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Background: Hydrogen sulfide (H,S) is currently considered among the endogenously produced gaseous
molecules that exert various signaling effects in mammalian species. It is the third physiological gaso-
transmitter discovered so far after NO and CO. H,S was originally ranked among the toxic gases at ele-
vated levels to humans. Currently, it is well-known that, in the cardiovascular system, H,S exerts
several cardioprotective effects including vasodilation, antioxidant regulation, inhibition of inflamma-
tion, and activation of anti-apoptosis. With an increasing interest in monitoring H,S, the development
of analysis methods should now follow.

Aim of review: This review stages special emphasis on the several analytical technologies used for its
determination including spectroscopic, chromatographic, and electrochemical methods. Advantages
and limitations with regards to the application of each technique are highlighted with special emphasis
on its employment for H,S in vivo measurement i.e., biofluids, tissues.

Key Scientific Concepts and important findings of Review: Fluorescence methods applied for H,S measure-
ment offer an attractive non-invasive and promising approach in addition to its selectivity, however they
cannot be considered as H2S-specific probes. On the other hand, colorimetric assays are among the most
common methods used for in vitro H,S detection, albeit their employment in vivo H,S measurement has
not yet been possible . Separation techniques such as gas or liquid chromatography offer higher selectiv-
ity compared to direct spectrophotometric or fluorescence methods especially for suitable for endpoint
H,S measurements i.e. plasma or tissue samples. Despite all the developed analytical procedures used
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for H,S determination, the need for highly selective, much work should be devoted to resolve all the pit-

falls of the current methods.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Hydrogen sulfide (H,S) is an important gaseous signaling mole-
cule that sits with nitric oxide and carbon monoxide as the biolog-
ically active family of “gaseous mediators” or “gasotransmitters”
[1]. It is produced at low concentrations in mammalian systems
mainly via enzymatic interconversions of sulfur-containing sub-
strates to fulfill a vast number of biological functions in almost
every organ [2]. For example, in the central nervous system it acts
as a neuromodulator [3] in addition to its effect for controlling per-
ception of pain and neuronal potentiation [4]. In the cardiovascular
system, it causes vasodilation and protects vasculature from reper-
fusion injury [5,6]. Asides, H,S plays other pivotal biological roles
viz., angiogenesis, anti-inflammation, inhibition of insulin signal-
ing, regulation of blood pressure [7], and even involved in longevity
[8]. On the other hand, H,S also participates in many pathological
activities of various diseases, such as Parkinson’s disease [9], Alz-
heimer’s disease [10], Down’s syndrome [11] and diabetes [12].
Owing to its vast involvement in various physiological processes,
H,S-based therapeutics have been recently investigated [1]. Conse-
quently, it is of great importance to develop fast and sensitive
determination methods to scrutinize H,S levels. However, in vivo
monitoring and detection of H,S faces many serious challenges
owing to its promiscuous chemical properties such as volatility,
high reactivity, and rapid catabolism. Asides, H,S presents, under
physiological conditions, pH 7.4 and 37 °C, in different chemical
ionization forms i.e. approximately 18.5% H,S, 81.5% hydrosulfide
anion (HS ~) and a negligible contribution of S?* [13]. Moreover, it
might also exist in different bound forms such as acid-, base-
labile and reducible forms, which are utilized in liberating free
hydrogen sulfide following physiological stimuli in biological sys-
tems [14]. In addition, the extraction and sample treatment of
H,S may face interference from the biological matrices such as pro-
teins present in blood, plasma, serum and cells [15,16] thus the real
concentration of H,S in different biological samples was in debate
for a long time due to the disaccording reported data [17].

Owing to the previously mentioned challenges for H,S determi-
nation, developed analytical methodologies should fulfill certain
criteria to be successfully implemented including sufficient sensi-
tivity for endogenous H,S, real-time monitoring for H,S level
changes and high selectivity for H,S over other endogenous bio-
thiols (ex. glutathione, cysteine ...) or other ions present in the
blood or tissues under investigation. Hence, a plethora of different
analytical methods has evolved for H,S measurements such as
fluorescence-based assays [18], colorimetric sensors [19], chro-
matographic methods (HPLC and GC) [20] and electrochemical
methods (ion-selective electrodes and polarographic H,S sensors)
[21]. However, each of these techniques has its advantages and
limitations. Colorimetric and chromatographic assays have been
used for the bulk measurement of both plasma and tissue H,S,
however, they do not have the capability for real-time monitoring
of H,S within intact tissues or living cells, in addition, they are
denounced to be sample-destructive. On the other hand,
fluorescence-based sensors have been developed to meet these
challenges and to provide sensitive and biocompatible detection
tools for H,S not only within certain tissues but also within subcel-
lular organelles. Ion selective electrodes have also been widely
used as an effective method to measure the H,S in different biolog-
ical matrices with distinct advantages of low detection limit and
fast response, however, vigorous alkaline conditions are required

to convert H,S and HS™ to S?~ as this is the only form the electrode
can measure. Unfortunately, liberation of sulfur from other biomo-
lecules has been detected at such conditions which could lead to an
overestimation of molecular H,S concentrations.

Several reviews have reported on the different analytical
approaches applied for the determination of this gaseous signaling
molecule [18,22-28]. However, most of these reviews focused only
on spectroscopic techniques with special emphasis on probe mate-
rials [18,19,29], design strategies [27,30], and detection mecha-
nisms [28,31]. Asides, very few reports have discussed other
analytical methodologies such as electrochemical and chromato-
graphic methods [21,22]. In this review, we summarize the infor-
mation about the currently available state-of-the-art analytical
techniques used to measure physiological H,S levels. The reported
methods were organized into categories following their instru-
mentation type and then subdivided based on their working prin-
ciple. Also, the advantages and limitations of these methods have
been addressed to guide researchers through the appropriate ana-
lytical tool to choose for their application.

Fluorescence-based sensors

While chromatographic assays and electrochemical sensors
have been used to determine H,S levels in the blood, homogenized
tissues, and cell lysates [32], these methods are mostly less suited
for its determination in living biological specimens. Though, fluo-
rescence techniques have attracted much attention as sensors
offering excellent sensitivity, good selectivity, rapid response, and
non-invasive detection with a high spatiotemporal resolution for
both in vitro and in vivo imaging as typically needed for quantifying
H,S. Moreover, fluorescence-based sensors offer real-time H,S
monitoring not only within certain tissues but also within subcel-
lular organelles. Therefore, the evolution of H,S- fluorescence
probes is considered one of the most rapid-growing areas in the
field of H,S biology [17]. Though, a substantial increase in the
number of developed small molecule-based sensors was remarked
in the past decade. Diverse small organic compounds and metal
chelates have been explored with different H,S-reaction sites.
Recently, nanotechnology was implemented for the development
of effective and highly sensitive fluorescent nanosensors used for
H,S detection [33] as typical in the detection of other signaling
molecules or drugs.

Monitoring H,S in subcellular structures is considered crucial
for biomarkers discovery and related drug discovery. Therefore,
the emergence of organelle-targeted fluorescent probes is essential
for subcellular imaging revealing the physiological and pathologi-
cal functions of these highly reactive, interactive, and interconvert-
ible molecules during diverse biological events, which are
significant for the understanding of diseases etiology. Organelle-
targeted fluorescent probes should encompass three moieties: tar-
geting groups, fluorophores, and recognition units. Many cellular
organelles-targeting scaffolds were coupled with the fluorophore
and the H,S-recognition moieties. For example, the
mitochondrial-targeting entities comprise positively charged
groups as triphenylphosphonium, quaternary ammonium, iso-
quinolinium, acridine, indolium, and pyridium [34]. Whereas the
sulfide-recognition entities include azides, nitro, hydroxylamine,
dinitrophenyl, NBD. After reaching subcellular locations of interest,
probes can subsequently react with free sulfide through and.speci-
fic reaction mechanisms and consequently fluorescence response
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measurements via turn-on, -off, or ratiometric, which enables the
monitor of targeted species in different organelles [35,36].

The determination of endogenous H,S in vivo presents indeed
many challenges due to its low concentration, short half-life time
with fast catabolism, and high reactivity. Although there are limits
of measurement techniques and the quantification of biological
H,S levels is debated, H,S physiological levels may range from 50
to 160 uM in the mammalian brain, to 30 nM-100 pM in the
peripheral blood, 25 pM in the synovial fluid of non-
inflammatory arthritic patients [37], 8.9 nM in mice liver tissue
[38]. An ideal fluorescent probe should thus fulfill the following
criteria:

i) to be sufficiently sensitive for endogenous H,S detection and
real-time monitoring for the changes in H,S fluxes in living
cells,

ii) to react rapidly (spontaneously) under physiological condi-
tions (i.e., aqueous solutions, blood, plasma) without the
need of organic solvents or surfactant.

iii) to display high selectivity and not to interact with other
endogenous bio-thiols (i.e., glutathione, cysteine .. .) or other
ions present in blood or tissues under investigation.

iv) to exhibit very low or no cytotoxicity to be promising for fur-
ther development (bio-compatible & bio-degradable).

v) to emit in the near-infrared preferably at 700-900 nm as this
permits greater tissue penetration, causes less cellular
photo-damage or phototoxicity and minimizes the interfer-
ence from background auto-fluorescence. The emission is
preferably accompanied by large Stokes shift, as small Stokes
shifts may lead to measurement errors such as auto-
quenching and/or excitation back-scattering [39]

vi) to be functionalized to target certain subcellular organelles
(mitochondria, lysosome, nucleus, endoplasmic reticulum,
...), certain cells (hepatocytes, ....), tissues, or organs.

Based on H,S main chemical properties i.e., nucleophilicity,
reducibility, and metal precipitation capability, researchers have
developed a large number of fluorescent molecules which can be
classified according to their H,S-reactive sites or chemical
reaction-based sensors as detailed in the next sections and sum-
marized in Table 1 highlighting the main advantages, disadvan-
tages, and applications of each probe.

Reduction-based fluorescence compounds:

These compounds contain an easily reducible group such as
azide [40], nitro [41], or hydroxylamine [42], which act generally
as fluorescence quenchers. These quenchers are linked to a fluo-
rophore nucleus such as coumarin [43], rhodamine [44]|, chromone
[45], cyanine [41], benzopyran derivative [46], dansyl [47], naph-
thalimide either as a molecular sensor [42,48] or incorporated in
a nanosensor [49]. The reaction proceeds via their reduction to
their corresponding amines under physiological conditions.

H,S-activated fluorescent sensors are mainly based on the dif-
ference of emission wavelength and quantum yield before and
after reaction with free sulfide or measuring differential fluores-
cence response at two different wavelengths. Based on the fluores-
cence signal(s) and post-measurement data analysis, such category
can be further subdivided into:

i) Fluorescence Turn-on: Principle entails measuring the
increase in fluorescence emission. Since the first reported
probe based on the reduction of non-fluorescent azides to
fluorescent amines, compound F1, many azide-containing
probes were developed, Table 1. Although compound F1
exhibits fluorescence emission in the near infra-red region

(700 nm) and was used for monitoring H,S in HEK293 T
cells it displays lower selectivity with relatively long
response time (30 min) [40]. Another compound F4 was
developed to target lysosome, containing a spirolactam
moiety which opens in lysosomal acidic microenviron-
ments, while its azide group is reduced by H,S giving a
fluorescent derivative, albeit it exhibits small Stokes shift
[44]. Whereas compound F5, was synthesized to target
the mitochondria and for the first time to target the
nucleus, however, it suffers from photosensitivity along-
side a slow response (60 min) [43]. A sensitive fluoro-
genic nanoprobe containing azide having a good
sensitivity (LOD = 18 nM) was introduced to determine
H,S in vitro (living cells and mice serum) and the differ-
entiation between sera of diabetic and non-diabetic mice
[50]. Recently, a hepatocyte-targeting sensor, F7 contain-
ing galactosyl moiety was developed due to the specific
recognition of ASGPR over-expressed in hepatocytes by
galactose group. It displays fast response (~ 1 min) with
good selectivity and sensitivity (LOD = 126 nM) [51].

ii) Fluorescence Turn -Off: It is based on measuring the decrease
in fluorescence emission. Many sensors were developed
exhibiting “turn-off” fluorescence response, Table 1. for
example compound F9 contains an azide group linked to
rhodamine derivative as a fluorophore [52]. This compound
was used for quantifying H,S in human embryonic kidney
293 T cells and could target mitochondria but it suffers from
relatively long response time (40 min). Another boron-
dipyrromethene (BODIPY) derivative was developed to
detect H,S in normal human oral fibroblast cells with good
sensitivity 170 nM but still suffers from long response time
(20 min) in a medium containing 33% methanol [53].
Organic solvents have certain limitations which may hamper
further development for in vivo applications. For example,
DMSO exhibits hemolytic activity and a significant effect
on cellular membrane permeability. Moreover, it induces
apoptosis of the vascular endothelial cells [54], whereas
ethanol mediates for red blood cell hemolysis [55].

iii) Ratiometric analysis: It measures the intensity ratio changes
at two emission wavelengths which generally offers more
accurate results than turn-on and turn-off because it does
not generate false positive/negative signals nor it is affected
by analyte-independent interfering factors, such as the exci-
tation source fluctuation, sample matrix background light
scattering and autofluorescence, the microenvironment
around the probe, and variation of the local concentration
of the probe [33]. The first ratiometric fluorescent probe is
an azido-heptamethine cyanine dye (compound F2) that
exhibits emission in NIR (greater than700 nm) with good
sensitivity (LOD = 80 nM) and was found able to detect
changes in H,S levels in macrophage RAW264.7 cells,
though to display long response time (20 min) as its only
caveat [49,56].

Recently, a portable H,S analyzer was proposed as a simple
determination of H,S in both aqueous solution and plasma using
a fluorescent probe. The developed method was applied and vali-
dated for the quantification of H,S in plasma of cardiovascular
patients [15]. The developed fluorescent sensor relied on the use
of an azide derivative (an H,S reduction-based mechanism) [47].
However, this probe was not examined against the most abundant
biothiols as GSH which represents a limitation for its biological
application. Moreover, the derivatizing medium contains tween
20 which is known for its hemolytic activity [57] and to account
for its validation using plasma and not on whole blood. Another
recent study developed a microfluidic method for the measure-
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ment of sulfide in blood plasma that relied on using the same flu- Electrophile-based probes

orescent sensor dansyl azide, which confirmed the plasma matrix

interference. Though a dilution step 3.3-fold dilution is required These chemicals encompass at least one or two electrophilic
to reduce plasma interaction with exogenous sulfide [58]. centers to be attacked via nucleophilic addition/substitution reac-
Table 1

Representative examples of certain fluorescent sensors for H,S determination with the advantages and disadvantages of each probe.

Ne Sensor Properties & Applications Ref.

A) Reduction-based fluorescence compounds
F1 Adv.: emission in the NIR (700 nm) [40]
Disadv.: relative long response (sulfide-sensor reaction) time (30 min), detection medium
contains DMF, unsatisfactory selectivity (2- & 5-fold increased selectivity versus O3 & GSH/Cys,
respectively)

Application: living Cells (HEK293T cells)

F2 Adv.: emission in the NIR (> 700 nm), Stokes shift = 90 nm; low LOD (80 nM); detection [56]
medium: 100% aqueous
Disadv.: relative high response time (20 min)

Application: living Cells (RAW264.7) Macrophage cells

F3 Adv.: near infrared emission (670 nm) with large Stokes shift (150 nm) [165]
Disadv.: detection medium contains high DMSO concentration (50%), long response time

(60 min), high LOD 3050 nM

Application: bovine serum, living cells (HeLa & MCF-7), tissues (fresh rat liver cancer slice) &

live mice (monitoring localized diffusion after a dorsal skin-pop injection)

Adv.: targeting lysosome (morpholine moiety), [44]
Disadv.: medium contains 10% DMF, small Stokes shift (25 nm) Aexjem = 530/555 nm

Application: exogenous & endogenous H,S in lysosomes of living cells (HeLa)

F4

F5 Adv.: 35-fold fluorescence enhancement, mitochondria-targeted and 1st time target nucleus [43]
Disadv.: photosensetive, large response time (60 min), detection medium contains DMSO (2%),
not specified LOD, small Stokes shift (45 nm) Aexjem = 405 - 450 nm

Application: living cells (HeLa)

F6 Adv.: near infrared emission (710 nm), detection medium aqueous (PBS) [52]
Disadv.: long response time (40 min); small Stokes shift (60 nm),

Application: mitochrondria / human embryonic kidney (HEK) 293 T & Hela cells

F7 Adv.: good hepatocyte-targeting, excellent water solubility, low cytotoxicity, fast response [51]
(within 1 min), high selectivity, good sensitivity (LOD 126 nM)

Application: hepatocyte-targeting

F8 Adv.: wide pH range (4-9), good sensitivity (LOD = 10 nM) [49]
Disadv.: relative long response time (15 min), the medium contains ethanol (25%), UV

excitation (340 nm)

Application: in vitro exogenous H,S in HeLa (human cervical cancer cell) and L929 (murine

aneuploid fibrosarcoma cell)

Adv.: both excitation and emission in the NIR (755/809 nm), aqueous medium, large linear [41]
range 0 - 350 uM, wide pH range 4.2 - 8.2

Disadv.: relative small Stokes shift (54 nm), moderate quantum yield (0.11); 12.7 fold

fluorescence enhancement, the long response time (60 min); biothiols as GSH & Cys interfere

with H,S determination

Application: living cells (RAW264.7)

Adv.: 13-fold fluorescence enhancement, satisfactory sensitivity (LOD 500 nM), Quantum yield [42]
0.12 Aexjem = 435 [ 544 nm

Disadv.: very long response time (120 min); Interference with sod. ascorbate

Application: living cells (Astrocyte cells)
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Table 1 (continued)

N°  Sensor Properties & Applications Ref.
B) Electrophile-based probes (containing 2,4-dinitrophenyl moiety)
F11 NO, Adv.: very fast response time (4 sec.), NIR emission (680 nm), 115 fold fluorescence [59]
on enhancement, linearity range (1-10 uM), good sensitivity (LOD = 11 nM), satisfactory Stokes
2 shift (90 nm Xexjem = 590/680 nm), aqueous detection medium (PBS), low cytotoxicity against

different cellular lines
Application: lysosome-targeting/cell (HeLa) and mice (monitoring localized diffusion after
intraperitoneal injection)

F12 Nc_. CN Adv.: relative rapid response time (10 min), NIR emission (663 nm), very large Stokes shift [166]
| (244 nm), 105-fold fluorescence enhancement, good sensitivity (LOD = 42 nM), good selectivity,
linear range 0 - 50 uM, wide pH range (6 - 10), good quantum yield = 0.22
‘ Disadv.: detection medium contains DMSO (30%), not for acidic pH
% CHQ NO, s . o
[O Application: exo & endogenous H,S in vitro (HeLa cells)
o
NO,
F13 Adv.: rapid response time (4 min), 32-fold fluorescence enhancement, good quantum yield [167]
S/Q (0.45); good sensitivity (LOD = 150 nM) linear range 0 — 100 uM, pH range (5 - 10), aqueous
N SN detection medium (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer)
eN Disadv.: GSH reacts with the probe but at a lesser extent (slower rate) than sulfide
N (o] Application: target endoplasmic reticulum, endogenous & exogenous H,S imaging in living cells
NO,
NO,
F14 NC Adv.: NIR fluorescent probe, linear range (12-38 uM), large Stokes shift (97 nm, Aexjem = 543 nm  [94]
ne, )N | 640 nm)
| o Disadv.: high LOD 3090 nM, very long response time (170 min) & time-dependent fluorescence
L N increase, certain anions as dihydrogen phosphate respond to the probe, The sensor was not
N o tested against biological thiols (GSH, Cys,.. ...) to evaluate their possible interferences.
K NO, Application: detect molecular H,S in the gaseous state, H,S in real water, red wine and living
cells (MCF-7 (human breast carcinoma) cells)
F15 Adv.: rapid response (3 min); near-infrared fluorescent probe, 11-fold fluorescence [168]
enhancement; large Stokes shift (107 nm, Aexjem = 557 [ 664 nm), quantum yield (0.11), linear
range (0 to 30 uM) with LOD (68.2 nM), high selectivity
Disadv.: medium contains DMSO & disodium phosphate dodecahydrate
Application: living cells (Hela cells) / mitochondria-targeting
F16 Adv.: NIR emission, 169-fold fluorescence enhancement, LOD = 121 nM, pH range 5 - 8.5, good  [67]
selectivity
Disadv.: time - dependent fluorescence increase (linearly up-to 180 min); small Stokes shift
(49 nm, hexjem = 590/639 nm), detection medium contains DMSO (10%)
Application: Hela cells | lysosome-targeting
F17 Adv.: rapid response time (less than1 min), fluorescence enhancement 130-fold, very large [63]
Stokes shift (221 nm, Aexjem = 445/666 nm), good sensitivity (LOD = 6 nM)
Disadv.: detection medium contains DMSO (20%)
Application: HeLa cells/mice
F18 RF Adv.: good sensitivity (LOD = 50 nM), wide linear range 0 - 275 uM, Stable over wide pH range, [64]
O’B‘o good selectivity, large Stoches shift (140 nm, Aexjem = 415 [ 555 nm)
O,N NO, 1 OyN NO, Disadv.: slow response time (40 min), 6-fold fluorescence enhancement, detection medium
NS A o
\©: o O o D/ contains DMSO (2.5%)
§:o o:u Application: spiked rat urine samples, exogenous & artificially generated endogenous H,S in
0 0 O living cells (Hela) &in vivo living Caenorhabditis elegans (nematodes)
F19 \I N Adv.: relative rapid response time (2 min), NIR emission (652 nm), 35-fold FL enhancement, [65]
N | good sensitivity (LOD = 10 nM), gpod selectivity, large Stokes shift (128 nm, Aexjem = 512 /
[ N S 652 nm), Stable over 6 - 10 pH, Linear range 0 - 30 uM
N Disadv.: weak quantum yield (0.067), detection medium contains high organic solvent DMF
N 0 >N N o
K & (50%), not for acidic pH

[oahe] Application: imaging exogenous H,S in Hela cells & artificially generated endogenous H,S in
RAW264.7 cells, in vivo (Kunming mice)

NO,

(continued on next page)
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Table 1 (continued)

Ne° Sensor

Properties & Applications

Ref.

FZO H NO,
O
NO,

B) Electrophile-based probes (containing NBD (7-nitro-1,2,3-
F21 O-N

\ N I __NO,

~N 0._0O (\N

F22

F24
B

Adv.: relative rapid response time (10 min), good selectivity, high sensitivity (LOD = 0.89 nM),
wide linear range 2 nM - 1500 nM, Low cytotoxicity

Disadv.: small Stokes shift (54 nm, Aexjem = 480/534 nm)

Application: living cells (MCF7)

benzoxadiazole))

Adv.: 45-fold fluorescence enhancement, satisfactory Stokes shift (75 nm, Aexjem - 405/480 nm),
1st fluorescent probe based on thiolysis of NBD amine

Disadv.: relative slow response time (30 min), low sensitivity (LOD = 9000 nM),

Application: living cells (HEK293 & Hela cells)

Adv.: mitochondria-targeting, 68-fold fluorescence enhancement, low cytotoxicity,
biocompatible, good selectivity.

Disadv.: slow response time (40 min), moderate sensitivity (LOD = 2460 nM), small Stokes shift
(53 nm Aexjem = 394 [ 532 nm) and detection medium contains CH3CN (10%)

Application: Hela cells (Mitochondria).

Adv.: 45-fold fluorescence enhancement, good sensitivity (LOD = 56 nM), good selectivity, good
Sockes shift (92 nm, Aexjem - 394/486 nm)

Disadv.: response time (20 min), narrow pH range (7.4-8.5), medium contains DMSO (10%)
Application: H,0,-induced H,S release in Yeast cells

Adv.: rapid response (~3 min), 4.5-fold fluorescence enhancement, Quantum yield = 0.36, linear
range (0-30 pum), satisfactory sensitivity (LOD = 580 nM), pH rang (6-8.5)

Disadv.: sulfites ions react but at a lesser extent than sulfides, small Stokes shift (22 nm, Aey
em = 567/589 nm)

Application: H,0,-induced H,S biogenesis in living cells.

Adv.: rapid response time (5 min), 17-fold fluorescence enhancement, LOD = 9.6 nM, pH range 5
- 8, good selectivity

Disadv.: detection medium contains DMSO (10%); small Stokes shift (49 nm, Aexjem = 590 /
639 nm)

Application: HeLa cells /| Lysosome-targeting

B) Electrophile-based probes (containing aromatic carbonyl with adjacent a,f-unsaturated carbonyl compound)

F26

F27

Adv.: relative rapid response time (20 min), 13-fold fluorescence enhancement, better quantum
yield = 0.208

Disadv.: small red shift (Stokes shift = 45 nm, Aeyjem = 465 / 510 nm) with low sensitivity
(LOD = 5000 nM), detection medium contains DMSO (1%) & time-dependent (0 - 60 min)
fluorescent increase

Application: in vitro HeLa cells

Adv.: satisfactory Stokes shift 55 nm, pH range (5-8),

Disadv.: energetic excitation (308 nm), Medium contains DMSO (10%), limited sensitivity (high
LOD 1700 nM),

Application: living cells (Vero)

[62]

[72]

[71]

[66]

(68]

[67]

(73]

(74]
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Table 1 (continued)
N°  Sensor Properties & Applications Ref.
F28 S Adv.: good sensitivity (LOD = 160 nM), linear range (0 - 10 uM), wide pH range (3 - 9), large  [75]
Stokes shift (108 nm, Aexjem = 445 - 577 nm)
N Disadv.: long response time (40 min), detection medium contains DMSO
Q Application: HepG2 cells and Chlorella
al _ COOEt
CN
B) Electrophile-based probes (containing (disulfide or selenenyl sulfide) benzoate ester)
F29 Adv.: fluorescence enhancement 15-fold; good selectivity, good sensitivity LOD = 790 nM, large [169]
Stokes shift (108 nm, Aexj/em = 345/453 nm), linear range (0-300 uM)
@) N Disadv.: long response time (30 min); energetic excitation wavelength, detection medium
/\)]\ contains CH3CN (30%) and CTAB 1 mM
§ 9 o 9] Application: endogenous and exogenous H,S in HeLa cells, Drosophila. melanogaster and C.
S\/\H/O 0.__0O elegans
o) >
F30 Adv.: NIR emission, good sensitivity LOD (1.1 nM), large Stokes shift (120 nm, Aexjem = 560/ [76]
680 nm)
Disadv.: long response time (30 min), detection medium: containing 50% DMSO/PBS
Application: living cells
F31 — Adv.: 10-fold fluorescence enhancement, linear range: 2-14 uM; LOD 25.7 nM, pH range (7-10), [170]
Disadv.: relative long reaction time (15 min), biothiols as (L- Cys, Hcy, GSH) were tested at the
same H,S concentrations (50 M) medium contains DMF (10%),
Application: living cells (HeLa)
F32 Adv.: NIR emission, Quantum yield (0.19), 22-fold fluorescence enhancement, pH range 6-12, [80]
good sensitivity 36 nM, large Stokes shift (129 nm, Aexjem = 510/639 nm)
Disadv.: narrow linear range (1-6 pM), the medium contains DMF (10%), the long response
time (60 min), biothiols as (L- Cys, L-methionine) reacts with the probe but at the lesser extent
and they were tested at lower concentrations (50 pM vs 20 UM H,S)
Application: target mitochondria, in vitro (HeLa cell), in vivo (mice)
C) Probes induced metal-sulfide precipitation
F33 Adv.: 100% aqueous medium, rapid response time (instantaneous), large Stokes shift (161 nm, [83]
‘ hexjem = 256, 417 nm), good selectivity, no cytotoxicity (up to 100 uM, WST-1 cells)
m Disadv.: UV excitation range (energetic), relative low sensitivity (LOD = 3900 nm), pH range is
NH 22‘ O not checked
[ Cu j Application: living cells, HeLa cells treated with exogenous H,S
NH HN '
/
Adv.: 100% aqueous medium, rapid response time (1 min), satisfactory Stokes shift (55 nm, [171]

hexfem = 375, 430 nm), high quantum yield (0.65), good sensitivity (205 nM),
Disadv.: biothiols as Cys react with the sensor but at a lesser extent than sulfide
Application: living cells (HeLa), in vivo (Zebra fish)

(continued on next page)
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Table 1 (continued)

Ne° Sensor

Properties & Applications Ref.

F35

F36

MeOH (75%).

exogenous H,S

Adv.: satisfactory sensitivity (LOD 250 nM), good aqueous solubility, the rapid response time  [172]
(less than 1 min), satisfactory Stokes shift (66 nm, Aexjem: 480/546 nm)

Disadv.: biothiols as Cys & GSH were tested at the same concentration (20 M) as NaHS (not
relevant to physiological concentration ratios).

Application: living cells, HeLa cells treated with exogenous H,S

Adv.: NIR emission, fast response time (30 sec), good sensitivity (LOD 92 nM), good aqueous [82]
solubility, large Stokes shift (95 nm, Aexjem: 530/625 nm)
Disadv.: highly pH-dependent fluorescence, narrow pH range (7-8), the medium contains

Application: human serum and bovine serum albumin, living cells, (C-6 cells) treated with

tion to yield a thio-derivative, followed by another intramolecular
nucleophilic addition/substitution of H,S to the probe. This results
in one or two fluorescent compounds

i) 2,4-dinitrophenyl-based probes: The 2,4-dinitrophenyl moi-
ety acts as a quencher of the fluorophore moiety via
photo-induced electron transfer (PET). 2,4-Dinitrophenyl
moiety can be linked to the fluorophore nucleus such as
cyanine [59], xanthene [60], pyridinium derivative [46],
pyrimidine derivative [61], functionalized graphene quan-
tum dots [62] via an ether linkage, or a sulfonamide link-
age to fluorophore as dicyanoisophorone [63], curcumin
[64], coumarin [65].

The reaction with H,S proceeds via nucleophilic addition of H,S
to the probe generating a thiol derivative which undergoes subse-
quent intramolecular nucleophilic substitution (thiolysis) and
cleavage of the linkage (i.e., ether, sulfonamide, and ester) liberat-
ing the fluorophore (parent fluorescent dye).

As illustrated in Table 1, this family of compounds exhibits
various advantages according to the fluorophore derivatives
being employed leading to emission in NIR as compounds
F11, 12, 15, 17, 19 with very large Stokes shift (244 nm)
exemplified in compound F12. Certain intracellular organelles
could be targeted as lysosome (F17), endoplasmic reticulum
(F13), or mitochondria (F15). A sensitive fluorescent sensor,
F23 (LOD = 11 nM) contains an ether-linkage and cyanine
derivative (fluorophore) was developed to react instanta-
neously with H,S (4 sec) exhibiting 115-fold fluorescence
enhancement (Turn-on). It offers a water-soluble sensor that
has been used in cellular imaging (HelLa and HepG2), lyso-
somes, and in vivo in mice [59]. The fluorescence enhance-
ment is generally reflecting the increase in the fluorescence
intensity in the presence of sulfide compared to that of the
probe alone under the give reaction conditions (Time, temper-
ature, pH, ......).

The first developed sensor containing sulphonamide linkage
was that of compound F17, as a new selective reaction site for
H,S, between the 2,4-dinitrophenyl moiety (quencher) and dicya-
noisophorone  (fluorophore) exhibited high  sensitivity
(LOD = 6 nM), rapid response (less than 1 min), large Stokes shift
(221 nm) and has been used in cellular imaging and in vivo in mice
[63].

Graphene quantum dots-based sensor, F20 offers the highest
sensitivity (LOD 0.89 nM) of this family with wide linear range (2
- 1500 nM) and used for H,S detection in MCF7 but it displays
excitation /emission out of the NIR with relative short Stokes shift
and relative long response time (10 min).

ii) NBD (7-nitro-1,2,3- benzoxadiazole)-based probes: The 7-
nitro-1,2,3- benzoxadiazole acts as a quencher of the fluo-
rophore. The fluorophore moiety can belong to coumarins
[66], rhodamine B amines [68,69], Tetrahydro [5] helicene
[70], naphthalimide [71] all linked to NBD via different link-
ers as ether or thioether bond. As the reaction proceeds,
under physiological pH via the attack of the nucleophilic
sulfhydryl group to the probe generating a thiol derivative
which undergoes subsequent intramolecular nucleophilic
substitution (thiolysis), liberating the non-fluorescent thio-
NBD derivative and the fluorophore. Therefore, all the
NBD-based H,S sensors exhibit turn off-on fluorescence
response.

As illustrated in Table 1, compound F21 was the first synthe-
sized NBD-based H,S sensor used for its detection in vitro in living
cells (HEK293 and Hela cells) [72], after which many NBD-based
H,S sensors were developed to improve sensor features such as
sensitivity level [66], or to target certain organelles as lysosomes
using compound F25 [67] or mitochondria using compound F22

[71]).

iii) Aromatic carbonyl with adjacent o,B-unsaturated carbonyl-
based probes (Michael acceptor):

The reaction in these probes proceeds via two mechanisms.
First, it involves a double nucleophilic addition in which H,S
attacks the aromatic carbonyl group generating a thiol derivative
which undergoes subsequent Michael addition to yield the acrylate
ester (o,p-unsaturated carbonyl compound (Michael acceptor)
leading to cyclic fluorescent thio-derivative [73,74]. Second, it
functions via a double nucleophilic attack, initially through HS"
nucleophilic substitution generating a thiol derivative that under-
goes subsequent intramolecular nucleophilic addition that leads to
cyclic non-fluorescent compound (Turn-off) carbazole derivative
[75]. As illustrated in Table 1, compounds F26-28 were used for
in vitro H,S cellular imaging (HeLa, Vero, and HepG2 cells), albeit
they use relatively energetic excitation wavelengths (308-
465 nm) with subsequent increased risk of cellular photo-
damage or phototoxicity. Furthermore, these sensors displayed a
relatively long response time (20-40 min) and moreover failing
to attain high sensitivity (160 nM - 5000 nM).

iv) Probes containing (disulfide or selenenyl sulfide) benzoate
ester-linked to a fluorophore

The reaction proceeds via two consecutive nucleophilic substi-
tutions initially through HS™ nucleophilic substitution generating
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a thiol derivative which undergoes subsequent intramolecular
nucleophilic substitution and cleavage leading to a fluorophore
and cyclic non-fluorescent thio-compound [76,77]. The first
disulfide-based sensors were developed [78] with the drawback
of overconsumption of biothiols and thus high probe loading was
needed. Certain biothiols (RSH) as glutathione, L-cysteine, and
Homocysteine could undergo the first substitution step consuming
part of the sensor but could not proceed beyond. As these biothiols
do not possess more than one replaceable proton, which prevents
the achievement of the second nucleophilic substitution step and
consequently blocking the cyclization and the fluorophore libera-
tion. It is worth noting that glutathione (GSH) represents the most
abundant cellular biothiols (1-10 mM) [79]. Though GSH should be
evaluated its potential interference at least (1 mM) 10 times H,S
biological concentrations which were in the nano-micromolar
range [38]. Many sensors were tested even at a higher GSH/H,S
concentration ratio (20x) as in the case of compounds F11, F15,
F19, and F26. However, the selectivity is questionable for certain
sensors which evaluated at lower GSH/H,S concentration ratio or
even at the same sulfide concentration as in the case of compounds
F31 and F32. As shown in Table 1, compounds belonging to this
family of sensors exhibit emission in NIR with very large Stokes
shift (120 and 129 nm) and display good sensitivity (LOD = 1.1
and 36 nM) as exemplified in compounds F30 and F32, respec-
tively. Certain intracellular organelles could be targeted as mito-
chondria to detect H,S as compound F53. However, biothiols still
show slight interference [80], which may be attributed to the con-
tribution of other nucleophilic centers in these interfering mole-
cules leading to cyclization and liberation of the fluorophore.

As the pK, of H,S (6.9) is lower than that of most abundant cel-
lular biothiols such as GSH (9.2), Hcys (8.9), Cys (8.3), indicating
that H,S has a stronger nucleophilicity than other biothiols under
physiological conditions pH (7.4). However, it is still somewhat dif-
ficult to distinguish GSH/Hcys/Cys from H,S simply via nucle-
ophilic reaction-based strategies and affecting quantification
results due to such interference

Probes induced metal-sulfide precipitation

- These probes (metal-ligand compounds) contain a fluorescent
moiety, chelating agent, and transition metal cations as Cu?*, Zn?*,
Hg?*, with to act as a quencher (Turn-off) [29]. The fluorescence
turn-on, is driven by precipitation of the metal sulfide (CuS, ZnS,
Ksp = 6.4 X 107%, 1.6 x 10*) [81,82].

As shown in Table 1, a copper-based H,S fluorescent sensor
compound F33 was synthesized, containing anthracene derivative
(fluorophore) attached to azamacrocyclic ring (ligand) as a
Cu?"-chelator to form a stable metal complex [83]. The paramag-
netic Cu* center serves to quench the fluorophore’s fluorescence
upon H,S binding to Cu?*, which is then extracted from the aza-
macrocyclic ring resulting in enhanced fluorescence. The probe
compound F33 exhibited a fast response with good selectivity for
in vitro fluorescence imaging of cellular H,S in HeLa cells treated
with exogenous H,S. A zinc-based sensor F36, exhibits emission
in NIR with fast response displaying good sensitivity
(LOD = 92 nM). It is used for H,S monitoring and quantification
in living cells (C-6) and human and bovine sera. However, this sen-
sor is highly pH-dependent with a narrow pH range (7-8).

Nanotechnology has been increasingly implemented in the
development of nanosensor based on metal-sulfide precipitation.
A turn-on fluorescent probe based on Cu-porphyrin coordination
complex combined with gold nanoparticles was developed and
applied for H,S in vitro measurement in two carcinoma cell lines
(A549 and H1299 cells). Although this nanosensor exhibited NIR
emission (650 nm) and good sensitivity (LOD = 17 nM) and selec-
tivity against most interfering ions and biothiols, certain biothiol as

Cys showed cross-reaction but at a less extent than sulfide, asides
from its relatively slow response time (20 min) than H,S itself [84].
Another fluorescent nanosensor based on carbon quantum dots/sil-
ver nanoparticles (CQDs-AgNPs) exhibits one of the most sensitive
methods with an LOD = 0.4 nM. This sensor was used for the in vivo
monitoring of H,S basal level (3.08 uM) and cerebral H,S level in
rat brain during the calm/ischemia states, whereas the linear
detection level ranged from 0.001 to 1.9 uM [85]. An easily synthe-
sized fluorescent gold-based nanoclusters were recently reported
for H,S detection in living cells (SMMC-7721). This sensor offers
several advantages as good aqueous solubility, biocompatibility,
high selectivity, wide linear range (27 picoM - 850 uM), and with
an outstanding LOD (24 picoM) [86].

However, Cu (II) containing probes, turn-on via CuS precipita-
tion may be interfered by other biological reducing species such
as NO, HNO, which occur via metal displacement by His and Cys,
reduction of Cu(ll) to Cu(l), or hampered by other competitive
pathways to remove the metal quencher [87]. Though, a more
selective or even specific chemical reaction may be needed to over-
come the interfering endogenous similar chemical species or other
competitive pathways. Taking into consideration the chemical
properties of H,S and the expected sulfide form. [48]

HySig = H,S[48] = HS™ + H" =52 + 2H*(1)

According to pk, of H,S, temperature, and medium pH, H,S
equilibrates with its two anions HS~ and S?>~where the three forms
exist at different proportions and Eq.1 represents the real dynam-
ics of H,S in solution [13]. However, and according to Le Chatelier’s
principle, this equilibrium will continuously shift to either side. For
example, it has been reported that half of H,S escapes from solu-
tion in five minutes in cell culture wells and 0.5 min in the Langen-
dorff heart apparatus [88]. In subcellular organelles the relative
free sulfide proportions, from 90% of HS™ in mitochondria
(pH = 8) to more than 90% of H,S in lysosomes (pH = 4.7) [89].
Therefore, according to the reaction mechanism and the effective
working pH, H,S-probe is destined selectively to one form of the
three H,S species. Considering that certain H,S-sensors were selec-
tively reacted with the unionized form (H,S) in a reduction-based
reaction (azide, nitro, hydroxylamine,...) [23,14]. Whereas
electrophile-based probes based on the double nucleophilic attack
were destined to the most abundant physiological sulfide ion (HS")
[90], while metal displacement-based reactions (Cu®*, Zn*",
Hg?*,...) are destined selectively to the dianionic counterpart
(S*) [91]. It is worth mentioning that most of the analytical meth-
ods used mainly Na,S, the least abundant physiological sulfide ion
(S*), in different pH media to carry out either in vitro or in vivo
investigations [15,47,92-94].

Colorimetric based assays

Colorimetric methods are assays that are based on spectral
changes upon the interaction of chromogen with a particular ana-
lyte. Such changes could be monitored using simple instrumenta-
tion i.e. spectrophotometers. Colorimetric methods have
particularly been employed for H,S determination (Table 2) due
to ease of use, fast reaction time and characteristic absorption
bands to overcome interference especially in the case of biological
samples [95].

Classical colorimetric methods

One of the earliest and most common methods used for H,S
measurements is the methylene blue reaction of sulfide with N,
N-dimethyl-p-phenylenediamine, in the presence of ferric chloride
to yield a blue color that could be measured spectrophotometri-
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Table 2
Representative examples of certain colorimetric sensors for H,S detection with the advantages and disadvantages of each probe.
Probe Principle Properties & applications Ref.
N,N-dimethyl-p- Spectrophotometric detection of the developed methylene blue  Adv.: a simple protocol [97]
phenylenediamine dye at 670 nm after trapping of H,S with Zn** Disadv.: lack of selectivity for H,S, not suitable for in vivo H,S
determination
Application: in vitro samples
NBD-Cl Thiolysis of NBD-Cl upon reaction with H,S to form Adv.: fast reaction time, used for both biological and [98]
nitrobenzofurazan thiol (Pluth red) via a nucleophilic aromatic ~ environmental applications, selective.
substitution reaction Application: fetal bovine serum
Azine based sensor Deprotonation of the sensor ~-OH Adv.: selective, fast response time (less than a minute) [95]
Disadv.: low sensitivity (LOD 18.2 uM)
Application: human and mouse sera
1-(2-Pyridylazo)-2- Displacing Cu*? from its complex through a metal $>" formation Adv.: enhanced sensitivity with LOD 2.5 M [99]
naphthol-Cu?* Disadv.: No biological studies or real sample analysis
Application: aqueous H,S
Adv.: detection of gaseous H,S with LOD 16 ppb [100]
Application: gaseous H,S
Boron-dipyrromethene- Adv.: good selectivity for the H,S, LOD (0.167 pM), fast [92]
Cu® reaction time
Disadv.: no biological studies or real sample analysis
Application: aqueous H,S
Ag NPs /Nafion polymer The reaction of Ag NPs with S?~ to form Ag,S with strong Adv.: simple microplate-based colorimetric assay [101]
absorbance band at 310 nm Application: mouse liver homogenate
Ag NPs | Nafion/ PVP Adv.: wide linear dynamic range for H,S (6.25 to 50 uM) with  [102]
polymer LOD 1 uM.
Application: C6 glioma cells
Ag NPs in a layer-by-layer ~ UV-vis measurement of the formed Ag,S@Ag NPs at 430 nm. Adv.: wide linear range 10 nM to 5 pM [173]
polyelectrolyte Disadv.: long reaction time (2 h for detection)
multilayer film Application: cellular endogenous H,S gas.
Dopamine functionalized Decrease in the plasmon absorbance of AgNPs at 400 nm with a  Adv.: environmentally friendly, LOD 0.03 uM [174]
AgNPs color change from bright yellow to dark brown observed by the Disadv.: narrow linear range from 2 to 15 uM,
naked eye. Application: fetal bovine serum
PPF-AgNPs Decrease in PPF-AgNPs absorption band at 400 nm upon reaction Adv.: good sensitivity and specificity, fast response time [103]
with H,S Application: various biological and environmental samples
Ag/Au core-shell Decrease in Ag/Au core-shell nanoprism absorption band at NIR  Adv.: SPR peak is located in the NIR region [104]
nanoprism region upon reaction with H,S Disadv.: long time (30 min)
Application: serum
Decrease in Ag/Au core-shell nanoprism absorption band at NIR  Adv.: HS-SDME methodology, smartphone nanocolorimetry  [175]
region upon reaction with H,S based detection set up, sensitive LOD 7 nM (UV — vis), and
65 nM(SCN).
Application: egg and milk
Au-Ag core-shell Quantification of RGB color variation of the Au-Ag core-shell Adv.: RGB colorimetric analysis, linear (50 nM to 100 M) [176]
resulting from the formation of Ag,S on the particle surface. Disadv.: long time (20 min)
Application: cell culture medium and the blood serum
Au/Agl dimeric The color variation of the Au-Ag core-shell due to the formation Adv.: linear (0 to 80 nM) with LOD of 0.5 pM (UV-vis [105]
nanoparticles of Ag,S on the particle surface. Agl increases the probe selectivity —spectrophotometer)
Application: HepG2 cell
Glutathione capped AuNPs  AuNPs aggregation upon reaction with H,S via ligand exchange  Adv.: simple [106]
reaction which results in a color change from red to purple/blue Disadv.: lower sensitivity level LOD (5 pM with a UV/vis
spectrophotometer
Fluorosurfactant FSN-AuNRs exhibits blue color changing to purple upon reaction Adv.: capable of evaluating the activity of CBS [107]
functionalized gold with H,S due to surface ligand substitution and aggregation of  Application: human and mouse serum samples
nanorods (FSN-AuNRs) FSN-AuNRs
Au@TPt-NCs Deactivation of the Au@TPt-NCs catalytic activity on (TMB / H,0,  Adv.: static headspace extraction was applied, with LOD [108]
system) upon reaction with H,S 7.5 nM
Application: newborn cattle serum
AuNRs Deactivation of etching activity of (TMB /HRP) on AuNRs upon Adv.: linear range 0.05-50 pM with a LOD of 19 nM [177]

cally at 670 nm [96]. The method was later modified by trapping
H,S with zinc acetate to remove interference from other chro-
mophores that might be present in the sample followed by acidifi-
cation and subsequent formation of the dye [97]. However, several
critical issues were observed when H,S was determined in biolog-
ical samples viz, lack of selectivity and sensitivity, formed dimer
and trimer of methylene blue that do not obey Beer’s law, and
finally, color formation is time-dependent which requires careful
monitoring. On the other hand, Pluth’s group reported a colorimet-
ric method based on thiolysis of NBD-derived electrophiles; NBD-
Cl reacts with H,S via nucleophilic aromatic substitution reaction
to form thioether followed by thiol formation of the unique color
of NBD-SH (Pluth red) [98]. This method exhibited detection limit
as low as 210 nM (buffer) and 380 nM (fetal bovine serum) and
high selectivity for H,S even in the presence of other

biologically-relevant nucleophiles such as glycine, serine, tyrosine,
lysine, glutathione, and N-acetyl-cysteine. In another report for
colorimetric H,S determination, a new azine based sensor was
developed for the selective determination of H,S in physiological
conditions. The method is based on deprotonation of one of the
sensor -OH protons via reaction with H,S resulting in a color
change detected at 450 nm. The azine sensor exhibits a detection
limit at 18.2 uM and has been applied successfully for H,S quanti-
tation in spiked mouse and human sera [95].

Displacement of copper complexes
Another colorimetric approach used for H,S determination is

through displacing a metal from its coordinated chromophore via
metal sulfide formation resulting in a color change. This approach
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has been widely employed for H,S measurement due to its rapid
response, reversibility, and robustness. Among the different
metals-ligands displacement systems, copper complexes are the
most widely employed sensors for H,S analysis due to the very
low solubility product of the formed CuS. Asides, the outstanding
plasticity of the copper sphere facilitates Cu-complexes formation
with a variety of chelating ligands [31].

Copper complex of 1-(2-pyridylazo)-2-naphthol was synthe-
sized for the colorimetric sensing of aqueous sulfide with a pink
to yellow color change upon displacement of Cu?* from its complex
[99]. Interestingly, the same probe has been developed for the
quantification of gaseous H,S via impregnating the probe with
alkali on paper support [100]. The alkali will trap and convert the
acidic H,S gas to sulfide ion with a color change from pink to yel-
low. The probe could be coupled with a handheld colorimeter and a
smartphone allowing quantification of H,S gas or for its rapid
detection with LOD of 16 ppb of gas. In another study, BODIPY
and 8-aminoquinoline were incorporated for designing a colori-
metric probe employed for H,S detection. The probe forms 1:1
complex with Cu?* in HEPES buffer with a decrease in the absorp-
tion band at 569 nm and an increase of a new band at 520 nm with
a color change from pink to orange in rather fast reaction time. This
method displays excellent selectivity towards sulfide over other
competitive anions and thiols and with LOD of 0.167 uM in aque-
ous media [92].

Nanomaterials based colorimetric analysis

A recent colorimetric approach used for H,S detection and
quantification is based on the localized surface plasmon resonance
(LSPR) optical traits of metal nanoparticles e.g. Ag NPs and Au NRs
[19]. Compared to conventional colorimetric methods, plasmonic
metal nanoparticles provide an exciting avenue for rapid and accu-
rate determination of H,S due to its higher photostability, lower
photobleaching and intensity fluctuations, much higher scattering
cross-section and extinction molar coefficients (REF). Exploiting
the affinity of Ag* to S*, a wide range of colorimetric methods have
been developed for H,S determination. For example, Jaroszx et al.
[101] reported a microplate-based colorimetric assay using Nafion
polymer doped with Ag" ions for H,S determination. Nafion poly-
mer served as a template for Ag NPs synthesis where the formed
Ag>S NPs showed a strong UV absorbance at 310 nm. The same
principle has been implemented in another study where
polyvinylpyrrolidone (PVP) was utilized for Ag NPs construction
being applied for measuring endogenous H,S concentration in liv-
ing C6 glioma cells [102]. Cross-linked polymer cages have been
also employed as a potential medium for novel Ag NPs fabrication
that was used in H,S determination e.g. cross-linked polyhedral
oligomeric silsesquioxane-formaldehyde polymer (PPF) [103].
PPF-AgNPs exhibit strong absorption at 400 nm which decreased
quantitatively upon reaction with H,S due to the formation of
Ag,S shell on the surface of PPF-AgNPs. The PPF-AgNPs exhibited
excellent selectivity towards sulfide against other thiols and anio-
nic species due to the specific Ag-S interaction within a linear
range of 0.7-10 uM and a detection limit of 0.2 puM. Analysis of
H,S in various water and biological samples e.g. spring waste,
urine, human serum and fetal calf serum using this novel probe
have been demonstrated.

It is worth to note that some reports raised though doubt about
the selectivity of silver nanoprobes for H,S quantification, particu-
larly in real samples with complicated matrices due to their sus-
ceptibility for oxidation in the presence of coordination agents
such as hydrogen peroxide. Hence, several approaches were
attempted to increase the selectivity of these nanoprobes via silver
coating with a thin gold layer to form Ag/Au core-shell nanoprism
that protect Ag from direct reaction with interfering species thus

increasing the latter’s selectivity toward H,S [104]. The defects in
gold outer layer lateral walls allow reaction of only strong etching
agents such as hydrogen sulfide with Ag nanoprisms and mitigate
against interaction with other anions. This method exhibited a
wide linear dynamic range from 0.1 and 10 uM with a detection
limit of 54 nM and was applied for H,S detection in serum. Inter-
estingly, the same core-shell nanoprism has also been used in
another study coupled with headspace single-drop microextrac-
tion (HS-SDME) to quantify H,S. Smartphone nanocolorimetry
(SNC) and UV - vis spectrophotometry were utilized to measure
the change of Ag/Au core-shell SPR peak as a result of H,S etching
and both to demonstrate potential application for determining H,S
levels in real biological samples (egg and milk). In contrary to pre-
vious reports that employed Au as a protective shield for Ag NPs,
Zeng et al [105] reported another strategy to increase Ag NPs selec-
tivity based on engineering Au/Agl dimeric nanoparticles where
the Agl acts as sensing agent and the Au acts as the signal-
receptor core. Based on the fact that Agl exhibits the lowest solu-
bility product among all silver halides, very few interfering com-
pounds can react with stable Agl shell. These Au/Agl NPs have
been immobilized into agarose gels to produce a solid form of “test
strips” that has been applied successfully to determine H,S gas
concentrations released from Hep G2 cells during their cultivation.

Similar to AgNPs, AuNPs have been also widely used for H,S
determination due to the strong Au-S interaction. Such assays are
based on the induction of AuNPs aggregation by inter-AuNPs
crosslinking to result in color changes that can be easily observed
by naked eyes (qualitative) or spectrophotometers (quantitative).
For example, glutathione capped AuNPs have been used as an
H,S sensor via a ligand exchange reaction where sulfide will
replace glutathione molecule on the AuNPs surface resulting in
AuNPs aggregation and subsequent color change [106]. In a similar
study, non-ionic fluorosurfactant capped with gold nanorods (FSN-
AuNRs) has also been reported for the determination of H,S [107].
In contrary to AuNPs, gold nanorods (AuNRs) possess two plasmon
absorption bands responsible for their unique color change upon
H,S induced aggregation. This method exhibits high specificity
towards sulfide over other anions and has been applied success-
fully for the determination of biological H,S in both human and
mouse serum as well as determining the activity of cystathionine
B-synthase activity, the enzyme responsible for H,S production.
Interestingly, another AuNPs colorimetric strategy used for H,S
quantitative estimation is based on the H,S-induced deactivation
of (gold core)@(ultrathin platinum shell) nanocatalysts (Au@TPt-
NCs) [108]. Upon target introduction, Au@TPt-NCs were deacti-
vated to different degrees depending on H,S levels, static head-
space extraction was used with the Au@TPt-NCs as an effective
sample pretreatment method for this system. This method dis-
played higher sensitivity for H,S determination with a linear range
of 10-100 nM and LOD of 7.5 nM. Asides, the method was applied
for H,S measurement in spiked real samples such as newborn cat-
tle serum and although it is expedited route for the sensitive deter-
mination of biological H,S in vitro samples, it has not been
validated yet in vivo.

Phosphorescence analysis

Unlike fluorescence, phosphorescence is characterized by much
longer emission lifetime which demonstrates its superiority in the
bioimaging field [109]. Besides, the slow process of light re-
emission entails the elimination of autofluorescence short-lived
interference and improves S/N ratios. Among different phosphores-
cence probes for H,S determination, transition metal complexes
are known for their simple synthesis procedures and easy tuning
of photophysical properties [110]. Novel iridium (III)-based lumi-
nescent turn on-off-on probe has been developed for the in vitro
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and in vivo determination of sulfide ion [111]. This method is based
on quenching of iridium (IIl) probe by Fe3", followed by restoring
its luminescence upon the addition of sulfide. The probe exhibited
a linear range from 0.01 to 1.5 mM, with LOD of 2.9 uM, and was
successfully applied for sulfide imaging in living cells. In another
report, an H,S-associated phosphorescence turn-on probe was
developed based on the in situ capturing of sulfide by Zn?" and
Mn?* to form Mn-doped ZnS quantum dots [112]. These dots emit
orange phosphorescence allowing elimination of autofluorescence
interference from biological matrix and was thus employed for H,S
quantification in fetal calf serum with LOD of 0.2 pM.

Chemiluminescent analysis

Unlike other analytical techniques, chemiluminescence (CL)
methods offer higher sensitivity and the wide dynamic range since
the CL signal can be generated in the absence of any light sources
which eliminates any background signal and improves the signal to
noise for in vivo studies. Hence, they have been widely applied for
the detection of disease biomarkers [113,114], including H-S.

Among different CL systems, the reaction between luminol and
hydrogen peroxide in the presence of horseradish peroxidase
(HRP) as a catalyst is widely applied due to its simplicity and
enhanced CL signal intensity. This triple system has been applied
recently for H,S determination in which H,S deactivates HRP
resulting in CL quenching of the system in a quantitative manner
[115]. The method exhibits a linear dynamic range of 0.78-
40 uM with a detection limit of 0.30 uM and has been applied suc-
cessfully for H,S determination in rat brain microdialysis. Another
method used the irreversible reaction of H,S with two masked
azide-luminol scaffolds has been reported [116]. H,S mediates
the reduction of the azide moiety liberating luminol or isoluminol
with enhanced CL intensity in the presence of H,O, | HRP. The iso-
luminol based probe displays excellent selectivity for H,S over a
wide range of other biologically relevant reactive sulfur species,
including thiols. Hence, it has been applied to measure the enzy-
matically produced H,S effectively.

Electrochemiluminescence (ECL) is another luminescent pro-
cess where an electrochemical reaction is employed to generate
excited luminophore on an electrode surface via electron-transfer
reactions [117]. ECL systems have been widely applied in H,S
detection due to their simplified optical setup, superior sensitivity,
and low background signal level. For example, a cyclometallic irid-
ium(Ill) complex has been synthesized as luminophore with high
ECL intensity during cyclic voltammetry that quenches upon react-
ing with H,S [118]. ECL signal of the system decreased linearly
upon reacting with H,S over a concentration range 40-140 uM
with an estimated LOD of 11 nM. Another sensitive ECL was devel-
oped based on quenching ECL signal of the activated CdS nanocrys-
tals film upon reaction with H,S on a glass carbon electrode, in
presence of other co-reactants such as H,0, and citric acid, via
bonding of sulfide to excess Cd?* ions on the nanocrystals surface
[119]. The method showed a wide linear range spanning from
5 nM to 20 uM and has been successfully applied for the determi-
nation of H,S in calf serum. Furthermore, NBD-amine, a sensitive
compound to H,S, has been integrated with Ru(bpy)3*-doped silica
nanoprobe for sulfide quantification [120]. Nafion was used to
immobilize Ru(bpy)3'-doped silica on the surface of a glassy car-
bon electrode. The methods showed a linear range from 0.1 to
1 x 10 nM, LOD 1.7 x 10°° nM and applied successfully to spiked
human serum.

Cataluminescence (CTL) is another type of chemiluminescence
in which the catalytic oxidation of analytes occurs on the surface
of a solid material [121]. Among different types of CTL, metal-
based catalysts represent the main type that exhibits high sensitiv-
ity for H,S determination namely mesoporous SnO, [122], a-Fe;03

[123,124], microsphere In,O3 [125] and several alkaline-earth
metal salts viz., CaCOs, SrCO3 and BaCO3 [126]. Also, metal-organic
frameworks are also used for H,S determination due to their large
surface area, good thermal stability, and metal catalytic sites. ZIF-8
and Zn3(BTC),-12 H,0 are two examples of metal-organic frame-
works whose LODs are 3.0 and 4.4 ppm for H,S analysis, respec-
tively [127]. Nevertheless, metal-based catalysts suffer from high
cost, environmental pollution by heavy metals, and poor long-
term stability. Albeit, these limitations can be overcome using
metal-free catalysts such as nanocarbon catalysts which are stable
on the long-terms, environmentally friendly, cost-effective, and
highly selective. Silicon carbide (SiC) is a promising metal-free car-
bon material with distinct catalytic potential that has been
enhanced by controlling its morphology through ion doping with
fluorine [128]. SiC CTL signals display a linear relationship for
H,S quantitation in the range of 6.1-30.4 ppm with LOD 3.0 ppm.

Chromatographic methods

Although chromatographic methods for H,S analysis could not
be applied for real-time monitoring, they offer higher selectivity
and specificity compared to direct spectrophotometric or fluores-
cence measurements. Separation technique as gas and liquid chro-
matography coupled to different sensitive detectors are considered
as the mainstays for analysis of biological samples [38]. Chromato-
graphic techniques are applied for H,S detection in a wide range of
biological matrices including breath [129], saliva [130], heart tis-
sue, and urine [131], plasma, tissue, and cell culture lysates [26].

Chromatographic methods used in H,S analysis include:

i) GC coupled to different detectors as electrochemical [132],
electron capture [133], flame photometry [134], mass spec-
trometry [135,136], ion mobility spectrometry [137].

ii) LC coupled to different detectors as spectrophotometry
[138], spectrofluorimetry [139], atomic fluorescence spec-
trometry [140], mass spectrometry [141], and electrochem-
ical [142].

These chromatographic coupled techniques represent the most
used chromatographic methods for H,S analysis. However, these
coupled techniques were used for different applications i.e., ion
chromatography coupled to electrochemical detector was used
for sulfide determination in water [143], in rat and human brain
tissue [144], in rat brain different regions (brainstem, cerebellum
hippocampus, striatum, and cortex) [145], in its liberation by the
dithiothreitol treatment of brain tissue [146], in organic-rich,
anaerobic waters from peat bogs [147], and in gastrointestinal con-
tents and whole blood [142].

Generally, pre-column derivatization, (i.e., with methylene blue,
pentafluorobenzyl bromide, etc) is required for H,S detection.
Therefore, during the derivatization step, the biomolecule-bound
sulfur pool presents significant interferences during the analysis
of biological samples alongside rigorous analytical precautions to
be followed [22,148]

H,S exists either in a gaseous state (unionized form) or liquid
phase (unionized and two ionized forms). Unionized H,S could
be directly trapped (gaseous state) or liberated from its liquid
phase in the headspace above the sample and was then directly
analyzed by GC coupled to different detectors, as flame photometry
and sulfur chemiluminescence detection. While H,S in the liquid
phase generally needs precolumn derivatization followed by GC
or LC analysis [149]. Table 3 summarizes the analysis of sulfide
using different chromatographic methods. Gas chromatographic
analysis of sulfides was initially carried out via its pentafluoroben-
zyl derivative detection using mass spectrometry [150]. This tech-
nique was applied to post mortem analysis in forensic studies for
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Table 3
Representative examples of certain chromatographic methods for H,S analysis.
Chromatographic method Properties and applications Ref.
1 Ion-interaction RP-HPLC / Adv.: relatively simple protocol (methylene blue formation) [138]
spectrophotometry Disadv.: need pre-column derivatization of sulfide, affect acid-labile sulfides
Application: brain tissue and rumen fluid of cattle
2 Micro distillation/ ion chromatography /|  Adv.: acceptable recoveries (94-101%) [142]
fluorescence detection Disadv.: low sensitivity (2.5 uM), non-selective for free sulfides (bound form/acid-labile), long preparation time
(3 hrs/50C)
Application: gut contents (0.2 to 2.8 umol/g wet feces) and whole blood sulphide (10-100 uM).

3 RP-HPLC / fluorescence Adv.: sensitive (0.02 pmol) [26]
Disadv.: need pre-column derivatization of sulfide with monobromobimane, long incubation time (30 min),
long analysis time (~20 min)

Application: plasma of mice

4 RP-HPLC/mass spectrometry (ESI) Adv.: good linear range 1-1000 nM, uses a novel stable isotope-coded (2-iodoacetanilide) [141]
Disadv.: used precolumn derivatizing agent (2-lodoacetanilide)

Application: HepG2 (750 uM) cells in vitro

5 Gas dialysis/lon chromatography/ Adv.: 95-99% Recovery [144]

electrochemical detection Disadv.: need gas dialysis pretreatment, post-mortum analysis & couldn’t be applied for real-time monitoring
Application: rat and human brain

6 HS-GC-MS (EI) Adv.: generation of H,S in hermetically closed GC headspace vials, use a specific H,S internal standard (N,O), [178]
Disadv.: relative narrow linear range (12.5 - 62.5 pM), low sensitivity LOD (1 pM), at high concentration of CO,,
it coelutes with the internal standard (N,0) & consequently affects H,S quantification
Application: quantify H,S in H,S fatal intoxication cases (post-mortem)

7  GC/MS (full scan) Disadv.: requires a derivatization step and provide relatively not absolute amounts [136]
Application: blood (serum)

8 GC-MS (SIM mode) Adv.: sensitive (96 ng/ml), linear range (10 - 100 uM) [93]
Disadv.: long incubation time (4 h) with a derivatizing agent (pentafluorobenzyl bromide), the possibility of
interference of GSH & sulfur-containing amino acids
Application: whole blood, blood levels of sulphide of healthy controls (35-80 puM)

9  GC/sulfur chemiluminescence Adv.: selective, sensitive (15 pg/injected sample), rapid analysis time (H,S less than 2 min), linear range (0 - [179]

detection

14 ng/injected sample)
Disadv.: time-consuming for sample preparation and GC run cycle.
Application: artificially induced H,S production in tissue homogenate

sulfide fatal toxicity [151] and to investigate blood sulfide as a
marker of bowel fermentation processes [93]. Later on, sulfide
analysis was achieved in the headspace for tissue homogenates
[38] or post silylation in human sera [152]. GC-MS analysis of
human breath revealed the contribution of H,S in oral malodor
and halitosis [129]. Moreover, GC-MS analysis of human serum
revealed elevation of H,S level in a certain serious type of heart
attack (ST-elevation myocardial infarction) [152].

A coupling electrochemical detector (ECD) with ion chro-
matography (IC) was applied for the determination of the sulfide
in brain tissue. However, the main limitation resides in the liber-
ation of the acid-labile sulfur during the high acidic extraction
protocol [22]. Another example of IC coupled to ECD was investi-
gating the protein-rich diet effect on sulfide level in the gut con-
tents and whole blood [142]. Monobromobimane was the
derivatizing agent for H,S in alkaline medium (pH 9.5) and ana-
lyzed by HPLC coupled with fluorescence detection which offers
good sensitivity compared to that obtained with the methylene
blue method [26], whereas via coupling with a mass spectrome-
ter, (ESI-MS), it surpasses other methods concerning sensitivity
and specificity[141].

A validated liquid chromatography-masss spectrometry (LC-
MS/MS) method for the determination of H,S in various biological
matrices by determination of a derivative of hydrogen sulfide and
monobromobimane named sulfide dibimane (SDB) was used to
measure its levels in a broad range of biological matrices, such as
blood, plasma, tissues, cells, and enzymes, across different species
[153]. The later technique revealed diurnal H,S fluctuations in
mice plasma [154].

Our aim in this review is not though to provide an inclusive
overview of all chromatographic methods used in the assess-
ment of biological H,S, but rather to highlight certain examples
of chromatographic techniques available as tools for its
determination.

Electrochemical determination of H>S

Electrochemical methods offer an improved expedited route for
real-time detection of H,S in biological samples due to their low
detection limit, high sensitivity and selectivity, miniaturization
capabilities, fast response time, and absence of chemical reagents
[21]. Among different types of electrochemical sensors, potentio-
metric ion-selective electrodes and polarographic sensors have
been employed extensively for H,S determination in biological
samples.

Ag/Ag,S ion-selective electrode (ISE) is one of the most com-
monly used potentiometric methods for measuring sulfide ion in
biological systems. This method was first reported fifty years ago
by Mason et al. for measuring sulfide concentration in plasma with
limited details of the methodology [155]. A full detailed procedure
for plasma sulfide concentrations measurement using this elec-
trode was later reported by Khan et al. [156]. Orion Research used
this method to develop a commercial sulfide sensitive electrode
(Model 9616, Orion Research, Beverly, MA) that has been widely
used in serum H,S measurement [157]. Interestingly, Lazar
Research Laboratories (Los Angeles, CA) has developed another
small commercial Ag/Ag,S ISE known as ArrowH,S™ that measures
H,S in volumes down to 10 ul directly in its micro containers with
100 nM detection limit, thus preventing H,S loss from the sample
and increasing the accuracy of its measurement [7]. However, Ag/
Ag,S electrodes exhibit some disadvantages such as the require-
ment for rendering the medium alkaline via adding “antioxidant
buffer” to shift the H,S equilibrium into the S*>~ jons which are
the only form of H,S that the electrode can measure [158,159].
Asides, the electrode must be reconditioned (typically for 1 h in
5 mM Na,S) to ensure that no silver is exposed to the surface
otherwise, selectivity is lost [160]. Other potentiometric sulfide
sensors based on the reversible electrochemical reaction of a redox
mediator viz, ferricyanide and conductive polymer as sensing film
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have been also reported [161,162]. These methods exhibit high
reproducibility and sensitivity.

Polarography is another reliable electrochemical technique that
has been applied for the determination of H,S in whole blood and
tissues [21]. It has the advantage of real-time monitoring even for
free H,S gas without altering the sample. The first polarographic
sensor used for H,S determination in biological samples is based
on a Clark-type oxygen electrode [163]. Platinum wires were used
as the anode and cathode altogether with an alkaline K5[Fe(CN)g]
as an internal electrolyte solution held in the sensor tip reservoir
using H,S-permeable membrane and a sensor housing of polyether
ether ketone. During H,S measurement, [Fe(CN)g]>~ is reduced to
[Fe(CN)g]*~ while H,S gas is oxidized to HS™ then S° upon its per-
meation through the membrane layers. A current proportional to
H,S concentration is produced upon electrochemical oxidation of
[Fe(CN)s]*~ back into [Fe(CN)s]*>~ on the surface of the platinum
electrode. Following this sensor, another miniature polarographic
H,S sensor was developed having several advantages including
sensitive detection limit (10 nM) and low response time (20-
30 s) posing it as an ideal sensor for kinetic studies of H,S metabo-
lism in broken cell systems, intact tissues, and whole organisms
[164]. Moreover, the sensor could be combined with other real-
time polarographic sensors such as polarographic oxygen sensor
and polarographic nitric oxide sensor owing to its higher selectiv-
ity to determine the correlation of these species with H,S in biolog-
ical systems. Additionally, an ultra-micro polarographic H,S sensor
having a diameter of only 100 pm has been developed offering sev-
eral advantages, including durability for long-term use, rapid
response time, and absence of sleeves and filling solutions [21].
Despite the numerous advantages for H,S polarographic sensors
as one of the widely used techniques for real-time H,S measure-
ment, their main disadvantage lies in the necessity of liquid elec-
trolytes in their design which are prone to dryness and leakage
in addition to the possible large residual current associated with
impurities in the samples.

Conclusion

Owing to the major clinical importance of H,S as the third
gasotransmitter, a wide variety of quantification methods have
been developed for its measurement in biological systems. In
contrast to colorimetric, ion-selective electrodes, and chromato-
graphic methods, fluorescence offers an attractive non-invasive
and promising approach accounting for the substantial increase
in the number of newly developed fluorescent probes in the past
few years. Although a lot of effort has been made towards fluo-
rescence imaging, it faces challenges such as the low levels of
endogenous H,S and the presence of many interfering bio-
molecules. Asides, tissue penetration, fluorophore stability at
high excitation wavelengths have also largely limited their appli-
cation for in vivo H,S quantification. Although fluorescence sen-
sors offer good selectivity they cannot be considered as H2S-
specific probes, as biothiols may interact, even at a lesser extent,
with these sensors. Consequently, significant work has to be done
towards developing highly sensitive and selective fluorescent
probes for such purpose. Promising fluorescent probes, for mon-
itoring the endogenous short-lived H,S, are expected to meet cer-
tain requirements, such as a photostability, NIR optical window,
enhanced fluorescence, fast and sensitive response, specificity
or high selectivity, water solubility and low cytotoxicity. On the
other hand, colorimetric assays are among the earliest and most
common methods used for in vitro H,S detection, however, their
employment in vivo H,S measurement has not yet been possible
even after the introduction of plasmonic metal nanoparticles that
have provided an expedited route for rapid and accurate detec-

tion of H,S in plasma. Separation techniques as gas or liquid
chromatography offer higher selectivity compared to direct spec-
trophotometric or fluorescence H,S measurements, albeit they
also could not be applied for H,S real-time monitoring. These
methods are suitable for endpoint measurements i.e. plasma or
tissue samples. Despite a myriad of developed analytical proce-
dures used for H,S determination, the need for highly selective,
highly sensitive, biocompatible, reproducible, and accurate H,S
measurement methods seems imperative to untangle the non-
resolved pitfalls of the current methods.
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