Skip to main content
. 2020 Nov 27;8:562677. doi: 10.3389/fbioe.2020.562677

TABLE 1.

Performance for four different classifiers with optimized hyperparameters.

Dataset Classifiers AUC MCC F1 Cohen’s kappa Balanced Accuracy Accuracy Sensitivity Specificity
Training DNN 0.802 0.497 0.809 0.493 0.741 0.761 0.851 0.630
KNN 0.762 0.441 0.789 0.436 0.713 0.735 0.834 0.591
SVM 0.778 0.478 0.805 0.472 0.729 0.753 0.856 0.602
RF 0.771 0.549 0.837 0.491 0.727 0.774 0.977 0.476
IV DNN 0.798 0.458 0.795 0.453 0.721 0.743 0.839 0.603
KNN 0.764 0.409 0.778 0.405 0.698 0.721 0.821 0.574
SVM 0.777 0.455 0.804 0.438 0.709 0.743 0.888 0.529
RF 0.747 0.502 0.824 0.436 0.700 0.752 0.975 0.424

The best performance values among the classifiers.