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Abstract

The neurovascular unit, consisting of neurons, astrocytes, and vascular cells, has become the focus 

of much discussion in the last two decades and emerging literature now suggests an association 

between neurovascular dysfunction and neurological disorders. In this review, we synthesize the 

known and suspected contributions of astrocytes to neurovascular dysfunction in disease. 

Throughout the brain, astrocytes are centrally positioned to dynamically mediate interactions 

between neurons and the cerebral vasculature, and play key roles in blood-brain barrier 

maintenance and neurovascular coupling. It is increasingly apparent that the changes in astrocytes 

in response to a variety of insults to brain tissue – commonly referred to as “reactive astrogliosis” 

– are not just an epiphenomenon restricted to morphological alterations, but comprise functional 

changes in astrocytes that also contribute to the phenotype of neurological diseases with both 

beneficial and detrimental effects. In the context of the neurovascular unit, astrocyte dysfunction 

accompanies, and may contribute to, blood-brain barrier impairment and neurovascular 

dysregulation, highlighting the need to determine the exact nature of the relationship between 

astrocyte dysfunction and neurovascular impairments. Targeting astrocytes may represent a new 

strategy in combinatorial therapeutics for preventing the mismatch of energy supply and demand 

that often accompanies neurological disorders.
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1. Introduction

Astrocytes play a pivotal role in the generation, maturation, and regulation of the 

neurovascular unit (NVU). Astrocytes are also extremely well-tuned to their 
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microenvironment and respond to any disruptions therein, as occurs in disease and injury, 

with morphological and functional changes referred to as reactive astrogliosis. The question 

then arises: does reactive astrogliosis functionally alter the NVU in disease? A summary 

review of the literature suggests a close relationship between astrogliosis, changes in blood-

brain barrier (BBB) permeability, and neurovascular dysfunction in several disorders. 

Indeed, astrogliosis is often prominent around blood vessels, and numerous disorders of the 

central nervous system (CNS) that exhibit astrogliosis – e.g. traumatic brain injury (TBI), 

ischemic stroke, Alzheimer’s disease (AD) and related dementias, subarachnoid hemorrhage 

(SAH), etc. – are also accompanied by neurovascular dysregulation. Such dysregulation can 

include impaired autoregulation, loss of resting tone, neurovascular uncoupling and/or BBB 

dysfunction: all processes that are regulated, to some extent, by astrocytes. From a purely 

economic viewpoint, when there is a decrease in blood flow to the brain, particularly under 

pathological stress when cells need even more energy to repair and recover, not all neurons 

and/or glial cells are likely to survive, or survive undamaged. Further, the extremely limited 

neurogenic capacity of the adult brain would then ensure that such degeneration will have a 

lasting impact on brain function. In other words, impairment of neurovascular regulation 

could cause neurodegeneration by producing a state of malnourishment of the brain (Fig. 1). 

This is the basic premise of the ‘vascular’ hypothesis of AD (Zlokovic, 2002), but might 

such dysregulation also contribute to a broader range of neuropathologies? Here, we attempt 

to summarize evidence gleaned from animal and human studies to put forth the hypothesis 

that reactive astrogliosis may be the causative factor producing neurovascular dysfunction, 

which then exacerbates or perhaps, in some instances, even initiates neurodegeneration. This 

understudied topic has remarkable potential to help us understand the basic biology of 

neurological disorders and suggest new therapeutic interventions in the treatment and care of 

such conditions.

1.1 Astrocytes

Astrocytes were first identified in the mid-nineteenth century as a population of non-

neuronal cells in the CNS that lacked axons and dendrites but bore short, highly ramified 

processes. They were initially identified as neuroglia by the pathologist Andriezen 

(Andriezen, 1893), but later named astrocytes – the star cells – by Cajal (Cajal, 1995). 

Historically, astrocytes were divided into two subtypes: protoplasmic astrocytes, which are 

found in the gray matter and possess a dense cloud of fine processes that fill the interstitial 

space in the neuropil, and fibrous astrocytes, which are found in the white matter and 

possess fewer but thicker, longer processes. This basic nomenclature maintains a stronghold 

in the glial literature even today, despite accumulating evidence suggesting there are 

numerous subpopulations with striking heterogeneity, both between and within brain regions 

(Bayraktar et al., 2015; Farmer and Murai, 2017). Most of what we know about astrocyte 

functions today are based on investigations of grey matter protoplasmic astrocytes, and our 

understanding of white matter astrocytes, especially as it pertains to vascular regulation, is 

relatively limited. White matter astrocytes contact axons at the nodes of Ranvier (Butt et al., 

1994), express excitatory neurotransmitter transporters and may function to protect both 

oligodendroglia and axons from excitotoxicity (Baltan et al., 2011). They also facilitate 

myelination in the developing and mature brain via secretion of enzymes and other soluble 

factors, ion buffering, and metabolic substrate delivery (Lundgaard et al., 2014). Therefore, 
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although the hypotheses forwarded in this review are largely based on findings from 

protoplasmic astrocytes of the grey matter, they are likely also relevant to gliovascular 

structure and function in white matter.

In the grey matter, the fine processes of astrocytes permeate the neuropil to contact neuronal 

cell bodies, dendrites, synapses, nodes of Ranvier, ependymal cells, and the pia mater. A 

single astrocyte can interact with several neurons and >100,000 synapses (Ventura and 

Harris, 1999; Bushong et al., 2004), forming the morphological basis of the tripartite 

synapse. At the other end, the endfoot processes of astrocytes almost completely encapsulate 

the parenchymal microvasculature (Simard et al., 2003; Mathiisen et al., 2010). Astrocytes 

express several ion channels, transporters and receptors, which contribute to their critical 

roles in modulating synaptic activity via potassium buffering, pH regulation, 

neurotransmitter uptake and gliotransmitter release, and general maintenance of neuronal 

homeostasis (Verkhratsky and Nedergaard, 2018). Mature astrocytes form a highly 

organized, gap junctionally-coupled network that tiles the brain, with each astrocyte 

occupying a unique spatial domain (Bushong et al., 2002). This spatially segregated yet 

intercellularly connected astrocyte syncytium allows astrocytes to discriminate and integrate 

neuronal signals, earning them recognition as partners in information processing (Araque et 

al., 2014). This syncytium may also enable astrocytes to supply energy substrates to neurons 

(Pellerin and Magistretti, 1994) and oligodendrocytes (Niu et al., 2016), although this is 

debated (DiNuzzo et al., 2010; Diaz-Garcia et al., 2017; Dienel, 2017). Central to the 

argument presented in this review, astrocytes are also key players in cerebral blood flow 

(CBF) regulation. Based on their morphological characteristics, the visionary Cajal first 

hypothesized that astrocytes might control vascular diameter, and much evidence now 

supports their integral role in maintaining resting vascular tone as well as regulating NVC 

(Zonta et al., 2003; Mulligan and Macvicar, 2004; Metea and Newman, 2006; Takano et al., 

2006; Kim et al., 2015; Rosenegger et al., 2015; Mishra et al., 2016).

1.2 Cerebral Blood Flow

The enhanced cognitive power with which the brain endows mammals and especially 

humans comes at a high price – both the size (Aiello, 1995) and metabolic rate (Karbowski, 

2007) of the mammalian brain have evolved to be larger than that predicted by body size 

alone. Indeed, increased cerebral metabolic rate is considered one of the main factors driving 

higher cognitive development. This increase in metabolic activity results in a 

correspondingly large energy demand (Howarth et al., 2012), which is supplied by the 

extensive cerebrovascular network originating largely from the internal carotid arteries. 

Evolutionary changes in skull structure show that the carotid foramen, through which the 

internal carotid artery passes into the skull, is enlarged in the human skull compared to other 

hominids and may have been the initial evolutionary step that permitted the human brain to 

attain its current complexity (Seymour et al., 2016), stressing the importance of cerebral 

blood supply for higher cognitive function.

CBF is regulated via several mechanisms. Autoregulation ensures that the brain receives a 

relatively constant supply of blood and nutrients despite changes in systemic blood pressure 

(Tzeng and Ainslie, 2014; Filosa et al., 2016). Neurogenic signals from the basal forebrain 
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and brain stem nuclei on penetrating arterioles as well as from peripheral trigeminal 

ganglionic innervation of pial blood vessels also contribute to the tone of cerebral 

vasculature and, therefore, CBF (Hamel, 2006; Cauli and Hamel, 2010). However, as the 

brain lacks energy stores and is reliant upon blood glucose-dependent aerobic respiration 

(Holmes and Holmes, 1926), CBF is also regulated locally in response to increased neuronal 

activity via NVC, thereby giving rise to functional hyperemia. NVC is regulated by 

signaling between neurons, astrocytes, and vascular cells (endothelial cells, vascular smooth 

muscle cells, and pericytes), which collectively make up the NVU (Iadecola, 2017; 

McConnell et al., 2017) (Fig. 2). The NVU is thus the epicenter of several tightly controlled, 

dynamic intercellular interactions orchestrated to maintain optimal global and local CBF 

(Filosa et al., 2016; Mishra, 2016). It is also the structural basis of the BBB, which isolates 

the brain from most circulating factors, antigens and, under healthy conditions, immune cells 

(Daneman and Barres, 2005; Iadecola, 2017).

1.3. Astrocytes as Mediators of Neurovascular Coupling

Historically, NVC was believed to be a feedback system produced by metabolic demand: 

active neurons produce an energy deficit that triggers an increase in blood supply. When 

neuronal activity returns to normal, the energy deficit is no longer present and so blood 

supply returns to resting levels (Koehler et al., 2006; Attwell et al., 2010). Evidence from the 

past couple of decades, however, suggests that NVC is instead a feed-forward mechanism 

(Vaucher et al., 1997; Koehler et al., 2006; Attwell et al., 2010): neuronal activity stimulates 

a complex intercellular signaling cascade, resulting in the production and release of several 

vasoactive compounds that produce vascular dilation and an increase in blood flow. This 

feed-forward signaling is triggered regardless of local oxygen level (Lindauer et al., 2010). 

An emerging hypothesis suggests that a combination of both of these scenarios may be at 

play: the feed-forward system may regulate the rapid phase of the neurovascular response, 

whereas the feedback signaling may contribute to the slower, tonic phase (Baslow, 2017).

The role of astrocytes in conveying neurovascular signals to parenchymal arterioles has been 

extensively studied and reviewed (Howarth, 2014; Mishra, 2016; Iadecola, 2017). Astrocytes 

respond to neurotransmitters released during synaptic activity, such as glutamate (Alkayed et 

al., 1997; Zonta et al., 2003; Takano et al., 2006; Gordon et al., 2008) and ATP (Wells et al., 

2015; Mishra et al., 2016), with an increase in their intracellular Ca2+ concentration (Mishra 

et al., 2016). This increased Ca2+ prompts astrocytes to synthesize and release an assortment 

of vasoactive substances that act on vascular smooth muscle cells to elicit vessel dilation and 

increase blood flow. Such vasoactive substances include ions such as K+ (Filosa et al., 

2006), metabolites of arachidonic acid such as prostaglandin E2 (PGE2) (Zonta et al., 2003; 

Takano et al., 2006; Gordon et al., 2008; Mishra et al., 2011; Hall et al., 2014) and 

epoxyeicosatrienoic acids (EETs) (Alkayed et al., 1997; Metea and Newman, 2006), 

metabolic by-products such as lactate (Gordon et al., 2008), and products of ATP breakdown 

such as adenosine (Xu and Pelligrino, 2007; Vetri et al., 2011). Astrocyte-derived 

arachidonic acid can also be metabolized downstream in vascular smooth muscle cells to 

produce 20-hydroxyeicosatetraenoic acid (20-HETE) to induce vessel constriction (Mulligan 

and Macvicar, 2004; Metea and Newman, 2006; Mishra et al., 2011; Hall et al., 2014). 

Interestingly, astrocytic Ca2+-dependent NVC is bidirectional – moderate increases in Ca2+ 
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produce dilations, while large increases produce constrictions (Girouard et al., 2010). It must 

also be noted that NVC can also be triggered by direct signaling from neurons (Attwell et 

al., 2010; Cauli and Hamel, 2010) and is not dependent on any single signaling mechanism; 

rather, it appears to be product of several parallel and redundant pathways (Liu et al., 2012; 

Hosford and Gourine, 2019), underscoring the significance of NVC in maintaining healthy 

brain function. Further, not all factors involved in this parallel signaling have yet been 

identified: simultaneous blockade of almost all the above-described pathways is not enough 

to completely inhibit NVC.

Astrocytes have been shown to play an essential role in NVC at the microvascular capillary 

level (Biesecker et al., 2016; Mishra et al., 2016). In the cortex, ATP released by active 

neurons causes a Ca2+ influx in astrocytes via the ionotropic P2X1 channels, which 

stimulates arachidonic acid production and its downstream metabolism to vasodilatory 

PGE2. PGE2 then acts on EP4 receptors on pericytes, the contractile cells on capillaries, 

thereby dilating capillaries (Mishra et al., 2016). In contrast to previous findings, these and 

other studies also reported that interfering with astrocyte Ca2+ is not sufficient to block 

arteriolar NVC, calling the importance of Ca2+-dependent astrocyte mechanisms in arteriole 

regulation into question (Nizar et al., 2013; Takata et al., 2013; Bonder and McCarthy, 2014; 

Jego et al., 2014; Biesecker et al., 2016; Mishra et al., 2016). Some of these studies only 

evaluated the role of astrocytic Ca2+ signals within the soma or inositol trisphosphate (IP3) 

dependent release of Ca2+ from internal stores in mediating vascular responses, and thus 

may not be representative of the role that IP3-independent astrocyte Ca2+ signals (Srinivasan 

et al., 2015), particularly in process microdomains or vascular endfeet, which are shown to 

play a role in NVC (Otsu et al., 2015). In a recent report (Mishra et al., 2016), we showed 

that chelating fast astrocyte Ca2+ does not change arteriole NVC but significantly reduces 

capillary NVC. It has also been proposed that astrocytes may only regulate arteriole NVC 

under conditions of high or persistent neuronal activity (Institoris et al., 2015). Taken 

together, these data support the notion that astrocytes regulate NVC at the microvascular 

capillary level and, under some circumstances, also at the arteriole level (Iadecola, 2017).

1.4 Astrocytes as Modulators of Cerebral Blood Flow

Recent evidence highlights the role of the local NVU and astrocytes in maintaining resting 

vascular tone (Filosa et al., 2016) via the release of both constrictive and dilatory factors. 

Though pressure-evoked vascular constriction of parenchymal arterioles is initiated by 

myogenic factors, it is now demonstrably maintained by astrocyte-dependent signaling (Kim 

et al., 2015). Specifically, an increase in intravascular pressure activates mechanosensitive, 

Ca2+-permeable TRPV4 channels on astrocytes, resulting in a rise in astrocyte Ca2+. This in 

turn causes astrocytes to release purinergic signals that are necessary to maintain the 

pressure-evoked constriction (Kim et al., 2015). Similarly, the resting vascular tone of retinal 

arterioles is dependent on purinergic signaling from Muller glial cells (Kur and Newman, 

2014), the retinal approximate of astrocytes. Another study reported that Ca2+-dependent 

cyclooxygenase metabolites released from astrocytes dilates cortical arterioles at rest, and 

that arresting astrocyte Ca2+ results in arteriole constriction (Rosenegger et al., 2015). 

Further, cortical vasodilation induced by basal forebrain stimulation, a response previously 

thought to be entirely neurogenic, was recently shown to be, in part, dependent on astrocytic 
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release of epoxyeicosanoids (Lecrux et al., 2012). A healthy balance between such dilatory 

and constrictive signals is likely important in regulating vascular tone and maintaining 

resting blood flow at physiologically desirable levels.

1.5. Astrocytes and the Blood-Brain Barrier

The microvasculature in most organ systems is fenestrated, lacks endothelial tight junctions 

and is readily permeable to substances in the blood. The brain vasculature, in contrast, is 

endowed with the BBB, which regulates permeability across the vascular wall in order to 

maintain homeostasis of the CNS microenvironment and, under healthy conditions, to 

protect the brain from the peripheral immune system. Tight junctions form a physical barrier 

at the BBB: they exist between overlapping processes of endothelial cells and prevent 

substances in the blood from leaking into the CNS extracellular space (Reese and 

Karnovsky, 1967; Coomber and Stewart, 1985). Thus, passage of substances from the blood 

to the brain requires either a transporter-mediated or a transcytosis-dependent pathway.

Intricate crosstalk between NVU components, including astrocytes, pericytes and 

endothelial cells, generates and maintains the BBB. During development, pericytes help 

establish the BBB by inhibiting the expression of endothelial genes that enhance vascular 

permeability (Daneman et al., 2010) and inducing polarization of the astrocyte endfeet 

abutting the vasculature (Armulik et al., 2010). The BBB is often impaired in neurologic 

disease, suggesting that continued maintenance is required during adult life to preserve 

normal barrier function (Daneman and Barres, 2005; Abbott et al., 2006). Astrocytes play a 

key role in this maintenance by secreting trophic factors such as transforming growth factor 

β1 (TGFβ1), glial-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF) and 

angiopoietin-1 that preserve the BBB phenotype in endothelial cells (Abbott et al., 2006; 

Daneman and Prat, 2015).

2. Reactive Astrogliosis and Astrocyte Dysfunction

Astrocytes respond to CNS disease and injury via an overt process known as reactive 

astrogliosis. Astrogliosis encompasses a host of morphological, transcriptomic, epigenetic, 

and proliferative changes in astrocytes (Anderson et al., 2014) and often occurs in a graded 

manner (Sofroniew, 2009). Mild to moderate astrogliosis (e.g. mild trauma, diffuse immune 

activation), comprises a small and reversible increase in astrocytic expression of cytoskeletal 

intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and 

vimentin (Brenner, 2014) (Fig. 3A–C) together with cellular hypertrophy. Severe astrogliosis 

(e.g. major infection, chronic neurodegeneration) produces an irreversible, lasting change in 

the cytoarchitecture and functional properties of astrocytes. In extreme cases, this leads to 

the formation of a glial scar wherein astrocytes proliferate and form dense intertwined webs 

to fill in and wall off the empty spaces left by dead or dying cells (Fig. 3D), thereby 

protecting normal CNS tissue by suppressing the spread of infectious agents, inflammatory 

cells and the cytokines and metabolites, and cell death. Chronic glial scarring from this kind 

of astrogliosis was, until recently, thought to detrimentally and physically prevent axon 

regrowth and thus functional recovery in spinal cord injury (Davies et al., 1999). This 

prevailing dogma is challenged by a recent study demonstrating that molecular signals 
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expressed by the glial scar tissue supports axon growth and, indeed, allows nerve fibers to 

regrow across spinal lesions (Anderson et al., 2016). Importantly, the exact cellular changes 

underlying astrogliosis are likely context-dependent (Zamanian et al., 2012), defined by the 

specific disease and/or injury (Sofroniew, 2014; Liddelow and Barres, 2017), and perhaps 

even the stage of the disease. Notably, the increase in IF proteins and astrogliosis are not 

only induced by injury, but also in aging (Sabbatini et al., 1999; Clarke et al., 2018). An 

emerging area of research centers on the question of whether senescence or degenerative 

changes that affect astrocytes, rather than neurons, promote aging and age-related disease in 

humans.

Transcriptomic analysis of reactive astrocytes has highlighted the striking heterogeneity of 

these cells and led to the idea of ‘good’ verses ‘bad’ astrogliosis (Liddelow and Barres, 

2017). Insults that mimic infection, such as injections of the bacterial toxin 

lipopolysaccharide (LPS) in vivo or treatment with inflammatory cytokines ex vivo, induce 

expression of cytokines that are likely to aggravate pathology, while insults that induce 

ischemia induce the expression of proteins involved in tissue repair and neuroprotection 

(Zamanian et al., 2012). These indications are partly borne out by mechanistic studies: 

astrocytes responding to LPS stimulation actively phagocytose neurons and negatively 

impact recovery (Liddelow et al., 2017), while astrocytes responding to ischemia (Liu et al., 

2014; Becerra-Calixto and Cardona-Gomez, 2017; Tachibana et al., 2017), spinal cord injury 

(Faulkner et al., 2004; Anderson et al., 2016) or TBI (Shinozaki et al., 2017) can enhance 

recovery. This is not entirely unexpected as astrocytes are very adaptable cells that 

continuously tune in to their environment and respond to it accordingly to establish and 

maintain homeostasis. In this sense, reactive astrogliosis is a response that aims to re-

establish homeostasis after injury and attenuate damage to the nervous tissue. However, 

similar to peripheral inflammatory responses, astrogliosis may itself become injurious under 

specific conditions and exacerbate damage (Barres, 2008; Anderson et al., 2014). It is also 

likely that a spatial and temporal heterogeneity of astrocyte reactivity exists relative to the 

site of injury. Future research should focus on identifying and categorizing the disease-

ameliorating and disease-exacerbating aspects of astrocyte reactivity. Results from such 

studies may facilitate therapeutic fine-tuning of astrogliosis to skew the process towards 

neuroprotection and functional recovery.

Features that characterize astrogliosis include decreased expression of inwardly rectifying K
+ (Kir) channels (Ji et al., 2012), the glutamate transporters GLT-1 and GLAST (Piao et al., 

2015; Hubbard et al., 2016), the purinergic receptor P2Y1 (Shinozaki et al., 2017) and 

adenosine kinase (Gouder et al., 2004; Aronica et al., 2013). Loss of perivascular 

localization of the water transporter AQP4 (Eid et al., 2005; Alvestad et al., 2013) and an 

increase in the expression or activation of metabotropic glutamate receptors (Aronica et al., 

2000; Anneser et al., 2004; Zamanian et al., 2012; Rusnakova et al., 2013) have also been 

reported. Such changes can produce glutamate and potassium imbalances in the neuropil, 

leading to excitotoxicity or epileptiform activity. However, they do not always occur 

concurrently and, instead, are remarkably context-dependent. It is also important to note that 

overt astrogliosis, as defined by upregulation of IF proteins and/or hypertrophy, is not 

obligatory for astrocytes to dysfunction and disrupt neuronal function. For example, in 

Huntington’s disease, dysregulation of astrocytic Kir channels and Ca2+ signaling occur in 
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the absence of IF protein upregulation (Jiang et al., 2016), and in diabetic retinopathy, glial-

dependent neurovascular uncoupling can occur before gliosis is pronounced (Mishra and 

Newman, 2010). Another example is presented by multiple sulfatase deficiency, a lysosomal 

storage disorder caused by mutations in the sulfatase modifying factor 1 gene – transgenic 

mice with this mutation only in astrocytes display no overt astrogliosis, despite exhibiting 

degeneration of cortical neurons and anxiety behavior (Di Malta et al., 2012). These findings 

stress the need for a more nuanced sub-classification of astrocyte dysfunction states. For the 

purposes of this review, we use the terms ‘astrogliosis’ and ‘reactive astrocytes’ to 

encompass both morphologically overt astrogliosis and astrocyte dysfunction.

3. Astrocyte-mediated neuropathologies

Defects that primarily affect astrocytes are relatively rare but highlight some important 

aspects of the roles of astrocytes in health and disease. These tend to fall into two categories: 

young-onset inherited disease due to mutations in genes that are expressed in astrocytes and 

contribute to important astrocyte functions, and older-onset disease with morphologic or 

biochemical features that implicate astrocytes more than other cells as contributors to 

disease etiology.

Of the inherited diseases, Alexander disease is a clear example, caused by mutations in the 

GFAP gene. It features not only morphological changes and functional losses in astrocytes, 

but prominent secondary effects on other glial cells (e.g. microglial activation and 

oligodendrocyte loss that produce noticeable demyelination), BBB disruption, and variable 

neuronal loss (Mignot et al., 2004; Sosunov et al., 2018). Another example is hereditary 

spastic paraplegia, in which mutations in EAAT2 (GLT-1), the astrocyte glutamate 

transporter, produce loss of upper motor neurons (Meyer et al., 1998; Parodi et al., 2017). 

Amyotrophic lateral sclerosis is yet another case, where SOD1 mutations are thought to 

produce motor neuron degeneration through a non-cell autonomous mechanism that involves 

astrocyte stimulation of neuronal excitability (Papadeas et al., 2011; Fritz et al., 2013; 

Hayashi et al., 2016).

Some diseases produce neuronal or axonal loss through an acquired immune-mediated 

attack that targets astrocytes. Immune-mediated attacks on astrocyte AQP4 was recently 

shown to be the basis of most cases of neuromyelitis optica (Jarius and Wildemann, 2010), 

with astrocyte dysfunction leading to NVU disruption, oligodendroglial death, and 

demyelination (Ratelade and Verkman, 2012). Another similar autoimmune condition, 

GFAP astrocytopathy, was described in 2016, whereby patients’ immune systems generate 

antibodies against GFAP that is associated with subventricular and perivascular damage 

(Fang et al., 2016), ultimately resulting in encephalopathy, inflammatory myelitis, tremor, 

and ataxia. The primary astrocyte insult appears to begin around the pial, ventricular, or 

perivascular regions, perhaps because these are regions where the peripheral immune system 

can first interact with brain tissue. The pathophysiology underlying this condition is not fully 

understood but it is suggested that antigen-specific cytotoxic T-cells (rather than the anti-

GFAP antibody itself) may play a role in some cases, or that an immune attack triggered by 

occult neoplasm expressing astrocyte antigens may be responsible in others (Zekeridou et 
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al., 2018). It could also be downstream of other astrocyte dysfunctions, a question currently 

under investigation (Zekeridou et al., 2018).

Several late-onset conditions associated with astrocyte dysfunction have also recently gained 

scientific attention. Age-related neuropathologies associated with protein aggregation within 

astrocytes, especially hyperphosphorylated tau, have been described in frontotemporal lobar 

degeneration (FTLD), Pick’s disease, progressive supranuclear palsy, cortico-basal 

degeneration, and aging-related tau astrogliopathy (ARTAG) (Komori, 1999; Kovacs et al., 

2017). Astrocytic tauopathy tends to be the dominant pathologic feature in some tau 

mutation-associated FTLD as well as the pathologic lesion of ARTAG (Kovacs et al., 2017). 

All of these diseases feature prominent neuronal loss and/or demyelination. Key roles for 

astrocytes have been proposed in additional diseases that feature neuronal loss, including 

epilepsy, Huntington’s disease, and Parkinson’s disease, and often involve blood-brain 

barrier dysfunction and altered astrocyte metabolism (Weissberg et al., 2015; Booth et al., 

2017; Khakh et al., 2017; Boison and Steinhauser, 2018; Skotte et al., 2018; Yan et al., 

2018).

The distinction between astrogliosis and astrocytopathy in disease is noteworthy: astrogliosis 

is defined as the active response of astrocytes to an injury (neuronal death, ischemia or TBI 

etc.) and involves aberrant loss or gain of astrocyte function, while astrocytopathy is defined 

as astrocyte degeneration characterized by swollen cell bodies, retracted short processes, and 

loss of fine processes and endfeet (Pekny et al., 2016; Kim et al., 2017). Particularly in 

conditions where astrocytopathy is observed, the disease is likely to be secondary to 

unhealthy astrocytes. Is astrocytopathy a separate independent phenomenon, or is it the end-

product of prolonged astrogliosis and functional disruption? We do not know. However, 

evidence provided above supports the concept of astrocytopathy or ‘astrodegeneration’ as 

another important contributor to the pathogenesis of disease, including those that have been 

considered primarily or exclusively neuronal in nature and should be considered a possible 

etiological factor in neurodegenerative diseases.

4. Astrogliosis and neurovascular unit impairment in neurodegenerative 

disorders

Many CNS diseases feature NVU abnormalities. Some are readily attributable to NVU 

abnormalities, such as stroke and vasculitis. In many others – including AD, TBI, chronic 

traumatic encephalopathy (CTE), etc. – NVU abnormalities are rampant, but the reason for 

these abnormalities and their contribution to disease etiology is unclear (reviewed in 

(McConnell et al., 2017) and (Liebner et al., 2018). Given the central positioning of 

astrocytes between neurons and vascular cells within the NVU, it is plausible that they 

aberrantly influence the NVU, thus disrupting the BBB and NVC, and contributing to 

neurological disorders. Here we focus our attention on three disorders - AD, TBI, and stroke 

– and discuss the evidence implying a possible causal relationship between astrogliosis and 

NVU dysfunction. Although TBI and stroke are acute-onset conditions, they have chronic 

impacts on neurological health, including increased incidence and rate of cognitive decline 

(Savva et al., 2010; Levine et al., 2015; Ozen et al., 2015). Further, accumulating evidence 
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that AD patients have a history of evident or silent infarcts further stresses the interaction of 

such acute injuries with chronic conditions (Vermeer et al., 2003; Yang et al., 2015). These 

chronic consequences of acute injuries may partially originate from impairments in 

astrocyte-vascular signaling. We also briefly discuss the association between astrogliosis and 

vascular dysfunction in white matter diseases.

4.1 Alzheimer’s disease and related dementias

AD is the leading neurodegenerative cause of cognitive decline and dementia. AD diagnosis 

is based on neurological evaluation and neuroimaging data, and is confirmed port-mortem 

by histological presence of extracellular plaques of amyloid β protein (Aβ) and intracellular 

neurofibrillary tangles of hyperphosphorylated tau protein within neurons. In many cases, 

Aβ deposition also occurs around the vasculature in the form of cerebral amyloid angiopathy 

(CAA). However, aside from a few mutations responsible for familial cases, the actual cause 

of AD remains unknown. While much of the past work on AD has predominantly focused 

on neurogenic mechanisms and neuroprotection (Kuruva and Reddy, 2017), epidemiological 

data suggest that vascular pathology is also a key contributing factor. Although the vascular 

hypothesis of AD and dementia was proposed over two decades ago (de la Torre and 

Mussivand, 1993; de la Torre, 1997; Farkas and Luiten, 2001; Zlokovic, 2002), only recently 

has it become the focus of renewed attention (Kalaria, 2010; Snyder et al., 2015; Montagne 

et al., 2016). Indeed, the National Institute of Neurological Disorders and Stroke has focused 

a new research framework for investigations specifically into vascular contributions to 

cognitive impairment and dementia (Corriveau et al., 2016).

BBB dysfunction and cerebral hypoperfusion both occur early in AD (Kelleher and Soiza, 

2013; Iturria-Medina et al., 2016), and decreased tissue oxygenation is observed even in 

patients with mild cognitive impairment (Tarumi et al., 2014), suggesting disruption of CBF. 

Indeed, impairment of NVC occurs in AD patients (Rosengarten et al., 2009; Nicolakakis 

and Hamel, 2011; Kotliar et al., 2017), with regions of amyloid deposition being 

characterized by large reductions in CBF (Mattsson et al., 2014). A recent analysis of the 

patient data deposited in the multicenter AD Neuroimaging Initiative showed that 

cerebrovascular dysregulation was not only the strongest and earliest detectable event during 

the development of cognitive impairment, but was correlated with disease progression even 

before amyloid β (Aβ) accumulation and functional/metabolic changes (Iturria-Medina et 

al., 2016). Animal models of AD are also characterized by impaired NVC (Rancillac et al., 

2012; Kimbrough et al., 2015; Joo et al., 2017; Tarantini et al., 2017; Gutierrez-Jimenez et 

al., 2018), lower resting CBF (Niwa et al., 2002) and lower oxygen extraction fraction 

(Gutierrez-Jimenez et al., 2018), often preceding plaque deposition (Niwa et al., 2002). In an 

animal model of CAA, cerebral hypoperfusion accelerated the rate of CAA burden and the 

appearance of cortical microinfarcts (Okamoto et al., 2012). CAA can interrupt NVC signals 

(Kimbrough et al., 2015), likely producing local hypoxia, which can, in turn, induce Aβ 
generation (Zhang et al., 2007). Thus, a vicious feedback loop is initiated wherein Aβ and 

hypoxia exacerbate each other. Consistent with this, a study of demented patients 

experiencing hypoperfusion due to a unilateral carotid artery stenosis were found to have a 

much higher Aβ load preferentially in the stenosed hemisphere (Huang et al., 2012). These 
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findings extend strong support for the hypothesis that neurovascular dysfunction may be 

causative in AD rather than purely correlative.

What, if any, is the role of astrocytes in this dysfunction? Reactive astrogliosis is a common 

and widespread histologic feature of AD (Rodriguez-Arellano et al., 2015; Taipa et al., 

2017). In both patients and animals models, reactive astrocytes associate strongly with senile 

plaques (Mandybur and Chuirazzi, 1990; Cullen, 1997; Rodriguez-Arellano et al., 2015) 

where they play an important role in Aβ degradation and clearance (Wyss-Coray et al., 

2003). These astrocytes exhibit not only local, but global, network-wide increases in Ca2+ 

signaling (Kuchibhotla et al., 2009) and clear presynaptic dystrophic neurites by engulfing 

and degrading them (Gomez-Arboledas et al., 2018). Thus, generally speaking, astrocytes 

appear to take on a phagocytic role in AD, conferring neuroprotection. However, there is 

also ample evidence for detrimental roles of astrocytes; they exhibit decreased expression 

and activity of glutamine synthetase (Olabarria et al., 2011), overexpress inducible nitric 

oxide synthase (Akama and Van Eldik, 2000), and can inhibit neuronal function by 

synthesizing and releasing GABA (Jo et al., 2014). At the NVU, astrocytes exhibit several 

changes that may alter their ability to maintain the BBB and regulate NVC. Reactive 

astrocytes surrounding Aβ plaques exhibit Ca2+ hyperactivity driven by metabotropic 

purinergic signaling (Delekate et al., 2014) and, in models of CAA, the vascular coverage by 

astrocyte endfeet is reduced with concurrent downregulation of K+ and AQP4 channels 

(Wilcock et al., 2009). As Ca2+-dependent K+ release from astrocytes is one of the 

established pathways regulating NVC, dysfunction of these signals in reactive astrocytes 

could have an immediate and strong effect on local blood flow. Further, dysfunction of the 

glymphatic clearance system, which relies of astrocytic AQP4 channels, was also recently 

suggested to increase Aβ accumulation in an AD model (Peng et al., 2016). Further research 

needs to directly address whether reactive astrogliosis, via these or other mechanisms (AA 

metabolites, adenosine, lactate etc.), attenuates NVC or alters perivascular Aβ clearance in 

AD.

Astrocyte dysfunction has been demonstrated to directly induce AD-like vascular and 

amyloid pathology in one interesting case. In mice overexpressing astrocyte-specific TGFβ1, 

astrogliosis develops at a young age and is followed by a reduction in CBF, an increase in 

perivascular Aβ accumulation (even in the absence of an Aβ-overexpressing mutant 

genotype), and finally cerebral hemorrhage – similar to the progression of AD pathology in 

human disease (Wyss-Coray et al., 2000a; Wyss-Coray et al., 2000b; Gaertner et al., 2005). 

TGFβ receptor-dependent signaling produces astrogliosis in response to blood-borne 

proteins that leak into the brain in the event of a BBB failure (Heinemann et al., 2012). It is 

therefore possible to imagine a scenario whereby an early disruption of the BBB (perhaps 

induced by peripheral inflammation (Cattaneo et al., 2017)) and induction of astrogliosis 

initiates a molecular and cellular domino effect that, under repeated stress or in the right 

genetic background, dysregulates the NVU and overwhelms Aβ clearance systems, thus 

leading to AD pathology. Indeed, loss of BBB integrity is common in animal models of AD 

(Montagne et al., 2017), and blood constituents such as albumin, fibrinogen and 

immunoglobulins accumulate in aging human brains (Goodall et al., 2017), particularly in 

astrocytes. Even more compellingly, TGFβ1 levels are increased in the brains (Wyss-Coray 

et al., 1997) and cerebrospinal fluid of AD patients (Zetterberg et al., 2004). These findings 
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lend credence to the general hypothesis that an initial BBB failure event leads to astrogliosis 

(and also microglial activation (Heppner et al., 2015; Sarlus and Heneka, 2017), not 

discussed in this review), which induces neurovascular dysregulation and hypoperfusion, 

which then increase microinfarcts and Aβ formation. Upon prolonged and repeated insults, 

or within the right genetic background, such astrocyte-directed NVU dysregulation could 

lead to increased Aβ deposition, reduced Aβ clearance and, ultimately, increased neuronal 

injury to result in the typical “sporadic” cases of AD. Now that we are beginning to 

understand the connections between astrocytes, neurovascular regulation, and BBB 

maintenance in physiology and their impairment in AD pathology, it is time to revise our 

strategy to one that aims to preserve not only neurons but also astrocytes, other glial cells 

and vascular cells: indeed, the whole community must survive for cognitive function to be 

saved (Barres, 2008).

4.2 Traumatic Brain Injury

TBI occurs when the brain sustains physical trauma due to impact, penetration, or rapid 

movement (vibrations) within the skull. Because TBI can result from multiple injury 

paradigms, and affect all genders and ages, the exact pathophysiology underlying the 

disorder is unique to each patient in both region and extent. Age and injury severity can both 

strongly influence pathological outcomes (Reuler and Gardner, 1987). In general, 

pathophysiological changes are characterized as either primary (occurring immediately as a 

result of the trauma) or secondary (occurring later as a result of neuroinflammation and 

altered cellular signaling). Among these changes, disequilibrated ionic flux and glucose 

metabolism are neurochemical hallmarks of the disorder. The latter causes what is referred 

to as a post-TBI energy crisis: vulnerable brain cells need a relatively increased glucose 

supply to repair and recover, but a pathological decrease in glucose uptake into the brain due 

to decreased CBF (Golding et al., 1999; Selwyn et al., 2013), impaired glucose transport 

(Cornford et al., 1996) and/or metabolic processing (Bartnik et al., 2005) results in an energy 

mismatch between the energy demands and supply. Further, hypoperfusion and reduced 

autoregulation are observed in both TBI patients (Soustiel and Sviri, 2007; Newsome et al., 

2012; Hinzman et al., 2014; Sours et al., 2015) and animal models (Yuan et al., 1988) with 

attendant astrogliosis (Burda et al., 2015).

TBI can initiate a host of secondary injury cascades that lead to widespread dysfunction of 

the NVU, neurovascular uncoupling, and changes in microvascular ultrastructure (Logsdon 

et al., 2015; Kenney et al., 2016; Toth et al., 2016). Specifically, trauma can result in 

vascular endothelial cell injury, leading to vasospasm, vasoconstriction, micro-thrombosis 

and oxidative stress, all of which exacerbate the inflammatory response (Lenzlinger et al., 

2002; Veenith et al., 2016). TBI is also strongly associated with induction of cortical 

spreading depolarizations (CSD), which produce severe alterations in resting and reactive 

CBF, including NVC (Hartings et al., 2009; Lauritzen et al., 2011; Hinzman et al., 2014) 

(see section 4.3 on Stroke for further discussion of CSD and cerebrovascular dysregulation). 

Mechanical vascular injury can also directly result in ischemia and, in some cases, 

hemorrhage, allowing iron and blood components to be released into the parenchyma where 

they produce neuronal toxicity (Wagner et al., 2003) and may also produce neurovascular 

uncoupling and vasospasm (Balbi et al., 2017). Microvascular injury is also a feature of 
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CTE, which has become the topic of intense study in recent years (Kenney et al., 2016). A 

NINDS/NIBIB consensus group recently defined CTE to be neuropathologically identified 

by tau accumulation in neurons and astrocytes specifically in perivascular locations (McKee 

et al., 2016). The relationship between this perivascular location of tau accumulation and 

vascular dysfunction is particularly interesting and future studies are required to address 

whether perivascular astrogliosis produces or hastens the later cognitive manifestations of 

both TBI and CTE.

Both immediate and long-term loss of BBB properties have been reported following 

experimental TBI (Baskaya et al., 1997). BBB loss causes edema and increased expression 

of matrix metalloproteinase 9 (Suehiro et al., 2004), which results in a positive feedback 

cycle inducing further damage to blood vessels (Underly et al., 2017). Post-mortem studies 

in humans show that BBB loss persists for decades after a traumatic incident (Hay et al., 

2015). Given that TBI can mechanically impair the BBB and that blood-borne substances 

like albumin, thrombin and fibrinogen can activate astrogliosis via TGFβ receptors 

(Schachtrup et al., 2010; Heinemann et al., 2012; Piao et al., 2017), this chronic loss of BBB 

may contribute to lasting astrocyte dysfunction and alter the neuronal environment. There is 

contrasting evidence for the downstream effects of astrogliosis and astrocyte dysfunction – 

while some studies find that astrogliosis exacerbates tissue loss and behavioral deficits after 

TBI (Chen et al., 2017; Menzel et al., 2017), others have found that astrogliosis enhances 

neuroprotection (Shinozaki et al., 2017) and helps stabilize the NVU and normalizes CBF 

after TBI (Villapol et al., 2014). Such divergent findings suggest that the consequences of 

astrogliosis after TBI are multifaceted and complex (Burda et al., 2015). How does the long-

lasting failure of the BBB affect the evolution of astrogliosis over time? And how do these 

two events together impact the NVU, blood flow regulation and neuronal survival? These are 

questions that have yet to be answered (Fig. 4).

4.3 Stroke

Stroke is a common presentation of cerebrovascular disease in the brain. Ischemic stroke 

results from a thrombus or embolus blocking an artery supplying the brain, causing an 

immediate infarct in that artery’s territory. In contrast, hemorrhagic stroke results from a 

ruptured vascular defect such as an aneurysm, often in the sub-arachnoid space, and has a 

very high rate of mortality; among surviving patients, delayed cerebral ischemia (DCI) is the 

leading cause of poor outcome (Xiao et al., 2017). Focal neurological deficits due to the 

insult are an initial physiological hallmark of stroke and vary based on the severity, duration 

and location of the injury. Pathological and cellular changes also develop in the surrounding 

brain regions, where neuronal, glial, and cerebrovascular injury all co-occur. Following 

ischemic stroke, the most pronounced among these is the glial response: phagocytic 

microglia within and around the infarct engulf debris from dying cells, proliferating reactive 

astrocytes generate a protective glial scar around the perimeter of the infarct, and astrocytes 

in the non-ischemic regions beyond the infarct perimeter become reactive in a spatial 

gradient.

The current standard of care for ischemic stroke is removal of the clot, achieved chemically 

by administering tissue plasminogen activator or mechanically by thrombectomy. Despite 
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recanalization of the culprit artery, a state of microvascular hypoperfusion often continues to 

exist – the so-called ‘no-reflow’ phenomenon. Indeed, the level of capillary perfusion is 

more predictive of functional recovery in patients (Al-Ali et al., 2016) than recanalization of 

the blocked artery alone (Cho et al., 2015). This microvascular block was believed to be the 

result of platelet or leukocyte adhesion in small vessels (Abumiya et al., 2000), but evidence 

now suggests that active capillary constriction (Leffler et al., 1989; Hauck et al., 2004) due 

to pericyte contraction (Hall et al., 2014) also plays a significant role. Capillary 

hypoperfusion produced by pericyte contraction is also a feature of DCI following SAH 

(Johshita et al., 1990; Li et al., 2016). As astrocytes play a central role in regulating capillary 

level blood flow (Biesecker et al., 2016; Mishra et al., 2016), the possibility that astrocyte 

dysfunction is contributing to this hypoperfusion warrants further investigation.

Several studies also suggest a significant loss of NVC in stroke patients in the asymptomatic, 

non-ischemic brain tissue surrounding the infarct, either unilaterally within the stroke 

hemisphere (Krainik et al., 2005; Salinet et al., 2015) or bilaterally in both hemispheres (Lin 

et al., 2011; Salinet et al., 2018). This loss of local blood flow regulation, which likely 

results in hypoperfusion, is proposed to underlie the increased rate and incidence of 

dementia in stroke patients (Savva et al., 2010; Levine et al., 2015). However, mechanistic 

studies investigating the cause of NVC loss are still lacking (El Amki and Wegener, 2017). 

An even worse case occurs following SAH, where NVC is inverted - neuronal activity gives 

rise to vascular constriction and CBF reduction both in vitro (Koide et al., 2013; Pappas et 

al., 2015) and in vivo (Balbi et al., 2017). This extreme and evidently detrimental response 

likely contributes to the development of DCI after SAH.

Ischemia and injury can also trigger a continuum of CSDs, a phenomenon that is 

characterized by failure of neuronal ion homeostasis, mass depolarization of neurons and 

astrocytes, excitotoxicity and edema (Lauritzen et al., 2011; Dreier et al., 2018). After a 

stroke, CSDs in the ischemic region are often terminal and contribute to the neuronal 

damage and death in the infarct core. In the peri-infarct region, CSDs are shorter in duration 

and spread across the cortex at the rate of approximately 2-5 mm (Lauritzen et al., 2011). 

Importantly, CSDs are associated with large changes in CBF. In otherwise healthy tissue, 

CSDs evoke a large hyperemic response (Dreier, 2011) that does not cause tissue 

dysfunction or damage (Nedergaard and Hansen, 1988). However, in pathological contexts 

such as after ischemic stroke, SAH or TBI, CSDs induce an inverse neurovascular coupling 

response, resulting in vasoconstriction and decreased CBF (Dreier et al., 1998; Dreier, 2011; 

Hinzman et al., 2014). CSD can further induce a lack of vascular reactivity and loss of 

evoked NVC (Lauritzen et al., 2011). The combined effect of low CBF, lack of 

cerebrovascular reactivity and neurovascular uncoupling, in the face of the increased energy 

metabolism during pathological CSD, produces a condition of cortical spreading ischemia 

and results in widespread neuron death (Dreier et al., 2000). This is one of the rare cases 

where inverse neurovascular coupling has been directly associated with tissue damage 

(Dreier et al., 2018).

A breakdown of the BBB occurs in patients with ischemic stroke (Merali et al., 2017; 

Villringer et al., 2017) and SAH (Lampl et al., 2005), as well as in animal models (Cipolla et 

al., 2004; Pan et al., 2017). This breakdown results from the loss of tight junction proteins 
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such as occludin (Pan et al., 2017) and an increase in pinocytic transcytosis across the 

endothelium (Cipolla et al., 2004). Loss of BBB precedes the reduction in CBF (Tamaki et 

al., 1984) and predicts long-term functional outcome in patients (Jiang et al., 2018), and 

thus, appears to be an early event after stroke.

Reactive astrogliosis is also prominent after stroke (Hayakawa et al., 2012; Abeysinghe et 

al., 2016; Becerra-Calixto and Cardona-Gomez, 2017; Sims and Yew, 2017). The 

transcriptomic profile of astrocytes after ischemic injury shows that they take on a beneficial 

anti-inflammatory phenotype (Zamanian et al., 2012; Rusnakova et al., 2013), which may 

function to stabilize and resolve the injury. Astrogliosis is correlated with CNS remodeling 

and motor recovery (Liu et al., 2014), and with enhanced survival of neuronal and vascular 

cells following early reperfusion (Tachibana et al., 2017). However, not all aspects of the 

astrocyte response are positive: morphologically, swelling of astrocyte endfeet can compress 

brain microvessels and thereby decreases microvascular perfusion (Ito et al., 2011). As 

cerebral vessels lose BBB properties after stroke, this vessel compression may be an 

astrocytic response to limit the extravasation of blood-borne solutes into the brain or a 

response to blood-borne solutes that have already extravasated (Xiang et al., 2016). Further, 

although astrogliosis and BBB breakdown are concurrently observed even in brain regions 

far from the site of ischemia (Garbuzova-Davis et al., 2013), the temporal relationship 

between them is still an open question. Does astrogliosis cause BBB breakdown, or is BBB 

breakdown (via leakage of blood proteins such as albumin, thrombin and fibrinogen) 

producing astrogliosis? It is likely that these factors feed into each other bidirectionally, 

hence exacerbating the damage caused by ischemia.

Post-stroke astrogliosis is particularly noticeable in astrocyte endfeet around cerebral vessels 

(Fig. 5), indicating that CBF reduction and NVC impairment after stroke may be due to 

astrocyte dysfunction. After SAH, astrocytes display large amplitude Ca2+ oscillations, 

which result in K+ efflux from their endfeet onto the vasculature, raising the extracellular K+ 

concentration high enough to constrict vessels and resulting in NVC inversion (Koide et al., 

2012). Similarly large astrocyte Ca2+ signals are observed immediately following ischemic 

stroke (Ding et al., 2009; Rakers and Petzold, 2017) with a negative impact on neuronal 

recovery. Large astrocytic Ca2+ waves also occur during CSD (Chuquet et al., 2007), which 

are common after stroke, and both the vasoconstriction and NVC inversion observed 

following CSD depend on astrocyte Ca2+ (Chuquet et al., 2007; Major et al., 2017) and, to 

some extent, the vasoconstrictive arachidonic acid metabolite 20-HETE (Fordsmann et al., 

2013). In addition, a recent study reported that the decrease in CBF associated with ischemic 

stroke was mitigated when astrogliosis was attenuated (Begum et al., 2018). These findings 

suggest a causal role for astrogliosis in blood flow impairment after stroke; however, more 

work is required before this relationship is sufficiently experimentally corroborated.

Although it is certain that early astrogliosis is an adaptive, neuroprotective response 

following ischemia (Zamanian et al., 2012), could it evolve past a threshold beyond which, 

perhaps depending on the extent and duration of injury, it becomes a detrimental process? Or 

perhaps the vascular effects of astrogliosis are maladaptive ‘side effects’. Resolving the 

temporal dynamics and the nature of the relationship between BBB failure, astrogliosis and 

vascular regulation following stroke might provide insights into this evolution and suggest 
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new targeted therapies aimed at modulating astrogliosis and/or restoring cerebral 

microvascular flow in a temporally fine-tuned manner to protect the stroke penumbra.

5. Possible Roles of Astrogliosis in White Matter Disorders

With advancing age, an increasing burden of cognitive impairment appears to be related to 

cerebral small vessel disease, the later stages of which are characterized by demyelination 

and axonal loss observed as regions of white matter hyperintensities (WMH) on T2-weighted 

MRI images (Hase et al., 2017). WMH are observed in 90-95% of people over the age of 60 

(de Leeuw et al., 2001) and are also prominent in younger patients with depression (Thomas 

et al., 2002) and post-stroke dementia (Chen et al., 2016). Despite their high incidence in the 

general population, very little is known about their underlying cause. Could astrogliosis or 

astrocytopathy of white matter astrocytes and the resultant cerebrovascular insufficiency be 

producing these WMH? Post mortem analyses show that regions of WMH often display 

enlarged perivascular spaces, lacunar infarcts, and changes in the NVU compartments. In 

particular, drastic reductions in astrocyte numbers (Zambenedetti et al., 2002) as well as 

structural changes and loss of perivascular endfeet are observed (Chen et al., 2016). Further, 

astrocytes in regions of WMH undergo clasmatodendrosis, a phenomenon that looks very 

much like an explosive astrocyte degeneration (Hulse et al., 2001). Whether, and how, 

astrogliosis, astrocytopathy and/or astrodegeneration contribute to white matter disease is 

not easily answered by clinical studies or a single-time point post-mortem analysis of human 

tissue. Therefore, there is an urgent need develop reliable animal models of WMH and other 

white matter pathologies to address these questions.

6. Conclusions

Essentially every approach to therapy for brain diseases due to any cause is focused on 

prevention or reversal of pathologic alterations in neurons – witness the common use of the 

term “neuro-protection” to summarize these therapeutic strategies as a whole. Certainly, 

there is likely to be utility in this approach for many diseases. However, despite years of 

dedicated effort aimed at these approaches, successes have been limited for most diseases 

and thoroughly disappointing in others. With this in mind, we consider whether it might be 

helpful to modify the current paradigm for understanding brain disease to incorporate 

approaches that ask whether susceptibility to major brain diseases might not lie entirely or 

even primarily in neurons, but rather in astrocytes, the quintessential “neuroprotectant” cells, 

with effects on neurons as a secondary consequence (Fig. 6). If a castle is under siege, the 

survival of the royal family is best assured if the fort is strengthened, the front-line soldiers 

are well-armed, and the food and water supply are protected. Ultimately, the development of 

strategies for glio-protection and vasculo-protection may prove the most effective ways to 

achieve neuroprotection by harnessing the ability of astrocytes to support neuronal function 

and by providing the energy supply to fuel recovery and function. We anticipate that future 

research exploring these possibilities will open the door to new combinatorial therapeutics 

that have a renewed chance of success in human patients.
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20-HETE 20-hydroxyeicosatetraenoic acid

AD Alzheimer’s disease

ARTAG aging-related tau astrogliopathy

BBB blood-brain barrier

CBF cerebral blood flow

CSD cortical spreading depolarization

CTE chronic traumatic encephalopathy

DCI delayed cerebral ischemia

EETs epoxyeicosatrienoic acids

FGF fibroblast growth factor

FTLD frontotemporal lobar degeneration

GDNF glial-derived neurotrophic factor

GFAP fibrillary acidic protein

IF intermediate filament

LPS lipopolysaccharide

NVC neurovascular coupling

NVU neurovascular unit

PGE2 prostaglandin E2

SAH subarachnoid hemorrhage

TBI traumatic brain injury

TGFβ1 transforming growth factor β1
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Figure 1. Pathological implications of an imbalance in energy supply and demand.
Under healthy physiological conditions, the energy demands of an active brain are supplied 

by nutrients delivered by the cerebral vasculature. The flow of blood and nutrients within 

this vasculature is fine-tuned by astrocytes via resting tone regulation and neurovascular 

coupling pathways. Under pathological conditions, neurons and glial cells still require 

energy and this requirement may even be increased to allow the cells to cope with, and 

recover from, the pathological environment. However, during pathology, cerebral blood flow 

is often reduced and neurovascular coupling is disrupted, which we hypothesize is due to 
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altered signaling from reactive astrocytes. The resulting energy mismatch leads to the 

gradual development of a hypoxic condition, which is expected to contribute to progressive 

neuronal and astrocyte degeneration over time.
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Figure 2. Organization of the neurovascular unit.
Pial arteries give rise to penetrating arterioles that dive into the brain parenchyma where they 

branch into smaller arterioles and capillaries. These arterioles receive intrinsic and extrinsic 

innervation perivascularly to facilitate resting tone regulation via their smooth muscle cell 

layer. The capillary microvessels lose this smooth muscle cell layer completely and are 

instead ensconced by astrocyte endfeet and contractile pericytes, which contact the capillary 

basement membrane directly. These capillary microvessels are further distinguished by their 

endothelial cells, which are held together by tight junction proteins that form the innermost 

component of the blood-brain barrier. The endothelial cells, pericytes, and astrocytes, along 

with the neurons and microglia within a particular vascular domain, together comprise the 

neurovascular unit. These neuronal and vascular cellular components interact with each 

other to ensure precise spatiotemporal delivery of blood oxygen and nutrients to 

metabolically active regions of the brain via neurovascular coupling. Astrocytes are 

particularly important for this interaction, as they are centrally located between the 

metabolically active neurons and the cerebral vessels that are poised to respond to such 

activity.
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Figure 3. Conventional immunohistochemical markers demonstrate astrogliosis grading in tissue 
from epilepsy patients.
Cytoskeletal changes in reactive astrocytes as manifested in intermediate filament 

expression. All subjects were patients with epilepsy who underwent temporal lobectomy for 

resection of seizure focus. Images of hematoxylin- and eosin-stained sections are depicted in 

the first column, and corresponding brain regions immunostained for the intermediate 

filament proteins GFAP and vimentin are shown in the second and third columns, 

respectively. A: A relatively normal-appearing cortex. GFAP is minimally expressed and 

vimentin expression is restricted to vascular endothelial and smooth muscle cells. B: A 

subacute, moderate phase of relatively moderate astrogliosis with increased astrocyte GFAP 
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in proximal cell processes and a similar pattern of more striking vimentin expression. C: A 

moderate astrogliosis that is more long-standing, with GFAP and vimentin expression 

distributed widely throughout the dense cloud of astrocyte fine processes. With moderate 

gliosis, morphologic changes detected by histologic assessment of hematoxylin- and eosin-

stained sections are subtle. Neuronal loss may be inconspicuous. Vimentin expression is still 

more pronounced in the vascular cells than astrocytes. D: A severe chronic gliosis associated 

with a cortical penetrating injury that was the cause of epilepsy. Hematoxylin- and eosin-

staining shows complete loss of neurons and dense eosinophilic astrocyte cytoplasm. 

Astrocyte GFAP and vimentin are highly expressed to the degree that vascular structures are 

present but obscured on vimentin immunohistochemistry; this tissue appears to have 

completely converted to a glial scar.
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Figure 4. Interrelationship between astrogliosis and cerebrovascular dysfunction.
Do reactive astrocytes contribute to pathological cerebrovascular dysfunction in disease? 

With their central positioning between neurons and cerebral vessels and their multifaceted 

roles in homeostatic blood-brain barrier (BBB) maintenance, cerebral blood flow (CBF) 

regulation, and neurovascular coupling (NVC), astrocytes have the potential to adversely 

affect all of these processes when they are reactive and in a morphologically and 

functionally altered state. Although astrogliosis almost certainly contributes to and 

exacerbates the dysfunction of these processes, it is unclear whether it precedes them or 

results from them.
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Figure 5. Stroke-induced astrogliosis is prominent at astrocyte endfeet in rat cortex.
A: GFAP immunolabeled astrocyte endfeet (red) terminating on a cortical vessel in the 

control hemisphere of a rat that underwent transient experimental stroke. B: Astrocyte 

endfeet terminating on a vessel in the peri-infarct intact cortical tissue of the stroke 

hemisphere. Note the increased expression of GFAP and hypertrophy of the endfeet 

processes, suggesting astrogliosis. DAPI is shown in blue and the rat endothelial cell marker 

(RECA-1) is shown in green. Images were obtained on a Zeiss LSM 780 (Objective Plan-

Apochromat 63x/1.40 Oil) 3 days after middle cerebral artery occlusion in 6 week-old Long 

Evans rat.
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Figure 6. A proposed model of astrogliosis progression and pathological manifestation.
Biological insults such as peripheral infection or systemic inflammation and physical insults 

such as concussion, TBI, and stroke may result in BBB failure, allowing (normally blood-

restricted) substances such as albumin and thrombin to leak into the brain. The presence of 

these blood-borne proteins in the neuronal microenvironment is detected by astrocytes and 

reactive astrogliosis ensues. This response is likely initiated in order to contain the damage 

and re-establish homeostasis. When the attempt is successful, the insult is resolved and 

healthy physiology prevails. Occasionally, this gliotic response might be too exaggerated 

and surpasses an as-yet unidentified threshold when it becomes damaging instead, resulting 

in excitotoxicity (lack of neurotransmitter uptake and/or K+ buffering), synapse loss, and 

reduction of cerebral blood flow (CBF) and neurovascular coupling (NVC). Interactions 

between these neurotoxic end-effects may also occur; for example, a decrease in CBF and 

NVC might precede and cause synapse loss. Together, these effects of astrogliosis synergize 

to trigger degeneration of neurons and glia, ultimately precipitating the symptoms of many 

neurological disorders, including dementia, cognitive disorder, and ataxia.
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