35 92.98

Multi-SVM 95.50 96.43 97.98 94.96

RF 81.16 82.96 84.48 81.55

KNN 96.19 96.99 98.18 95.86

amAP: mean average precision.

bmAR: mean average recall.

cSVM: support vector machine.

dRF: random forest.

eKNN: k-nearest neighbor.

fLSTM: long short-term memory.

gPCA: principal component analysis.