TABLE 1.
Dataset | Classifiers | AUC | MCC | F1 | Cohen’s kappa | Balanced Accuracy | Accuracy | Sensitivity | Specificity |
Training | DNN | 0.802 | 0.497 | 0.809 | 0.493 | 0.741 | 0.761 | 0.851 | 0.630 |
KNN | 0.762 | 0.441 | 0.789 | 0.436 | 0.713 | 0.735 | 0.834 | 0.591 | |
SVM | 0.778 | 0.478 | 0.805 | 0.472 | 0.729 | 0.753 | 0.856 | 0.602 | |
RF | 0.771 | 0.549 | 0.837 | 0.491 | 0.727 | 0.774 | 0.977 | 0.476 | |
IV | DNN | 0.798 | 0.458 | 0.795 | 0.453 | 0.721 | 0.743 | 0.839 | 0.603 |
KNN | 0.764 | 0.409 | 0.778 | 0.405 | 0.698 | 0.721 | 0.821 | 0.574 | |
SVM | 0.777 | 0.455 | 0.804 | 0.438 | 0.709 | 0.743 | 0.888 | 0.529 | |
RF | 0.747 | 0.502 | 0.824 | 0.436 | 0.700 | 0.752 | 0.975 | 0.424 |
The best performance values among the classifiers.