Table 4.
Classification performance comparison of our proposed method with the other handcrafted feature–based methods.
| Feature descriptor and classifier | Accuracy, % | F1, % | mAPa, % | mARb, % | |||||
| Local binary pattern [67] |
|
|
|
|
|||||
|
|
AdaBoostM2 | 35.74 | 27.70 | 35.74 | 22.61 | ||||
|
|
Multi-SVMc | 43.84 | 42.35 | 42.99 | 41.72 | ||||
|
|
RFd | 57.10 | 53.85 | 54.79 | 52.95 | ||||
|
|
KNNe | 50.46 | 47.36 | 46.86 | 47.87 | ||||
| Histogram of oriented gradients [68] |
|
|
|
|
|||||
|
|
AdaBoostM2 | 39.35 | 32.86 | 39.35 | 28.22 | ||||
|
|
Multi-SVM | 49.84 | 53.80 | 67.39 | 44.88 | ||||
|
|
RF | 61.41 | 63.19 | 68.66 | 58.55 | ||||
|
|
KNN | 53.20 | 54.68 | 58.41 | 51.45 | ||||
| Multilevel local binary pattern [69] |
|
|
|
|
|||||
|
|
AdaBoostM2 | 44.02 | 37.45 | 44.02 | 32.59 | ||||
|
|
Multi-SVM | 55.47 | 53.10 | 54.75 | 51.55 | ||||
|
|
RF | 61.40 | 57.57 | 59.08 | 56.13 | ||||
|
|
KNN | 55.40 | 52.20 | 52.06 | 52.33 | ||||
| Proposed feature descriptor (DenseNet + LSTMf +PCAg) |
|
|
|
|
|||||
|
|
AdaBoostM2 | 93.39 | 93.66 | 94.35 | 92.98 | ||||
|
|
Multi-SVM | 95.50 | 96.43 | 97.98 | 94.96 | ||||
|
|
RF | 81.16 | 82.96 | 84.48 | 81.55 | ||||
|
|
KNN | 96.19 | 96.99 | 98.18 | 95.86 | ||||
amAP: mean average precision.
bmAR: mean average recall.
cSVM: support vector machine.
dRF: random forest.
eKNN: k-nearest neighbor.
fLSTM: long short-term memory.
gPCA: principal component analysis.