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Scalable multiple whole-genome alignment and
locally collinear block construction with SibeliaZ
Ilia Minkin 1✉ & Paul Medvedev 1,2,3

Multiple whole-genome alignment is a challenging problem in bioinformatics. Despite many

successes, current methods are not able to keep up with the growing number, length, and

complexity of assembled genomes, especially when computational resources are limited.

Approaches based on compacted de Bruijn graphs to identify and extend anchors into locally

collinear blocks have potential for scalability, but current methods do not scale to mammalian

genomes. We present an algorithm, SibeliaZ-LCB, for identifying collinear blocks in closely

related genomes based on analysis of the de Bruijn graph. We further incorporate this into a

multiple whole-genome alignment pipeline called SibeliaZ. SibeliaZ shows run-time

improvements over other methods while maintaining accuracy. On sixteen recently-

assembled strains of mice, SibeliaZ runs in under 16 hours on a single machine, while

other tools did not run to completion for eight mice within a week. SibeliaZ makes a sig-

nificant step towards improving scalability of multiple whole-genome alignment and collinear

block reconstruction algorithms on a single machine.
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Multiple whole-genome alignments are the problem of
identifying all the high-quality multiple local align-
ments within a collection of assembled genome

sequences. It is a fundamental problem in bioinformatics and
forms the starting point for most comparative genomics studies,
such as rearrangement analysis, phylogeny reconstruction, and
the investigation of evolutionary processes. Unfortunately, the
presence of high-copy repeats and the sheer size of the input
make multiple whole-genome alignment extremely difficult.
While current approaches have been successfully applied in many
studies, they are not able to keep up with the growing number
and size of assembled genomes1. The multiple whole-genome
alignment problem is also closely related to the synteny recon-
struction problem and to the questions of how to best represent
pan-genomes.

There are two common strategies to tackle the whole-genome
alignment problem2. The first one is based on finding pairwise
local alignments3–7 and then extending them into multiple local
alignments8–11. While this strategy is known for its high accuracy,
a competitive assessment of multiple whole-genome alignment
methods1 highlighted several limitations. First, many algorithms
either do not handle repeats by design or scale poorly in their
presence, since the number of pairwise local alignments grows
quadratically as a function of a repeat’s copy number. In addition,
many algorithms use a repeat database to mask high-frequency
repeats. However, these databases are usually incomplete and
even a small amount of unmasked repeats may severely degrade
alignment performance. Second, the number of pairwise align-
ments is quadratic in the number of genomes, and only a few
existing approaches could handle more than ten fruit fly gen-
omes1. Therefore, these approaches are ill-suited for large num-
bers of long and complex genomes, such as mammalian genomes
in general and the recently assembled 16 strains of mice12 in
particular.

Alternatively, anchor-based strategies can be applied to
decompose genomes into locally collinear blocks13. These are
blocks that are free from nonlinear rearrangements, such as
inversions or transpositions. Once such blocks are identified, they
can independently be global aligned13–17. The problem of con-
structing blocks from anchors is known as the chaining problem
which had been extensively studied in the past18–20. All of the
methods applicable to datasets consisting of multiple genomes are
heuristic since the exact algorithms depend exponentially on the
number of genomes. Such strategies are generally better at scaling
to handle repeats and multiple genomes since they do not rely on
the computationally expensive pairwise alignment.

A promising strategy to find collinear blocks is based on the
compacted de Bruijn graph21–23 widely used in genome assembly.
Though these approaches do not work well for divergent gen-
omes, they remain fairly accurate for closely related genomes. For
example, Sibelia23 can handle repeats and works for many bac-
terial genomes; unfortunately, it does not scale to longer genomes.
However, the last three years has seen a breakthrough in the
efficiency of de Bruijn graph construction algorithms24–27. The
latest methods can construct the graph for tens of mammalian
genomes in minutes rather than weeks. We therefore believe the
de Bruijn graph approach holds the most potential for enabling
scalable multiple whole-genome alignments of closely related
genomes.

In this paper, we describe an algorithm SibeliaZ-LCB for
identifying collinear blocks in closely related genomes. SibeliaZ-
LCB is suitable for detecting homologous sequences that have an
evolutionary distance to the most recent common ancestor
(MRCA) of at most 0.09 substitutions per site. SibeliaZ-LCB is
based on the analysis of the compacted de Bruijn graph and uses a
graph model of collinear blocks similar to the "most frequent

paths” introduced by28. This allows it to maintain a simple, static,
data structure, which scales easily and allows simple paralleliza-
tion. Thus, SibeliaZ-LCB overcomes a bottleneck of previous
state-of-the-art de Bruijn graph-based approaches17,22, which
relied on a dynamic data structure which was expensive to
update. Further, we extend SibeliaZ-LCB into a multiple whole-
genome aligners called SibeliaZ. SibeliaZ works by first con-
structing the compacted de Bruijn graph using our previously
published TwoPaCo tool27, then finding locally collinear blocks
using SibeliaZ-LCB, and finally, running a multiple-sequence
aligner spoa29 on each of the foundation blocks. To demonstrate
the scalability and accuracy of our method, we compute the
multiple whole-genome alignment for a collection of recently
assembled strains of mice. We also test how our method works
under different conditions, including various levels of divergence
between genomes and different parameter settings. Our software
is freely available at https://github.com/medvedevgroup/SibeliaZ/.

Results
Algorithm overview. As described in the introduction, the major
algorithmic innovation of this paper is the SibeliaZ-LCB algo-
rithm. SibeliaZ-LCB takes as input a de Bruijn graph built on a
collection of assembled genomes. An assembled genome is itself a
set of contig sequences. SibeliaZ-LCB identifies and outputs all
nonoverlapping blocks of homologous subsequences of the input
genomes. A block can be composed of two or more sequences
from one or more genomes. In this subsection, we will give a high
level overview of SibeliaZ-LCB, leaving the more formal and
detailed version for the “Methods”.

SibeliaZ-LCB relies heavily on the de Bruijn graph of the
genomes. In this graph, the vertices correspond to the k-mers
(substrings of fixed length k) of the input. A k-mer that appears
multiple times in the input is represented using just one node.
Then, k-mers that appear consecutively in some input sequence
are connected by an edge from the left one to the right one (see
Fig. 1a for an example). This way, each genome corresponds to a
path in the graph that hops from k-mer to k-mer using the edges.

In this graph, two homologous sequences form what is called a
chain: an interleaving sequence of parallel edges, which corre-
spond to identical sequences, and “bubbles”, which correspond to
small variations like single nucleotide variants or indels. However,
the concept of a chain is difficult to extend to more than two
homologous sequences because the tangled pattern in the graph is
difficult to precisely define (see Fig. 1b for an example).

To address this challenge, we introduce the idea that each block
has a “carrying path” in the de Bruijn graph that holds the block
together. The basic idea is that the homologous sequences forming
the block have a lot of shared k-mers and their correspon-
ding genomic paths go through nearly the same vertices. A
carrying path is then a path that goes through the most frequently
visited vertices, loosely similar to the notion of a consensus
sequence from alignment. Each genomic path from the block then
forms a chain with this carrying path (see Fig. 1b for an example).

We do not know the carrying paths in advance but we can use
them as a guiding mechanism to find blocks. We start with an
arbitrary edge e in the graph and all other genomic paths that
form bubbles with e. We make e the starting point of a carrying
path and use it along with the other genomic paths to initiate the
collection of sequences making up the block corresponding to this
carrying path. To extend the carrying path, we look at the edges
extending the genomic paths in the current block and take the
most common one. The data structures maintaining the genomic
paths in the block and the carrying path are then updated and the
extension procedure repeats. Figure 2 shows an example of
running this algorithm.
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We continue this process until the scoring function that
describes how well a carrying path holds the block together falls
below zero. At that point, we consider the possibility that we may
have overextended the block and should have instead ended it
earlier. To do this, we look at all the intermediate blocks we had
created during the extension process and output the one that has
the highest score. Once a block is an output, we output all its
constituent edges as used so that they are not chosen as part of a
future block.

In this way, SibeliaZ-LCB finds a single block. Afterwards, we
try to find another block by starting from another arbitrary edge.

This process continues until all the edges in the graph are either
used or had been tried as potential starters for a carrying path.

Datasets, tools, and evaluation metrics. Evaluation of multiple
whole-genome aligners is a challenging problem in its own right
and we, therefore, chose to use the practices outlined in the
Alignathon1 competition as a starting point. They present several
approaches to assess the quality of a multiple whole-genome
alignments. Ideally, it is best to compare an alignment against a
manually curated gold standard; unfortunately, such a gold
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Fig. 2 An example of running Algorithm Find-collinear-blocks (Box 1) on the graph from Fig. 1b, starting from edge GC → CC as the seed. Each
subfigure shows the content of the collinear block P and the carrying path. The collinear walks are solid, the carrying path is dashed, and the rest of the
graph is dotted. Subfigure a shows the state of these variables after the initialization; subfigures b–d show the state after the completion of each phase.
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Fig. 1 The de Bruijn graph and an example of a collinear block. a The graph built from strings “GCACGTCC” and “GCACTTCC”, with k= 2. The two
strings are reflected by the blue and magenta walks, respectively. This is an example of a collinear block from two walks. There are four bubbles. The
bubble formed by vertices “AC” and “TC” describes a substitution within the block, while three other bubbles are formed by parallel edges. The blue and
magenta walk form a chain of four consecutive bubbles. b An example of a more complex block, where we have added a third sequence “CACGTTCC”
(turquoise) to the input. We can no longer describe the block as a chain of bubbles, as they overlap to form tangled structures. Instead, we consider the
path in the graph (dashed black) that shares many vertices with the three collinear walks. This carrying path shares many vertices with the three extant
walks, and each walk forms its own chain with it. The task of finding good collinear blocks can then be framed as finding carrying paths that form good
chains with the genomic walks.
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standard does not exist. We, therefore, chose to focus our eva-
luation on real data.

We evaluated the ability of SibeliaZ to align real genomes by
running it on several datasets consisting of a varying numbers of
mice genomes. We retrieved 16 mice genomes available at
GenBank30 and labeled as having a “chromosome” level of
assembly. They consist of the mouse reference genome and 15
different strains assembled as part of a recent study12 (Supple-
mentary Table 1). The genomes vary in size from 2.6 to 2.8 Gbp
and the number of scaffolds (between 2977 and 7154, except for
the reference, which has 377). Their GenBank accession numbers
are listed in Table 1. We constructed four datasets of increasing
size to test the scalability of the pipelines with respect to the
number of input genomes. The datasets contain genomes 1–2,
1–4, 1–8, and 1–16 from Supplementary Table 1, with genome 1
being the reference genome.

To measure accuracy, we used several ground-truth alignments
(to be described) and employed the metrics of precision and recall
used in the Alignathon and implemented by the mafTools
package1. For these metrics, alignment is viewed as an
equivalence relation. We say that two positions in the input
genomes are equivalent if they originate from the same position
in the genome of their recent common ancestor. We denote by H
the set of all equivalent position pairs, participating in the “true”
alignment. Let A denote the relation produced by an alignment
algorithm. The accuracy of the alignment is then given by recall
(A)= 1− ∣H⧹A∣/∣H∣ and precision(A)= 1− ∣A⧹H∣/∣A∣, where ⧹
denotes set difference.

To evaluate recall, we compared our results against annotations
of protein-coding genes. We retrieved all pairs of homologous
protein-coding gene sequences from Ensembl and then computed
pairwise global alignments between them using LAGAN31. The
alignment contains both orthologous and paralogous genes, though
most of the paralogous pairs come from the well-annotated mouse
reference genome. We removed any pairs of paralogous genes with
overlapping coordinates, as these were likely mis-annotations, as
confirmed by Ensembl helpdesk32. We made these filtered
alignments as well as the alignments produced by SibeliaZ available
for public download from our GitHub repository (see Section
“Data availability” for the links).

We define the nucleotide identity of an alignment as the number
of matched nucleotides divided by the length of an alignment,
including gaps. The distribution of nucleotide identities, as well as

the coverage of the annotation, is shown in Supplementary Fig. 1.
In our analysis, we binned pairs of genes according to their
nucleotide identity.

Since protein-coding genes only compromise a small portion of
the genome, we also computed all-against-all pairwise local
alignments between chromosomes 1 of genomes 1–2 and 1–4
using LASTZ6, a reliable local aligner known for its accuracy. We
only computed alignments between chromosomes of different
genomes, i.e., did not include self-alignments, which excludes
duplications such as paralogous genes from the alignment. We
used default settings of LASTZ except that we made it output
alignments of nucleotide identity at least 90%. We then evaluated
the recall and precision of our alignments but restricted our
alignments to the sequences of chromosome 1. We then treated the
LASTZ alignments as the ground truth. The LASTZ alignments are
available for download from our repository’s supplemental data
section. Note that because the alignment is represented as a set of
positions pairs, it is possible to evaluate a multiple whole-genome
alignments using pairwise local alignments.

To measure precision, we use the LASTZ alignments on
chromosome 1. However, it is computationally prohibitive to
compute such alignments with LASTZ for the whole genome. We
therefore also use an indirect way to assess precision for the whole
genome. For each column in the alignment, we calculate the
average number of nucleotide differences33. In an alignment of
highly similar genomes that has high precision, we expect
these numbers to below (close to 0) for most of the columns in
the alignment. Otherwise, it would suggest the presence of
unreliable poorly aligned blocks in the alignment. Formally, given
a column c of a multiple whole-genome alignments with ci being
its ith element, average number of nucleotide differences is given

by πðcÞ ¼ P
1≤ i≤ jcj

P
i < j≤ jcjI½ci ≠ cj�=

� jcj
2

�
. The variable I[ci ≠ cj]

is equal to 1 if both ci and cj are different valid DNA characters
and 0 otherwise; ∣c∣ is the number of rows in column c.

We benchmarked the performance of SibeliaZ against
Progressive Cactus34, an aligner based on analysis of the Cactus
graphs35 built from pairwise alignments. We also attempted to
run Sibelia23 (a predecessor of SibeliaZ) and MultiZ+ TBA8, but
these could run to completion within a week on even a single
mouse genome. Other multiple aligners9,10,16 benchmarked in the
Alignathon could not handle a dataset of 20 flies and hence are
unlikely to scale to a mammalian dataset. We also chose to not
run Mercator14 since it requires a set of gene exons as input and
hence solves a different problem: in this paper we focus on
computing the whole-genome alignment directly from the
nucleotide sequences without using external information. Further
details about parameters, versions, and hardware are in
Supplementary Note 1 and Supplementary Table 4.

Running time and memory. The running times of SibeliaZ and
Cactus are shown in Fig. 3 (Supplementary Table 2 contains
the raw values). On the dataset consisting of 2 mice, SibeliaZ is
more than 10 times faster than Cactus, while on 4 mice SibeliaZ is
more than 20 times faster. On the datasets with 8 and 16 mice,
SibeliaZ completed in under 7 and 16 h, respectively, while Cactus
did not finish (we terminated it after a week). For SibeliaZ, we
note that the global alignment with spoa takes 44–73% of the
running time, and, for some applications (e.g., rearrangement
analysis), this step may be further omitted to save time. Memory
is shown in Supplementary Table 2. When it is able to complete,
Cactus has better memory performance than SibeliaZ; however,
both tools require memory that is well within the range of most
modern servers but outside the range of personal computers.

Table 1 Accession numbers of the assembled mice genomes
available at GenBank.

Strain Accession number

C57BL/6J GCA_000001635.8
129S1/SvImJ GCA_001624185.1
A/J GCA_001624215.1
AKR/J GCA_001624295.1
CAST/EiJ GCA_001624445.1
CBA/J GCA_001624475.1
DBA/2J GCA_001624505.1
FVB/NJ GCA_001624535.1
NOD/ShiLtJ GCA_001624675.1
NZO/HiLtJ GCA_001624745.1
PWK/PhJ GCA_001624775.1
WSB/EiJ GCA_001624835.1
BALB/cJ GCA_001632525.1
C57BL/6NJ GCA_001632555.1
C3H/HeJ GCA_001632575.1
LP/J GCA_001632615.1
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Accuracy. In Tables 2 and 3, we show the properties of the
alignments found by SibeliaZ and Cactus. To compute recall, we
only used nucleotides from gene pairs having at least 90% identity
in the annotation. For the datasets where Cactus was able to
complete, SibeliaZ had and similar recall on orthologous pairs.
We did not evaluate the results on paralogs by Cactus since it
heuristically filters out paralogous alignments34 as a part of its
pipeline. SibeliaZ’s recall decreases only slightly going up to the
whole 16 mice dataset, indicating that the recall scales with the
number of genomes.

We also measured coverage, which is the percent of the
genome sequence that is included in the alignment. The coverage
of both tools is roughly the same, but SibeliaZ has only about half
the blocks. The different amounts of blocks produced by the tools
are likely to be a result of the different approaches to the

formatting of the output. Representation of multiple whole-
genome alignments is ambiguous and the same alignment can be
formatted in different but mathematically equivalent forms
varying by the number blocks.

We further investigate how the recall behaved as a function of
nucleotide identity, for the two- and four-mice dataset (Fig. 4). As
expected, recall decreases with nucleotide identity, though
SibeliaZ’s recall remains above 90% for nucleotides from similar
(80–100% identity) orthologous genes. Cactus has a slightly better
recall in orthologous genes of lower identity on the two-mice
dataset. We note that the gene annotation was constructed12 using
an alignment produced by Cactus which was further processed by
annotation software CAT36. This fact might give Cactus a slight
advantage in this comparison and explain why Cactus has a
slightly better recall. Recall on orthologous gene pairs remains
consistent in both two- and four-mice datasets for both datasets.

At the same time, we observed a much less consistent picture
for paralogous pairs of genes. For example, SibeliaZ was able to
recover nearly 90% of the paralogous basepairs belonging to gene
pairs of nucleotide identity of 90% but found less than 45% of the
base pairs of gene pairs of 80% identity.

The results of the precision and recall measured with respect to
LASTZ alignments are shown in Supplementary Table 3. On the
dataset consisting of two genomes, Cactus had a slightly higher
recall of 0.97 vs. 0.95 of SibeliaZ. On the other hand, SibeliaZ had
better precision: 0.93 against 0.89 of Cactus. With the four
genomes, SibeliaZ maintained its recall of 0.95 while the recall of
Cactus dropped to 0.92. On this dataset SibeliaZ also had higher
precision: 0.96 and 0.90, respectively. Overall, these numbers
show that the alignment accuracy of SibeliaZ and Cactus is
similar.

Finally, since we could not evaluate genome-wide precision, we
use the proxy of the average number of nucleotide differences for
the alignment columns (Supplementary Fig. 2). SibeliaZ’s
alignment has a high degree of similarity: more than 95% of
the alignment columns have π(c) ≤ 0.1, which is what we would
expect from aligning closely related genomes. Cactus has a
slightly lower percentage of highly similar columns, which may
simply indicate that it finds more blocks with higher divergence.

We note that the results in this Section evaluate the accuracy of
SibeliaZ-LCB and spoa simultaneously; however, since SibeliaZ is
targeted at closely related genomes, we expect the global
alignment procedure to have a negligible effect on accuracy. This
is due to the fact that the global alignment of similar sequences is
likely to be unambiguous at homologous nucleotides and robust
with respect to different algorithms and their parameters.

Results on simulated data. In addition to the real data, we
measured the performance of different whole-genome aligners on
a larger simulated dataset with small genomic divergence, called
“primates” in ref. 1. In this dataset, the distance from the root to
the leaves in the phylogenetic tree is equal to 0.02 substitutions
per site. The dataset has four genomes, with four chromosomes
each, and each genome is approximately 185Mbp in size. We did
not use the other simulated dataset in ref. 1 since its divergence of
around 0.4 substitutions per site is outside of the target range of
SibeliaZ.

On this dataset, SibeliaZ pipeline was 20 times faster than
Cactus and consumed 2.5 times less memory: SibeliaZ finished in
18 min using 7 GBs of memory, while Cactus took 363 min to
finish and used 18 GBs of memory. Sibelia and MultiZ could not
finish on the “primates” dataset in a week. Table 4 demonstrate
the recall and precision values for the alignments produced by
SibeliaZ and Cactus on this dataset. SibeliaZ showed a recall of
95% and a precision of 92%, while Cactus had 98% recall and 95%

Table 2 Number of blocks and coverage by the multiple
whole-genome alignments computed by SibeliaZ and Cactus
from the mice datasets.

Dataset No. of
blocks,
SibeliaZ

No. of
blocks, Cactus

Coverage,
SibeliaZ

Coverage, Cactus

1–2 2,083,258 4,228,063 0.88 0.85
1–4 2,739,821 6,133,662 0.86 0.84
1–8 3,179,619 – 0.89 –
1–16 4,507,109 – 0.88 –
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Fig. 3 Running times of the different pipelines on the mice datasets (on a
log scale). Each bar corresponds to a pipeline. The bar of SibeliaZ is split
according to its components: spoa (hatch fill), TwoPaCo (solid fill), and
SibeliaZ-LCB (empty fill). Cactus is not shown on datasets 1–8 and 1–16
because it did not complete. We used 32 threads for each experiment.

Table 3 Recall of the orthologous and paralogous basepairs
by the multiple whole-genome alignments computed by
SibeliaZ and Cactus from the mice datasets, using Ensembl
gene annotation as the ground truth. Recall of paralogs by
Cactus is not included (see text).

Dataset Ort. nt. pairs,
SibeliaZ

Ort. nt. pairs, Cactus Par. nt. pairs,
SibeliaZ

1–2 0.99 0.99 0.89
1–4 0.98 0.98 0.89
1–8 0.98 – 0.84
1–16 0.98 – 0.83
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precision. We note that according to ref. 1, the precision values
calculated using this dataset can be considered lower bounds due
to the features of the simulation process. Particularly, the ground
truth for this dataset is likely to miss some repetitive alignments,
hence we believe that the lower precision values of SibeliaZ may
be due to this reason.

Gene families. We wanted to further understand SibeliaZ’s ability
to recall homologous nucleotides from large gene families.
Aligning genes having many copies is a challenging task since
they generate a tangled de Bruijn graph. To investigate, we took
each pair of genes in the two-mice dataset that have greater than
90% nucleotide identity. We then identify any other homologous
genes that had a nucleotide identity of at least 90% to one of the
genes in the pair. We refer to the number of such genes as the
inferred family size of the gene pair, which roughly corresponds
to the gene family size in the biological sense. Supplementary
Fig. 3 then shows the recall of nucleotide pairs with respect to the
inferred family size of their respective genes. The recall shows a
lot of variance with respect to the inferred family size but does
exhibit a general trend of decreasing with increasing family size.
The largest bin (with an inferred family size of 58) corresponds to
a single large gene family on the Y chromosome (PTHR19368)
and actually has a relatively high recall.

This experiment shows that finding all copies of even very
similar homologous sequences within long genomes can be a
challenging task. Moreover, the high variance we observe
indicates that this challenge cannot be reduced to a single factor
like family size. A manual inspection of false negatives suggests
that the drop in recall may be due to complex substructures of
unannotated repeats forming tangled graph structures.

Effect of parameters and sequence divergence. SibeliaZ-LCB has
four primary parameters that affect its performance. The most
critical dependence is on the size of a k-mer (i.e., k) and the

maximum allowed length of a bubble b. For a given sequence
divergence, the distance between shared k-mers forming bubbles
in homologous regions increases with k. At the same time, the
maximum allowed length of a bubble is b. If the distance exceeds
b, then SibeliaZ may fail to uncover such regions and result in a
lower recall. To avoid this situation, we can either decrease k or
increase b. Decreasing k is desirable up to a point, but when k
becomes too low, the de Bruijn graph becomes convoluted and
our algorithm becomes more time and memory consuming.
Increasing b can also be done but simultaneously increases the
allowable gap length, leading to decreased precision.

Over-alignment is the problem of combining nonhomologous
sequences in a single block, which is closely related to low
precision37. In our case, one can control over-alignment by looking
at the π(c) scores, as we have done in our analysis (Supplementary
Fig. 2). A higher score indicates that more divergent sequences are
included in a block. If the divergence is deemed too high by the
user, it is recommended to reduce b.

To investigate this complex interplay between k and b and its
relationship to sequence divergence, we used simulations
(Supplementary Note 2) to measure recall (Supplementary Fig. 4)
and precision (Supplementary Fig. 5) under various combina-
tions. As predicted, recall increases with decreasing k and with
increasing b, and precision decreases with increasing b. We note
though that the precision varies only a little and remains high.
Based on these analyses, we recommend two values of k for
practical usage. For less complex organisms (e.g., bacteria), we
recommend k= 15, since it yields the highest recall. This value is
impractical for complex organisms (e.g., mammals) due to
runtime, so we recommend setting k= 25 in those cases as it
provides a reasonable trade-off between accuracy and required
computational resources (we used this for our mice datasets). For
the value of b, we observed that increasing b lowers the precision
at only higher values. Hence, we recommend b= 200 as the
default in all cases, as it led to high recall across all tested ranges
of k on our simulated data without lowering precision.

To test the level of divergence which SibeliaZ-LCB can tolerate,
we took the default values of k= 15 or 25 and b= 200 and
plotted the precision vs. recall curve as a function of the root-to-
leaf divergence of the dataset (Supplementary Fig. 6). We see that
for k= 25 the recall deteriorates significantly for datasets having a
root-to-leaf evolutionary distance of more than 0.09 substitutions
per site. Based on this, we recommend that for large datasets
SibeliaZ-LCB be only used for detecting homologs with an
evolutionary distance to the MRCA of at most 0.09 substitutions
per site.
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Fig. 4 Recall of nucleotide pairs from homologous genes on the 1-2 and 1-4 mouse datasets. Panels show recall of orthologous (a) and paralogous (b)
nucleotide pairs binned according to the nucleotide identity of their respective genes in the annotation. Recall of paralogs by Cactus is not shown (see text).

Table 4 Recall and precision of the alignments computed by
Cactus and SibeliaZ on the “primates” dataset from the
Alignathon.

Program Recall Precision

SibeliaZ 0.95 0.92
Cactus 0.98 0.95
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The other two parameters that can affect SibeliaZ-LCB’s
performance are the minimum size of a locally collinear block m
and the abundance pruning parameter a. These parameters
should be set according to the type of data and its intended use.
The parameter m controls the fragmentation of the alignment
and the coverage—higher m results in longer blocks spanning less
of the genomes, since short blocks are not reported. We
recommend the parameter m to be set to the length of the
shortest homologous sequence of interest to the downstream
analysis. We set m= 50 as a default, since this is smaller than
93.1% of the known mice exons38 and, more generally, we do not
expect most applications to be interested in much blocks shorter
than 50 nt. In the case that a user is interested in larger
homologous units, they can increase m together with b.
Alternatively, they can use either synteny block generation or
alignment chaining algorithms for post-processing the alignments
produced by SibeliaZ (see Supplementary Note 3 for relevant
references).

The abundance pruning parameter a is a filtering parameter for
k-mers whose abundance is above a. Such k-mers are still
considered by SibeliaZ-LCB, but to a smaller extent, resulting in
reduced recall in regions with such k-mers. We recommend
setting a as high as the compute resources allow, keeping in mind
that homologous blocks with multiplicity higher than a are
possibly not going to be captured. For the mice dataset, we used
a= 150.

Discussion
In this paper, we presented a whole-genome alignment pipeline
SibeliaZ based on an algorithm for identifying locally collinear
blocks. The algorithm analyses the compacted de Bruijn graph
and jointly reconstructs the path corresponding to a collinear
block and identifies the induced collinear walks. We assume that
the collinear walks share many vertices with this carrying path
and form chains of bubbles. Each carrying path and the induced
block is found greedily, using a scoring function that measures
how close it is to all the sequences in the block. We then globally
align the collinear blocks to generate the whole-genome
alignment.

SibeliaZ builds on the ideas laid down in DRIMM-Synteny22

and Sibelia23 that used variants of the de Bruijn graphs for finding
synteny blocks (we elaborate on the connection between the
whole genome alignment and synteny reconstruction in Supple-
mentary Note 3). Sibelia did not scale beyond bacterial genomes
due to its slow graph construction algorithm and the fact that it
continuously had to modify the graph. TwoPaCo27 addressed the
former issue and we use it as a standalone module in SibeliaZ.
The latter issue was addressed in this paper by SibeliaZ-LCB,
which achieves its speed in part because it keeps the underlying
graph static.

The main strength of our approach is speed—we achieve
drastic speedups compared to the state-of-the-art Progressive
Cactus aligner34 while retaining comparable accuracy. Using a
single machine, on 16 mice genomes, SibeliaZ runs in under 16 h,
while Progressive Cactus is not able to complete for even 8 mice
genomes, within seven days. We note that it is possible for Cactus
to construct larger alignments by utilizing a distributed computer
cluster34. In our study, we concentrated on improving the scal-
ability of the whole-genome alignment when only a single
machine is available. In the future, we hope to develop a version
of SibeliaZ that will work in the distributed setting as well.
Overall, SibeliaZ is the only tool available that can scale to many
long, closely related genomes on a single machine.

The biggest limitation of our approach is the limited tolerance
to the divergence of input sequences. As suggested by the results

on simulated bacterial data, SibeliaZ works best for aligning
genomes having an evolutionary distance to the MRCA of at most
0.09 substitutions per site. Aligning more divergent genomes with
SibeliaZ is still possible but it will result in the smaller recall; for
such datasets, Cactus remains a better option. In the future, we
hope to address this limitation by employing techniques like
postprocessing of the output with more sensitive homology
finders.

If the alignments themselves are not needed, SibeliaZ-LCB can
be run alone (without spoa) to construct the collinear blocks. This
is most useful in applications stemming from studies of genome
rearrangements, which can be applied to study breakpoint
reuse39, ancestral genome reconstruction40 and phylogenies41.
Locally collinear blocks are also a required input for scaffolding
tools using multiple references genomes42–46. For such applica-
tions, the output of SibeliaZ-LCB can be used either directly or
after postprocessing by a synteny block generator22,47.

There are several remaining open questions of interest. A
formal analysis of SibeliaZ-LCB’s runtime is relevant, but doing it
in a useful way is a challenge. The worst-case running time does
not reflect the actual one; moreover, we observed that the actual
one depends on multi-thread synchronization, which is challen-
ging to model. However, it would be interesting if such a time
analysis can be performed parametrized by the crucial properties
of the structure of the input. We also did not investigate how
close to an optimal solution our greedy heuristic gets. One way to
do this would be to find an optimal carrying path using
exhaustive enumeration, but the search space even for a small
realistic example is too big. We suspect that a polynomial time-
optimal solution is not possible, but the computational com-
plexity of our problem is open.

SibeliaZ is the first multiple whole-genome aligners that can
run on a single machine in a reasonable time on a dataset such as
the 16 mouse genomes analyzed in this paper. With ongoing
initiatives like the Vertebrate Genomes Project and the insect5k,
thousands of species will soon have a reference genome available,
and the sequencing and assembly of various subspecies and
strains will be the next logical step for many comparative geno-
mics studies. For example48, currently holds 18 assembled maize
genomes, with more to come in the recent future. Similarly, the
Solanaceae Genomics Network has recently released the genomes
of 13 diverse tomato accessions (https://solgenomics.net/projects/
tomato13/). Analysis of such datasets is likely to be carried out in
single-lab settings with limited compute resources, rather than at
large computing centers like EMBL or NCBI. SibeliaZ makes a
significant leap toward enabling such studies.

Methods
Preliminaries. First, we will define the de Bruijn graph and related objects. Given a
positive integer k and a string s, we define a multigraph G(s, k) as the de Bruijn
graph of s. The vertex set consists of all substrings of s of length k, called k-mers.
For each substring x of length k+ 1 in s, we add a directed edge from u to v, where
u is the prefix of x of length k and v the suffix of x of length k.

Each occurrence of a (k+ 1)-mer yields a unique edge, and every edge
corresponds to a unique location in the input. Two edges are parallel if they are
oriented in the same direction and have the same endpoints. Note that two edges
are parallel if and only if they were generated by the same (k+ 1)-mer. This way,
we use the notion of parallel edges to refer to a set of identical (k+ 1)-mers in the
input strings. Parallel edges are not considered identical. The de Bruijn graph can
also be constructed from a set of sequences S= {s1, …, sn}. This graph is the union
of the graphs constructed from the individual strings: G(S, k)=⋃1≤i≤nG(si, k). See
Fig. 1 for an example.

The set of all edges in a graph G is denoted by E(G). We write (u, v) to denote
an edge from vertex u to v. A walkp is a sequence of edges
((v1, v2), (v2, v3), …, (v∣p∣−1, v∣p∣)) where each edge (vi, vi+1) belongs to E(G). The
length of the walk p, denoted by ∣p∣, is the number of edges it contains. The last
edge of a walk p is denoted by the end(p). A path is a walk that visits each vertex at
most once.

In a de Bruijn graph, a given edge x was generated by a (k+ 1)-mer starting at
some position j of some string si. To retrieve the position j of the (k+ 1)-mer that
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generated edge x, we define function pos(x)= j. We use the function pos to map
edges of the graph back to positions of the k-mers that generated them. For an edge
x, its successor, denoted by next(x), is an edge y such that both x and y are
generated by the same string and pos(y)= pos(x)+ 1. Note that a successor does
not always exist.

A walk p= (x1, …, x∣p∣) is genomic if next(xi)= xi+1 for 1 ≤ i ≤ ∣p∣− 1. In other
words, a walk is genomic if it was generated by a substring in the input. The b-
extension of a genomic walk p is the longest genomic walk q= (y1, …, y∣q∣) such
that y1= next(end(p)) and ∣q∣ ≤ b. The b-extension of a walk p is uniquely defined
and usually has length b, unless p was generated by a substring close to an end of an
input string. Intuitively, b-extension defines edges lying ahead of a walk. As our
algorithm works in the seed-and-extend manner, we later use b-extensions to find
the most appropriate extension of the current block. The concatenation of two
walks x and y is a walk (if it exists) xy consisting of edges of x followed by edges of
y. We use the concatenation operation to extend the genomic walks constituting
locally collinear blocks using appropriate b-extensions.

Problem formulation. In this section, we will define the collinear block recon-
struction problem in de Bruijn graphs. A collinear block is a set of edge-disjoint
genomic walks with length at least m, where m is a parameter. We call walks
constituting a collinear block collinear walks. In order to quantify how well colli-
near walks correspond to homologous sequences, we will define a collinearity score
of a collinear block. Our problem will then be to find a set of collinear blocks that
are pairwise edge-disjoint and have the largest score.

We capture the pattern of two homologous collinear walks through the concept
of chains and bubbles. A bubble is a subgraph corresponding to a possible mutation
flanked by equal sequences. Formally, a pair of walks x and y form a bubble (x, y) if
all of the following holds: (1) x and y have common starting and ending vertices;
(2) x and y have no common vertices except the starting and ending ones; and (3)
∣x∣ ≤ b and ∣y∣ ≤ b, where b is a parameter. A chain c= ((x1, y1), (x2, y2), …, (xn, yn))
is a sequence of bubbles such that x= x1x2…xn and y= y1y2…yn are walks in a de
Bruijn graph. In other words, a chain is a series of bubbles where each bubble is a
proper continuation of the previous one. Note that two parallel edges form a
bubble and a chain arising from equal sequences corresponds to a series of such
bubbles. This way, a chain models a pair of sequences that potentially have point
mutations and indels. For an example of a bubble and a chain, see Fig. 1.

The subgraph resulting from more than two collinear walks can be complex,
and there are several ways of capturing it. We note that there are previous studies
generalizing the idea of bubbles, see49–53, mostly in the context of analyzing
assembly graphs. We decided to follow a different approach designed specifically
for capturing locally collinear blocks.

Our approach is to give a definition that naturally leads itself to an algorithm.
As homologous sequences all originate from some common ancestral sequence sa,
they should have many common k-mers and there should be a path pa=G(sa, k)
through the graph forming a long chain with each walk p in the collinear block. We
call such a path a carrying one. We require the chains to be longer than m to avoid
confusing spuriously similar sequences with true homologs. At the same time, a
collinear walk may only partially form a chain with the carrying path, leaving
hanging ends at the ends of the carrying path, which is undesirable since it implies
that these graphs originate from dissimilar sequences. We note that compared to
the previous work on chaining anchors18–20 our definition of the block will be
more relaxed. Namely, we will not require common k-mers to be present in all
copies of a block. In addition, many alignment methods use phylogenetic
information for scoring purposes. We decided to not use it since our method
targets closely related sequences, such as strains of the same species, where the
phylogeny is often unknown.

We formalize this intuition by introducing a scoring function quantifying how
well a carrying path describes a collection of the collinear walks. The function
rewards long chains formed by the carrying path and a collinear walk and penalizes
the hanging ends. Given a carrying path pa and a genomic walk p, let q2 be the
longest subpath of pa that forms a chain with p. Then, we can write pa= q1q2q3.
Recall that m is the parameter denoting the minimum length of a collinear block,
and b is the maximum bubble size We define the score f(pa, p) as

f ðpa; pÞ ¼
0; if jpj<m

jpj � ðjq1j þ jq3jÞ2; if jpj ≥ m and jq1j; jq3j ≤ b

�1; if jpj ≥ m and ðjq1j> b or jq3j> bÞ

8><
>:

: ð1Þ

The third case forbids walks (i.e., gives them a score of −∞) where the hanging
ends are too long, and the first case ignores walks (i.e., gives them a score of 0) that
weave through pa but are too short. The second case gives a score that is
proportional to the length of the part of pa that forms a chain with p. At the same
time, it reduces the score if the collinear walks leave hanging ends q1 and q3—the
parts of pa not participating in the chain. The penalty induced by these ends is
squared to remove spuriously similar sequences from from the collinear block. This
form of scoring function was chosen because it performed well during the initial
stages of development. We do not penalize for the discrepancy between p and q2 for
the sake of simplicity of the scoring function and avoiding extra computation
needed to calculate it. Figure 5 shows an example of computing the score.

The collinearity score of a collinear block is given by

f ðPÞ ¼ max
pa

X
p2P

f ðpa; pÞ; ð2Þ

where pa can be any path (not necessarily genomic). In other words, we are looking
for a path forming longest chains with the collinear walks and thus maximizes the
score. The collinear blocks reconstruction problem is to find a set of collinear blocks
P such that

P
P2P f ðPÞ is maximum and no two walks in P share an edge. Note that

the number of collinear blocks is not known in advance. For an example of a complex
collinear block in the de Bruijn graph and a carrying path capturing it, refer to Fig. 1b.

The collinear blocks reconstruction algorithm. Our algorithm’s main pseudo-
code is shown in Box 1 and its helper function in Box 2. First, we describe the high-
level strategy. The main algorithm is greedy and works in the seed-and-extend
fashion. It starts with an arbitrary edge in the graph and tries to extend it into a
carrying path that induces a collinear block with the highest possible collinearity
score Pbest. If the block has a positive score, then Pbest is added to our collection of
collinear blocks P. The algorithm then repeats, attempting to build a collinear
block from a different edge seed. New collinear blocks cannot use edges belonging
to previously discovered collinear blocks. This process continues until all possible
edges are considered as seeds. The algorithm is greedy in the sense that once a
block is found and added to P, it cannot be later changed to form a more optimal
global solution.

To extend a seed into a collinear block P, we first initialize the collinear block with
a walk for each unused edge parallel to the seed (including the seed) (lines 7 and 8).
These parallel edges represent the different occurrences of the seed string in the input
and, hence, form the initial collinear block. We then proceed in phases, where each
phase is an iteration of the while loop (lines 9–19). During each phase, the carrying
path pa is extended using a walk r of length at most b (lines 10–14). Next, we try to
extend each of the collinear walks in a way that forms chains with the extended pa
(lines 15–19). The extension of a seed into a collinear block is also a greedy process
since we only change pa and the walks in P by extending them and never by changing
any edges. Finally, we check that the collinearity score for our extended block is still
positive—if it is, we iterate to extend it further, otherwise, we abandon our attempts at
further extending the block. We then recall the highest-scoring block that was
achieved for this seed and save it into our final result P (lines 20–22).

To pick the walk r by which to extend pa, we use a greedy heuristic (lines
10–14). First, we pick the vertex t which we want to extend to reach (lines 10–12).
We limit our search to those vertices that can be reached by a genomic walk from
the end of pa and greedily chose the one that is most often visited by the b-
extensions of the collinear walks in P. Intuitively, we hope to maximize the number
of collinear walks that will form longer chains with pa after its extension and
thereby boost the collinearity score. We then extend pa using the shortest b-
extension of the walks in P to reach t. We chose this particular heuristic because it
showed superior performance compared to other possible strategies.

Once we have selected the genomic walk r by which to extend pa, we must select
the extensions to our collinear walks P that will form chains with par. This is done
by the function Update-collinear-blocks (Box 2). We extend the walks to match r
by considering the vertices of r consecutively, one at a time. To extend to a vertex
w, we consider all the different locations of w in the input (each such location is
represented by an edge x ending at w). For each location, we check if it can be
reached by a b-extension from an existing p∈ P. If yes, then we extend p, so as to
lengthen the chain that it forms with pa. If there are multiple collinear walks that
reach w, we take the nearest one. If no, then we start a new collinear walk using just
x. Figure 6 shows an example of updating a collinear walk and Fig. 2 shows a full
run of the algorithm for a single seed.

Our description here only considers extending the initial seed to the right, i.e.,
using out-going edges in the graph. However, we also run the procedure to extend
the initial seed to the left, using the incoming edges. The case is symmetric and we,
therefore, omit the details.

Other considerations. For simplicity of presentation, we have described the
algorithm in terms of the ordinary de Bruijn graph; however, it is crucial for

q1
q2

p

q3

Fig. 5 An example of computing the score of a walk p (solid) relative to a
carrying path pa= q1q2q3 (dashed). The path p forms a chain with the
subpath q2 of pa, while subpaths q1 and q3 form hanging ends. We count the
length of p and subtract lengths of the hanging ends. Thus, the score
f(pa, p)= 4− (1+ 1)2= 0.
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running time and memory usage that the graph is compacted first. Informally, the
compacted de Bruijn graph replaces each non-branching path with a single edge.
Formally, the vertex set of the compacted graph consists of vertices of the regular
de Bruijn graph that have at least two outgoing (or ingoing) edges pointing at
(incoming from) different vertices. Such vertices are called junctions. Let ℓ=
v1, …, vn be the list of k-mers corresponding to junctions, in the order, they appear
in the underlying string s. The edge set of the compacted graph consists of edges
{v1→ v2, v2→ v3, …, vn−1→ vn}. We efficiently construct the compacted graph
using our previously published algorithm TwoPaCo27.

This transformation maintains all the information while greatly reducing the
number of edges and vertices in the graph. This makes the data structures smaller
and allows the algorithm to fast-forward through non-branching paths, instead of
considering each (k+ 1)-mer one by one. Our previous description of the
algorithm remains valid, except that the data structures operate with vertices and
edges from the compacted graph instead of the ordinary one. The only necessary
change is that when we look for an edge y parallel to x, we must also check that y
and x spell the same sequence. This is always true in an ordinary graph but not
necessarily in a compacted graph.

An important challenge of mammalian genomes is that they contain high-
frequency (k+ 1)-mers, which can clog up our data structures. To handle this, we
modify the algorithm by skipping over any junctions that correspond to k-mers
occurring more than a times; we call a the abundance pruning parameter.
Specifically, prior to constructing the edge set of the compacted de Bruijn graph, we
remove all high abundance junctions from the vertex set. The edge set is
constructed as before, but using this restricted list of junctions as the starting point.
This strategy offers a way to handle high-frequency repeats at the expense of
limiting our ability to detect homologous blocks that occur more than a times.

The organization of our data in memory is instrumental to achieving high
performance. To represent the graph, we use a standard adjacency list
representation, annotated with position information, and other relevant data. We
also maintain a list of the junctions in the paragraph above in the order they appear
in the input sequences, thereby supporting next() queries. The walks in the
collinear block P are stored as a dynamic sorted set, implemented as a binary search
tree. The search key is the genome/position for the end of each walk. This allows
performing a binary search in line 2 of Algorithm Update-collinear-walks.

Another aspect that we have ignored up until now is that DNA is double-
stranded and collinear walks can be reverse-complements of each other. If s is a

Box 2 | Update-collinear-walks

Input: A sorted set of collinear walks P, a vertex w
Output: Updated set P
1: for edges x ∈ E(G) ending at w not marked as used do
2: Let p ∈ P be a walk such that its b-extension q contains x and pos(end(p)) is maximized ⊳ Find a walk extendable with x
3: if such p exists then
4: Truncate q so that end(q) = x
5: Append p with q ⊳ Lengthen the chain that p forms with pa
6: else
7: Add a new walk consisting of the edge x to P
8: return P

w0 w

qp

pa

x

Fig. 6 Illustration for Algorithm Update-collinear-walks (Box 2). A
collinear walk p (solid) requires an update after the carrying path pa is
extended with the dashed edge (w0, w). The path pa now ends at the vertex
w, which has another incoming edge x. Since x is a part of the b-extension of
p (denoted by q), p can be appended with q to form a longer chain and
boost the collinearity score.

Box 1 | Algorithm Find-collinear-blocks

Input: strings S, integers k, b and m
Output: a set of edge-disjoint subgraphs of G(S, k) representing collinear blocks
1: P ; ⊳ Collinear blocks
2: G ← G(S, k) ⊳ Construct the multigraph
3: for all distinct pairs (u, v) ∈ E(G) do ⊳ Check possible seeds
4: Initialize the current-carrying path pa with (u, v)
5: P ; ⊳ Sorted set of collinear walks forming chains with pa
6: Pbest  ; ⊳ Highest-scoring collinear block induced by pa
7: for edges x ∈ E(G) parallel to (u, v) not marked as used do
8: Add to P a new collinear walk consisting of x
9: while f(P) ≥ 0 do ⊳ Extend the carrying path as far as possible
10: Q ← {q ∣ q is the b − extension of a p ∈ P}
11: w0 ← last vertex in pa
12: t ← a vertex, reachable from w0 via a genomic walk, that is visited by the most walks of Q.
13: Let r ∈ Q be the shortest walk from w0 to t
14: Denote the vertices of r as w0, w1, …, w∣r∣, with w∣r∣ = t
15: for i ← 1 to ∣r∣ do
16: Append (wi−1, wi) to the carrying path pa
17: P ← Update-collinear-walks(P, wi)
18: if f(P) > f(Pbest) then
19: Pbest ← P
20: if f(Pbest) > 0 then
21: P P ∪ fPbestg
22: Mark edges visited by walks of Pbest as used
23: return P
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string, then let s be its reverse complement. We handle double strandedness in a
natural way by using the comprehensive de Bruijn graph, which is defined as
Gcompðs; kÞ ¼ Gðs; kÞ∪Gðs; kÞ27. Our algorithm and corresponding data structures
can be modified to work with the comprehensive graph with a few minor changes
which we omit here.

Our implementation is parallelized by exploring multiple seeds simultaneously,
i.e., parallelizing the for a loop at line 3 of Algorithm Find-collinear-blocks. This loop
is not embarrassingly parallelizable, since two threads can start exploring two seeds
belonging to the same carrying path. In such a case, there will be a collision on the
data structure used to store used marks. To address this issue, we process the seeds in
batches of fixed size. All the seeds within a batch are explored in parallel and the
results are saved without modifying the “used” marks. Once the batch is processed, a
single arbiter thread checks if there is any overlap in the used marks of the different
threads. If there is, it identifies the sources of the conflict and reruns the algorithm at
the conflicting seeds serially. Since most seeds do not yield valid carrying paths, such
conflicts are rare. Once there is no conflict, the arbiter updates the used main data
structures with the results of the batch. This design allows the computation result to
be deterministic and independent of the number of threads used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Table 1 contains the list of GenBank accession numbers of the mice genomes we used in
our experiments (Figs. 3 and 4, Supplementary Figs. 1–3). The nine simulated datasets we
generated (Supplementary Figs. 4–6), ground-truth alignments for the mouse data
(Fig. 4, Supplementary Figs. 1–3), and alignments produced by SibeliaZ and Progressive
Cactus (Fig. 4, Supplementary Figs. 2 and 3) are available for download at https://github.
com/medvedevgroup/SibeliaZ/blob/master/DATA.txt.

Code availability
Our tool is open source and freely available at https://github.com/medvedevgroup/
SibeliaZ.
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