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Abstract
Several neuroimaging processing applications consider skull stripping as a crucial pre-processing step. Due to complex anatom-
ical brain structure and intensity variations in brain magnetic resonance imaging (MRI), an appropriate skull stripping is an
important part. The process of skull stripping basically deals with the removal of the skull region for clinical analysis in brain
segmentation tasks, and its accuracy and efficiency are quite crucial for diagnostic purposes. It requires more accurate and
detailed methods for differentiating brain regions and the skull regions and is considered as a challenging task. This paper is
focused on the transition of the conventional to the machine- and deep-learning-based automated skull stripping methods for
brain MRI images. It is observed in this study that deep learning approaches have outperformed conventional and machine
learning techniques in many ways, but they have their limitations. It also includes the comparative analysis of the current state-of-
the-art skull stripping methods, a critical discussion of some challenges, model of quantifying parameters, and future work
directions.
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Introduction

Magnetic resonance imaging (MRI) is considered as one of
the preferred medical imaging modalities and have some ad-
vantages over X-rays and computed tomography (CT) scans,
because of its non-invasive and non-ionization property. MRI
has been used extensively in neuroimaging due to its capabil-
ities of producing accurate brain scans with different contrasts
like T1-weighted, T2-weighed, and FLAIR images [1] (see
Fig. 1). MR images with different contrasts produce various
intensity levels. MRI scans brain in different orientations, i.e.,
axial plane, coronal plane, and sagittal plane as shown in
Fig. 2 providing high-resolution images with enhanced soft

tissue contrast [1–4]. The brain MRI provides more detailed
pictures as compared to other imaging modalities [5].

Brain extraction is a significant but challenging task in
medical image processing [6, 7]. Brain extraction or skull
stripping removes the non-cerebral tissues such as skull,
dura, and scalp from brain images [8, 9]. Because of com-
plex brain anatomy, brain segmentation cannot be solved
efficiently using conventional image processing tech-
niques. In the human body, the brain is considered as the
most complex structure, so, the extraction of the brain is
quite a challenging task and obtained a lot of attention
because a proper diagnosis of brain disorders majorly de-
pends upon accurate brain segmentation [10, 11]. The pro-
cess of precise identification of brain regions plays a vital
role in pathology, such as tissue segmentation, extraction,
and multi-modality brain image registration.

Skull stripping is considered as one of the critical pre-
processing step that ensures a desirable segmentation and
helps in precise diagnosis of brain diseases. Skull stripping
also minimizes the probability of misclassification of brain
tissues during segmentation and abnormal tissues in the brain

* Basit Raza
basit.raza@comsats.edu.pk

1 Medical Imaging and Diagnostics (MID) Lab, National Centre of
Artificial Intelligence (NCAI), Department of Computer Science,
COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan

Journal of Digital Imaging (2020) 33:1443–1464
https://doi.org/10.1007/s10278-020-00367-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-020-00367-5&domain=pdf
http://orcid.org/0000-0001-6711-2363
mailto:basit.raza@comsats.edu.pk


[12, 13]. Accurate brain extraction enhances the possibility of
auto-detection of many neuro disorders such as Parkinson’s
disease, dementia, and schizophrenia. The main idea of skull
stripping is that it removes the non-brain tissue-like dura mat-
ter, exterior blood vessels, eyes, fats, muscles, and skull and is
left only with brain region. These non-brain tissues increase
the computational efficiency of various neuroimaging
algorithms.

Manual brain segmentation is considered as an underlying
skull stripping approach and performed by radiologists who
may outline brain region manually. Still, like other manual
approaches, it is prone to error and time complexity. So, the
need of autotomized brain extraction methods arises. In liter-
ature, innumerable skull stripping algorithms have been de-
fined. Many studies are being performed on the available
skull stripping procedures, and their performance is analyzed
on publicly available standard research datasets. It involves
excluding extra-meningeal tissues from brain MR images;
therefore, it is necessary to have some robust methods that
classify the skull and clearly. Skull stripping techniques are
classified as manual, semi-automated, and automated tech-
niques. The particular paper provides a comprehensive re-
view of the skull stripping methods that already exist, includ-
ing conventional and some latest deep- and machine-
learning-based skill stripping techniques. Figure 3 depicts
the organization of the paper in detail.

The rest of the survey paper is organized as follows:
the research methodology is given in “Research
Methodology.” “Skull Stripping Methods” is about the
skull stripping methods. “Conventional Skull Stripping
Methods” gives the comprehensive literature review of
conventional skull stripping methods. Machine learning
skull stripping methods are discussed in “Machine-
Learning-Based Skull Stripping Methods.” Deep learning
skull stripping methods are discussed in “Deep Learning
Skull Stripping.” Comparative study of the conventional,
machine, and deep learning methods is discussed in
“Comparative Analysis of Skull Stripping Algorithms.”
“Model of Quantitative Analysis Measures Based on
Skull Stripping Methods” is about the model of quantita-
tive analysis measures based on skull stripping methods.
“Conclusion and Future Work” draws the conclusion and
future work.

Research Methodology

The methodology conducted for the survey is to find the most
important and latest literature on skull stripping techniques
that are based on traditional, machine, and deep learning tech-
niques in recent years majorly from 2000 to 2019. All findings
for research papers and articles have been done based on

Fig. 2 MRI Brain images in
multiple planes: a axial plane, b
coronal plane, and c sagittal plane

Fig. 1 Brain MRI scan with
various contrasts: a T1-weighted
image, b T2-weighted image, and
c FLAIR image
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IEEE, ScienceDirect, PubMed, and Google Scholar for the
target years to July 2019. In this specific domain of skull
stripping methods, almost 200 papers were found with the
keywords: (1) skull stripping techniques, methods, and algo-
rithms based on conventional, machine learning, and deep
learning approaches; (2) different classification of skull strip-
ping techniques; (3) MR image skull stripping; (4) brain ex-
traction methods; and (5) skull removal.

After collecting a vast literature based on the above key-
words, the main task was to decide which paper to consider
and which not to. For this purpose, all the abstracts, conclu-
sions, and referred papers were studied in detail and the most
relevant and important ones were made part of this survey.
Skull stripping being a pre-processing step in various neuro-
imaging tasks, it is treated as such in much of literature where
it forms part of the pre-processing section. However, this

survey is focused on research papers that specifically deal with
skull stripping methods.

Figure 4 shows a bar graph that indicates the number of
research papers on skull stripping based on conventional, ma-
chine learning, and deep learning from the year 2000–2019.
With the advancement and robustness in deep learning
methods since 2016, interest in automated skull stripping
around the globe has increased. For that reason, this survey
has focused on the deep-learning-based skull stripping
methods for the period 2016–2019.

Skull Stripping Methods

Skull stripping is classified into different categories, such as
manual, semi-automated, and automated methods. This

Fig. 3 It illustrates the
organization of the paper based
on skull stripping
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section will give a detailed discussion on numerous automated
skull stripping techniques used as automated and intelligent
techniques that facilitate and expedite the entire process of
extracting accurate diagnostic information from brainMRvol-
umes. In this survey, the approaches developed for skull strip-
ping or brain MRI extraction have been divided into three
major categories: (1) conventional skull stripping approaches,
(2) machine-learning-based skull stripping approaches, and
(3) deep-learning-based skull stripping approaches.
Following Fig. 5 shows the transition of the conventional to
the machine- and deep-learning-based automated skull strip-
ping methods for brain MRI images.

The methods of conventional skull stripping are further
classified into five major models. These five classes are also
found in the existing literature [13] but here particularly
placed under the conventional methods. (1) deformable
surface–based skull stripping methods, (2) mathematical
morphology–based skull stripping methods, (3) intensity-
based skull stripping methods, (4) template-based skull strip-
ping methods, and (5) hybrid based skull stripping methods.
Figure 6 below describes the classification of conventional
skull stripping methods into five major groups, described in
detail below. It is based on the groupings generally found in
the literature.

Deformable Surface–Based Skull Stripping Methods

These methods evolve and deform an active contour that fits
in brain surface. They are based on the image gradient that
finds the position of brain surface and is modeled by active
contours. They work by defining a surface based model that
iteratively deformed to fit the brain’s surface of the image

from its initial position until a best-fit solution is obtained
[14]. In general, for brain extraction, the segmentation and
performance of deformable models are better than the thresh-
old and edge-based approaches but seem to decrease due to
noise [15]. The working accuracy of these models depend
upon the exact designing of the guiding forces like as geomet-
ric and statistical as well as model initialization.

Mathematical Morphology–Based Skull Stripping
Methods

Morphology-based methods are one of the automatic skull
stripping techniques that work through thresholding and mor-
phological erosion and dilation operations in series. These
methods are mathematical morphological operations and edge
detection based and are capable of accurate brain extraction
from a normal brain MR image. At the boundary of the brain,
if tumors are located, which has different intensity with nor-
mal tissues, while detecting the brain boundary, few unwanted
edges appear. One of the pitfalls is that they are parameter
dependent such as edge constant, diffusion iteration, diffusion,
and erosion size. Such parameters are sensitive to slight
changes in the data [16]. Appropriate experimentation can
handle these parameters as they have a significant impact on
the final results [17].

Intensity-Based Skull Stripping Methods

Intensity-based skull stripping approaches work on modeling
intensity distributions of brain MR images used for threshold
classification. In brain scans it separates the brain and non-
brain parts by image pixel intensities. Classification based on
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Skull Stripping Papers from 2000-2019Fig. 4 The chart illustrates the
publication of articles on skull
stripping based on conventional,
machine-, and deep-learning-
based methods included in this
survey for the period 2000–2019
[1–128]
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Learning based 
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Fig. 5 Categorization of skull
stripping methods into
conventional, machine-learning,
and deep-learning-based skull
stripping methods
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intensity includes methods like histogram, edge detection, and
region growing methods. These approaches are based on
probabilistic models where an intensity distribution model is
used for classification of the brain tissue. These techniques
have the disadvantage of significant sensitivity to intensity
fluctuations in brain MR images.

Template-Based Skull Stripping Methods

Template- or atlas-based approaches of skull striping rely on
template or atlas on MRI of brain to separate them from non-
brain tissues [18, 19]. Creating an initial approximation for the
brain mask, the brain mask boundary is segmented again by a
classifier, which enhances the final result accuracy. These
methods vary in using number of templates to distinguish
between the brain regions and also applications of these
atlases. An atlas of brainis a series of section along different
anatomical planes of both the healthy or diseased developing
brain; a number of coordinates are assigned to every brain
structure to define its outline or volume. They are robust,
stable in various conditions, and have high accuracy [20].
The limitation of template-based method is the time required
for construction of an atlas wherever iterative procedure is
also incorporated in it [21].

Hybrid-Based Skull Stripping Methods

Hybrid, as the name implies, is the combination of more than
one method from previously existing skull stripping methods.

As the conventional methods include the most frequent-
ly and popularly used skull stripping approaches. These
methods generally based on the traditional image process-
ing techniques. The above mentioned categories of skull
stripping methods are mentioned and discussed in conven-
tional techniques. Artificial intelligence (AI) is bringing a

revolution in every field and especially in the medical do-
main. Machine and deep learning methods are of mere
importance in case of automation of skull stripping tech-
niques [7, 10]. Machine learning has a great potential for
improving clinical diagnostics, prognostics, and decision-
making in brain extraction and medical imaging. There are
some challenges that must be considered for successful
implementation. Advances in CNN deep learning architec-
tures have contributed more for brain extraction methods.
The predicted brain masks quality have been improved by
using deep neural network as compared to machine learn-
ings [7, 10]. However, from a training dataset, which con-
sists of a collection of normal or apparently normal) brain
MRI scans, such scans available commonly as compared to
the brain scans with some pathological disorders, deep net-
works have more focus on learning image features. Thus,
the performance of deep models is more sensitive to un-
seen pathological tissues. Figure 7 given below shows the
classification and techniques of skull stripping discussed in
this paper.

Conventional Skull Stripping Methods

Conventional skull stripping approaches refers to the tradi-
tional or frequently used ways of achieving skull stripping.
This section includes the literature of conventional image pro-
cessing methods and most frequently used skull stripping
methods.

Deformable Surface–Based Skull Stripping Methods

The level set approach is a segmentation tool for images
and is generally suitable for the 3D brain MR images seg-
mentation. The level set methods have the ability to

Conven�onal Skull 
Stripping Methods

Surface Based 

Morphology 
Based

Intensity Based

Hybrid based

Template Based  

Label Fusion with 
Atlas-Based 

Non-Local Patch 
Based

Fig. 6 The classification of
conventional skull stripping
methods into five major groups
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incorporate image-based constraints, handle complex to-
pologies, and make the computation of geometrical prop-
erties easier like mean curvature. Baillard et al. [22] sug-
gested a brain segmentation method from volumetric MRI
using 3Dregistration and segmentation processes. It
registered data of brain to a template and than from that
template brain surface is used as an initial contour.
Afterwards, the level set–based equation method finalizes
the process of segmentation. The coupling of registration
and segmentation processes enhance method quality, since
the segmentation is faster, automatic, and reliable.

Brain Extraction Technique (BET), introduced by Smith
et al. [23], is a deformable model approach that fits the brain
surface by application of locally adaptive set models. BET is
basically an intensity-based estimation of the threshold that
functions to separates the non-brain and brain regions. It also
establishes the head’s center of gravity. On head’s center of
gravity basis an initial sphere is defined, and the tessellated
sphere (tessellation of a surface is the tiling of a plane with
one or more geometrical shapes, i.e., triangle, sphere, and
hexagon, called tiles, with no overlaps, and no gaps) expands
till the boundary of the brain is reached. Fractional threshold

intensity and gradient are two adjustable parameters used in
this method [13, 23–25]. The brain volume produced by
BET is smoother than other methods but there are also
chances of inclusion of some non-brain regions [26]. In the
presence of brain tumor, intensity and shape variations might
create problems in the evolution of the mesh, and mesh is
used as the initial surface for approximating the brain sur-
face. But, the performance of BET on such kind of images is
quite well.

BET2 also proposed by Smith et al. [27] (Brain Extraction
Tool v2) deformable surface model is a rapid and automated
brain extracting tool that distinguishes between brain, skull,
and scalp regions from MR brain images. BET2 algorithm
was originally based on BET [23] to determine the brain
boundary in MRI images. BET2 uses T1- and T2-weighted
high-resolution images, though it can run (with less accuracy)
given only a T1 [27]. It works by finding brain surface by the
original BET algorithm using T1-weighted image, and subse-
quently, T2-weighted image is then registered to the T1 [27],
using FLIRT [28].

3dSkullStrip is another skull stripping method based on the
modification of BET [29] that is included in the package of

Fig. 7 Automated skull stripping method classification: conventional (deformable surface–based model, mathematical morphology, intensity, template, and
hybrid based), machine-learning, and deep-learning-based methods
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Analysis of Functional Neuro Images (AFNI). It uses T1-
weighted brainMR images for skull stripping depending upon
the expansion paradigm of the spherical surface. It removes
eyes and the ventricles region by adopting some specific
modifications.

A complete high resolution, reliable segmentation of the
colored brain images and accurate skull stripping of the
Chinese Visible Human (CVH) is presented by Yunjie et al.
[30]. It is a model based on 3Dmathematical morphology and
adaptive Gaussian mixture. Brain tissue classification and bias
field estimation are done by 3D mathematical morphology
and Gaussian mixture model. A novel brain extraction meth-
odology is proposed by Liu et al. [31] whose working depends
upon an implicit deformable model based on the radial basis
functions (RBF). They modified BET for premature infant
brain segmentation using the Gaussian model and the water-
shed segmentation [32].

A skull stripping algorithm for brain MRI is based on
Chan-Vese ac t ive contour method proposed by
Somasundaram et al. [33]. This method consists of two-step
fully automatic skull stripping process for proton density
(PD), T1-, and T2-weighted images. Firstly, the brain is ex-
tracted from the middle slice and then in the remaining slices.
In this specific method, the process for brain extraction from
remaining slices was simplified by the use of adjacent slices
geometric similarities [33, 34].

An idea of fast skull stripping approach is based on a
refinement process and 3D level set process proposed by
Hwang et al. [19]. On the tradional 3D level set methods a
speedup operator is used to accelerate the evolution of
level set methods. The accuracy of brain extraction
methods are also improves by adopting a refinement
process.

Another skull striping automation method of T1-weighted
brain MR images is proposed by Zhang et al. [35] that solved
the problem of boundary leakage using an enhanced geomet-
ric active contour model. When a segmented image contains
some distortions at the boundaries, it leads to the boundary
leakage problem. Another skull stripping approach for T1-
weighted brain image is described by Somasundaram et al.
[36]. The brain boundaries are identified accurately by fitting
the curve that is the best among set of curves that formed at
brain’s boundary.

Simplex Mesh and Histogram Analysis Skull Stripping
(SMHASS) is a combination of histogram analysis and de-
formable model–based T1-weighted MR image extraction
method introduced by Galdames et al. [37]. To find an initial
suitable deformation point model, a pre-segmentation step is
used that depends on thresholds and morphological opera-
tions. The thresholding values are calculated by performing
comparative analysis with an atlas. Table 1 comprises of the
methods and limitations of deformable surface–based skull
stripping methods.

Mathematical Morphological Operation–Based Skull
Stripping Methods

A three-step procedure of skull stripping utilizing morpholog-
ical processing, anisotropic diffusion filtering, and edge detec-
tion proposed by Gao and Xie [43] and the results show that it
can segment brain precisely. Anisotropic diffusion reduces
image noise without the removal of significant image parts,
typically edges or other details Sometimes mathematical mor-
phological methods are sensitive to minor variations in data
and create problems in finding the suitable morphology for
brain tissue separation [15, 44]. A much similar algorithm
proposed by Tsai et al. [45] is based on morphological oper-
ations and analysis of histogram.

Another method for segmenting brainMR images automat-
ically is a seed growth and threshold-based [46]. In this meth-
od seed growth and threshold techniques are used to classify
brain tissues from T1-weighted MR images. This is a simple
mathematical algorithm as only manipulations based on inten-
sity and for particular intensity scanning values are involved
and the seed values are chosen automatically.

For the removal of skull, Sajjad Mohsin et.al [47] imple-
mented a mathematical morphological algorithm after false
background detection. The drawback of this algorithm is that
it fails on noisy and low-contrast images by analyzing intra-
cranial volumes as the brain cortex extraction from T1-
weighted images.

Brain surface extraction (BSE) lies in the category of math-
ematical morphological–based methods for skull stripping
from T1- and T2 weighted images developed by Shattuck
[16], and it works on morphological operators and edge de-
tectors to strip the skull. It employs anisotropic diffusion fil-
tering and a 2D Marr Hildreth edge detector for anatomic
boundary identification. BSE disconnects brain and non-
brain tissues using morphological erosion operation, and larg-
est connected component (LCC) is extracted as the brain. To
undo the erosion effect a corresponding dilation operation is
applied. At last, a morphological closing operation is applied
by BSE that fills minute holes that may exist in brain surface
and the tissues of non-brain is still connected to the brain are
removed. BSE is edge detecting–based algorithm, sometimes
with poor contrast images it may fail to work.

Brain extraction algorithms (BEAs) for processing take T1-
weighted image as due to high resolution, they are considered
as the gold standard in terms of morphological or anatomical
neuroimaging [48–50]. In the case of brain pathology, T2-
weighted images are quite sensitive [51].BEA [52] segments
brain using diffusion, morphological operations, and connect-
ed component technique for brain extraction in T2-weighted
images. BEA for T2-weighted images, low-pass filter (LPF) is
applied for background noise removal. After that, the brain
boundaries are enhanced by diffusion and a threshold intensity
value is obtained for binary brain image. Themethod is named

J Digit Imaging (2020) 33:1443–1464 1449



as 2D-BEA as it only uses 2D information from a single slice.
The problem with 2D-BEA is that LCC is unable to perform
well in a few slices. To overcome drawbacks of 2D-BEA, 3D-
BEA came into existence that uses the 3D information avail-
able in adjacent slices. Below given Table 2 describes the
mathematical morphological–based skull stripping methods.

Intensity-Based Skull Stripping Methods

An automatic 3dIntracranial method is intracranial part seg-
mentation in both T1- and T2-weighted brain MR images [41,
55]. The model works by computing a down hill simplex
method computing standard deviations, means, and weights
of presumed background, gray matter (GM), and white matter
(WM). In brain WM is buried deep and GM is found on the
brain’s surface, or cortex. T1-weighted images provide con-
trasts between GM and WM as dark gray and lighter gray,
respectively. Whereas, T2-weighted images demonstrate con-
trast between GM as light gray and WM as dark gray.

A probability density function (PDF) is computed
which set boundaries of high and low signal intensity from
the above estimated values, and non-brain voxels are excluded
from these boundaries. Slice-by-slice application of connected
component analysis is used to demarcate the brain. A

neighborhood analysis is carried out finally at every voxel to
either exclude or include the misclassified ones. Nine param-
eters are required in this technique for each image estimation
and improper estimation, and initialization leads to the poor
results [15]. Another segmentation algorithm for 3D sagittal
brain MRI was developed by Huh [56] based on the connec-
tivity threshold to extract brain from 3D sagittal MR.

Suzuki and Toriwaki proposed an automatic skull stripping
method [57] in axial MR slices that separates brain tissues
from others. Initially, thresholds are adjusted, and the brain
region iteratively fits in, based on the resulting masks’ geom-
etry. It shows limitation in RF inhomogeneity presence and in
slices where brain region is inhomogeneous. A method of
skull stripping that is a 3D segmentation of internal brain
structures is developed by Dawant et al. [58] using similarity
and free-form transformation [59, 60].

Another automated brain segmentation method was pro-
posed by Stella and Blair et al. [61, 64]. This method is based
on active contouring, anisotropic filters and brain anatomy
information. By using the above-mentioned techniques eyes
like complicated structures can be removed quite easily from
the brain MRI. It is a multistage procedure that involves back-
ground extraction, and a rough outline of brain is traced and
converted to a final mask [36, 62, 63].

Table 1 Different method, MR modalities, and their limitations of deformable surface–based skull stripping methods

Methodology Issues MR modality

Two level set equations [38] Greater computational time T1-weighted image
Level sets methods [22] Greater computational time and utilizes

complex level set

Modified BET, Gaussian model, and
watershed segmentation [31]

For result accuracy T2-weighted images
are required

Refinement process and 3D level set [39] Requires exact speedup operator
calculation for curve refinement

Improved geometric active contour [35] Accurate calculation of speedup operator
for curve refinement

Best curve selection [36] Complex computation

SMHASS [37] Complex thresholding

3dSkullStrip
Tool box [29]

Parameters adjustment required

BET [23] In bottom axial slices unable to extract the
brain region

Hierarchical deformation model [40] Initialization of model is complex

BET2 [22] Input images are T1 and T2 T1- and T2-weighted images
MLS [41] Unable to perform well on images with

noise and poor contrast

Thresholding, deformable surface–based
algorithm [32]

Image contrast effects the results

Chan-Vase; active contour model [33, 34] Complex computation PD, T1-, and T2-weighted images

2D contour geometrical
transformation [42]

Perform well on normal brain images 3D T1-weighted image

3D mathematical morphology
and Gauss mixture [30]

Intensity bias affects the output
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Voxel-based morphometry (VBM) using statistical para-
metric mapping (SPM2) is another automated method for
assessing atrophic statistical differences between various
groups of subjects in brain MRI [64]. Brain mask is not
completely generated by SPM2 [64] but obtains from the
sum of WM and GM regions after brain segmentation in T1-
weighted brain MR images. SPM2 [64] is updated to SPM5
[65]. Unlike SPM2, a probabilistic brain tissue segmentation
method is used by SPM5. It is a combination of tissue classi-
fication, bias correction, and image registration.

A skull stripping algorithm Histogram-based BRain
Segmentation (HBRS) is proposed by Zu et al. [36, 66]
based on thresholding, morphological operations, histo-
gram analysis, and foreground/background segmentation
of T1-weighted images. It is an accurate, simple automated
algorithm for segmenting 3D brain and volume measure-
ment in T1-weighted brain MR images. This algorithm
consists of three steps, i.e., foreground/background
thresholding, removal of skull, and residue fragments (si-
nus, CerebroSpinal Fluid (CSF), dura) [66].

Hahn and Peitgen [18] proposed a completely intensity-
based watershed algorithm using a simple merging
criterion to avoid the over segmentation depending upo a sin-
gle parameter. The proposed method is particularly suitable to
segment brain and robust to intensity inhomogeneities.
Sometimes, it is unable to remove dura and skull [67].

An updated watershed algorithm is proposed by Grau et al.
[18, 67, 68] to segment WM/GM in brain MR images. Instead
of calculating gradient, different prior information based dif-
ference functions for various applications are used by this

method. For the segmentation of WM/GM, these functions
are calculated from the probability values for every voxel
and class.

Sadananthan et al. [68, 69] propose the skull stripping ap-
proach named as graph cuts for T1-weighted images, it is an
appropriate intensity threshold that lies between the mean in-
tensities of CSF and GM. For the removal of narrow connec-
tions removal graph cut is used that works on the basis of
graph-theoretic image segmentation approach to locate the
cuts for dura removal, instead of using morphological opera-
tions. Some drawbacks of this method are trivial brain loss in
case of a few datasets, but for the practical application, it can
be neglected. Due to less preservation of dura, segmentation
can create some problems [69].

A very simple method of 2D region growing method for
skull exclusion was proposed by Somasundaram and
Kalavathi [70, 71]. Another method includes segmentation
of brain using method of multi-seeded region growing [75].
In order to extract brain from PD, T1-weighted, and T2-
weighted images for all orientations coronal, axial, and sagittal
brain MR images multiple seed points are used. Following
Table 3 describes the intensity-based skull stripping methods.

Template-Based Skull Stripping Methods

Skull stripping technique is a preprocessing step for
reconstructing cortical surface proposed by Dale et al. [15].
Wang et al. [14] give a method that initially strips skull by co-
registration of an atlas, followed by a refinement process with

Table 2 Different method, MR modalities, and their limitations of mathematical morphological–based skull stripping methods

Methodology Issues MR modality

Mathematical morphological algorithm
It strips skull, after false background detection [47]

Fails on noisy and low-contrast images by
analyzing intracranial volumes

T1-weighted images

Thresholding and morphological operations based
on histogram [53]

Find difficulty to locate the ideal morphology
size for discriminating brain tissues

Morphological processing, edge detection and
anisotropic diffusion filtering [54]

Unable to identify blood vessels completely
from brain due to noise and leads to
incorrect identification of brain boundary

Histogram analysis and morphological
operations series [45]

With numerous image artifacts skull stripping
result are not effective.

Seed growth, threshold-based method [46] Estimation of threshold must be accurate

Edge detection thresholding, connectivity, and a
novel operator of constrained growing [49]

Brain segmentation may be affected by
intensity bias

Connected component analysis and
morphological operations [50]

Under/over segmentation in results of
intensity inhomogeneity images

BSE [16] Dura matter presence in brain mask,
Marr–Hildreth edge detector is unable to
identify a clear brain boundary

T1- and T2-weighted images

Exbrain [48] The initial threshold value effects the
segmentation performance

3D T1-weighted images
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a scheme of deformation surface guided by the prior
information.

Non-local Patch–Based Methods

Non-local patch methods are successfully used in various ap-
plications of neuroimaging, such as tissue segmentation, clas-
sification, lesion segmentation, registration, super resolution,
intensity-based normalization, and image synthesis [20].
These methods include brain extraction using non-local seg-
mentation technique, Multi-cONtrast brain STRipping
(MONSTR) [74]. They achieved remarkable performance of
accuracy and robustness [20]. Brain Extraction based on non
local Segmentation Technique (BEaST) proposed by
Eskildsen et al. [17] is a method of skull stripping that depends
on non-local segmentation process.

Label Fusion with Atlas-Based Techniques

Label fusion with atlas-based techniques, such as Multi-Atlas
Propagation and Segmentation (MAPS) [75], Advanced
Normalization Tools (ANTs) [76], and Pincram [77], use de-
formable model implement registration of multiple atlases to a
target subject. In the target space after being registered, brain
masks in all the atlases are combined together by using
Simultaneous Truth and Performance Level Estimation

(STAPLE). In these approaches, the main operation is the
registration process, so, their performance depends upon reg-
istration accuracy and brain mask quality in each atlas.
Following Table 4 describes the methods and limitations of
template-based skull stripping methods.

Hybrid Method–Based Skull Stripping Methods

T. Kapur et al. [78, 79] introduced a hybrid technique based
on three existing operations that are adaptive segmentation
[80], active contour, and morphological operations. Shattuck
et al. [16] use edge detection, morphological erosions, and
adaptive anisotropic diffusion erosions to locate brain.

To get rid of some of the limitations of individually existing
techniques, Rex et al. [81] proposed an algorithm named
Brain Extraction Meta-Algorithm (BEMA) that combines re-
sults of various algorithms of skull stripping algorithms in-
cluding BET [23], BSE [16], 3dintracranial [41], and water-
shed algorithm [15] for T1-weighted images. Another hybrid
method that is a combination of connected component analy-
sis, Expectation Maximization (EM) algorithm, and mathe-
matical morphology with some pre-processing and post-
processing techniques and geodesic active contours to seg-
ment the brain proposed by Huang et al. [82]. Bauer et al.
[83] proposed another hybrid skull stripping method for T1,
T2-weighted, FLAIR images, and CT scans. The algorithm

Table 3 Different method, MR modalities, and their limitations of intensity-based skull stripping methods

Methodology Issues MR image modality

Mid-sagittal brain MRI segmentation utilizing
connectivity-based threshold, landmarks, and
anatomical information, [56]

Noise, intensity inhomogeneity, and image
artifacts may affect the results

3D sagittal brain MRI

Axial brain MRI tissue segmentationusing using
iterative thresholding [57]

Shows limitation in RF inhomogeneity presence
and in the brain inhomogeneous slices

3D axial MR slice

SPM2: Tissue segmentation using GM
and WM [64]

Poor at removing non-brain tissues accurately T1-weighted images

SPM5: Image registration, tissue segmentation, and
bias correction [65]

Initial parameters are hard to find

Similarity and free-form transformation unity [58] Not applicable to pathological brain image

Histogram analysis, thresholding, and segmentation
of foreground/background [66]

Brain segmentation is not accurate due to
morphological operations.

Graph Cuts [69] Brain loss for some data sets

Watershed algorithm [18] Noise sensitive and over-segmentation

3dIntracranial [41, 55] Nine parameters are required and inaccurate
initialization and estimation leads to improper
brain segmentation

Improved watershed algorithm
Combination of the watershed algorithm and atlas

registration [18, 67, 68]

Markers affects the brain segmentation T1- and T2-weighted images

Active contouring, anisotropic filters, and prior
knowledge of brain anatomy [61]

Multistage process

2D region growing [72] Inaccurate results with large intensity bias PD, T1-, and T2-weighted MRI
Multi-seeded region growing technique [73] Unable to perform on brain images with large

intensity bias
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uses template-based geodesic active contour segmentation
with MLS algorithm and implemented in ITK.

A fully automated brain segmentation algorithm was pro-
posed by Atkins and Mackiewich [61, 68]. This hybrid model
uses snake contouring and anisotropic filters, which remove the
eye region in brain MR images. This method works for axially
acquired multi-spectral datasets T2-weighted brain MR images
[84] and was modified for coronal T1 datasets [48].

Minneapolis consensus Stripping (McStrip) is proposed by
Rehm et al. [70, 85], a hybrid algorithm for T1-weighted brain
MR images implemented in Interactive Data Language (IDL)
using BSE [16]. It depends upon template based extraction
through non linear warping, intensity thresholding with con-
nectivity constraints, and edge detection with morphological
operations. McStrip is initialized with a mask using
Automated Image Registration (AIR) [85] and coarse mask
is formed by the dilation of AIR mask. Thresholding values
for both brain and non-brain tissues are estimated by coarse
mask, and threshold is set automatically to generate a mask.
After void filling and smoothing a final McStrip mask is cre-
ated by combining threshold and BSE masks [70]. The given
below Table 5 discusses the methods and limitations of
hybrid-based skull stripping methods.

Machine-Learning-Based Skull Stripping
Methods

The literature of skull stripping in machine learning domain is
discussed in this section. Brain and non-brain tissue segmen-
tation in MR images require reasonably high accuracy and
speed. While traditional skull stripping techniques require ad-
justment of several numerical parameters depending on the
dataset to achieve reasonable results, whereas machine-
learning-based skull stripping techniques are developing to
achieve more effective results.

Model-Based Level Set (MLS) method [86] is used for the
skull and intracranial tissues removal that are surrounded by
the brain in both weighted images, i.e., T1- and T2-weighted
MR images. MLS depends on the intensity difference of dif-
ferent brain parts and curvatures of the brain surfaces.

For WM/GM segmentation in brain MR slices region based
level set snakes are quite a powerful approach. Suri et al. [88]
proposed a region based level set snakesWM/GM in brainMR
images. A fuzzy membership function is used for classifying
images into the background, GM, WM, and CSF. Then active
contour is evolved by a deformable model and a gradient de-
tector that fits the surface between the GM and CSF.

Kobashi et.al [68, 88] proposed Automated Fuzzy logic-
based Skull Stripping (AFSS), a method for infant’s MR brain
skull stripping. AFSS is used to estimate the intensity distri-
butions by the use of a priori knowledge based upon the
Bayesian classification with Gaussian mixture model. The
prior knowledge is described by fuzzy membership functions,
using estimated intensity distribution; fuzzy rule–based ASM
segments the outer brain boundary. It is an unsupervised
learning-based approach.

An automatic method of skull stripping for T1-weighted
images depends upon statistical shape model proposed by
Lao et al. [40]. The particular proposed surface-based model
is hierarchically represented by overlapping sets of surface
patches, each patch has few elastic properties, and the training
set learns the range of deformation surface. This hierarchical
model of deformation increases the robustness to local mini-
ma. The model is deformed to brain’s outline by process of
matching local image and similarity evaluation in the whole
patch. The results shows an high agreement between super-
vised and automatic skull-stripping methods.

A clustering and 2D region growing skull stripping method
for brain MR images is proposed by Somasundaram et al.
[89]. To identify brain boundary inside the skull, a
clustering-based technique is used. The cluster centroids are
found and connected to form the brain boundary. All the

Table 4 Different methods, MR modalities, and limitations of template-based skull stripping methods

Methods Issues MR image modality

Deformation process and intensity normalization
on ellipsoidal template [15]

Computationally heavy T1-weighted images

Deformation scheme and co-registration of an atlas [14] Refinement and manual extraction of atlas

(a) Label fusion with atlas-based techniques

Methods Issues MR image modality

MAPS [75] Accuracy of segmentation based on the
best fitted atlas T1-weighted images

ANTs [76] Multiple threading strategies

(b) Non-local patch–based methods

Methods Issues MR image modality

BEAST [17] Underestimates the brain masks
by removing lesions

T1-weighted images
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clusters are connected using 2D region growing method. By
the same region growing method removal of the skull and
clusters outside the skull is achieved.

For segmenting brain region, a new method is developed
based upon deformable models [90]. This specific method at-
tempts to find the solution of the segmentation method using
deformable organisms to create an easily customizable segmen-
tation plan. If the data are noisy in certain areas, this method
works without affecting the final segmentation.

ROBEX [20] is a RObust, learning-based Brain
EXtraction system. In the skull stripping context, it is con-
sidered as the first hybrid generative/discriminative model.
The discriminative model functions as a random forest
classifier and trained to identify the boundary of brain ,
whereas generative model is described as a point distribu-
tion model ensuring the acceptance of results. Whenever a
system is introduced with a new image, the generative
model starts exploring it and finds the highest likelihood
contour in accordance with the discriminative model [20].

Multi-Atlas Skull-Stripping (MASS) presented by Doshi
et al. [91] is an automatic brain extraction of brainMR images,
based on a multi-atlas registration framework. It provides a
unique framework of three-part template selection, registra-
tion, and label fusion for obtaining accurate results. This meth-
od adopts a strategy of specific template selection that fits the
best of anatomical variations within the data set.

Miranda et al. [21] introduced a slightly different work
on skull stripping, i.e., the improvement in center of grav-
ity (COG) estimation of the brain MR images using 3D
Haar-like features. According to this study better

estimation of the pose will advance the results of posterior
skull stripping of the BET. It is validated on both T1- and
T2-weighted images of the brain MR and also considers as
the first study to analyze the impact of COG estimation
over skull-stripping of brain MR images.

For brain extraction, a specific PCA-based model is designed
from pathological images. Brain MR image is decomposed into
three parts in this method. Sparse term captures the non-brain
tissue outside of the normal brain tissue that is reconstructed as a
quasi-normal image close to a normal PCA space, and a total-
variation term is used to capture brain pathologies [92].

SVM has been used as a classifier for skull stripping in T1-
weighted MR images as proposed by Sjolund et al. [93]. The
method gives a very precise segmentation as compared to both
mathematical morphological and a deformable surface meth-
od. Global and local information is used as input, and the latter
is required to differentiate between air and bone as depending
only on the local image intensity it is not possible [93].

Another machine learning skull stripping approach of
FLAIR axial brain MR scans was presented by Jerry Li et al.
[112]. This method predicts each pixel as part of brain tissue
or not using either classification or clustering estimators.

Table 6 gives a very quick overview of the machine-
learning-based skull stripping methods.

Deep Learning Skull Stripping

This section gives the literature review of the latest deep
learning skull stripping approaches. Recently, the latest use

Table 5 Different methods, MR modalities, and their limitations of hybrid methods for skull stripping

Methodology Issues MR image modality

Adaptive segmentation, active contour, and
morphological operations for brain
segmentation [79]

Brain segmentation is inaccurate T1-weighted image

Edge detection, adaptive anisotropic diffusion, and
morphological erosions [16]

Partial volume tissue measurement

McStrip: Nonlinear template warping,
intensity-based thresholding with connectivity
constraints, and edge detection,
Incorporates BSE [85]

Accurate wrap masks are required from
different models using automated image
registration

BEMA, BSE, BET, 3dintracranial, and watershed
algorithm [81]

Computationally heavy limitations of
every method also effect the
performance of BEMA

Mathematical morphology, expectation
maximization (EM) algorithm, connected com-
ponent analysis, pre-post processing techniques,
and 3D geodesic active contours [82]

Segmentation based on pixel intensity

Anisotropic filters and snake contouring
technique [61]

Manual initialization is required for few
slices in snake contouring model

T2-weighted images

Geodesic active contour segmentation
using ITK [83]

Manual tuning of parameters using
registration and level set segmentation

CT images, T1,
T1-contrast, T2, T2-flair
Weighted Image
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of deep learning approaches in skull stripping suggests that
it is an active research field [94, 95]. Deep learning is
carried out by a convolutional neural network, with param-
eter and hidden layers. In deep learning unlike normal neu-
ral network, each input of MR image passes through a
convolution layers series.

Deep-learning-based segmentation is usually done using
two main approaches: (1) a voxel-wise network uses CNN
architectures with FC layers for classifying the central pixel
in an image patch and (2) a fully convolutional network (FCN)
[96] segments the whole image at one feed forward step.

Kleesiek’s method is considered as the base of the state of
the art skull stripping methods in deep learning since 2016.
They proposed a voxel wise 3D CNN. [96]. It is a supervised
learning approach that gives state-of-the-art performance as
compared to other existing conventional techniques for skull
stripping. For brain segmentation, VoxResNet approach is
used that is based on ResNet-based architecture [97].
Kamnitsas et al. [98] proposed an efficient multi-scale 3D
CNN with fully connected conditional random fields (CRFs)
for segmentation of brain lesion.

Consensus methods are being used increasingly in medical
problems. These methods provide more accurate and reliable
segmentation labeling in skull stripping and other tasks of image
processing. Such methods generate annotated data from differ-
ent automatic methods. Rex et al. [81] give the comparison of
proposed consensusmethodswith other automaticmethods, and
the results are improved than different segmentation done by
experts [82]. Silver standard masks for data augmentation can
also be generated by consensus masks [81]. A dataset named
CC-359 released by Souza et al. [99] containing silver standard
masks is generated by Simultaneous Truth and Performance
Level Estimation (STAPLE), which is a consensus algorithm.
It is the first effort to analyze the influences of both magnetic
field strength, scanner, and vendor on skull stripping.

Lucena et al. [99, 100] for data augmentation in deep-
learning-based skull-stripping introduces the use of silver
standard masks. These masks are formed by the use of con-
sensus algorithm STAPLE and are compared to gold standard

generated models and have improved generalizability due to
the consensus method. At the training stage, silver standard
masks augment the input dataset minimizing the manual seg-
mentation at this step. A robust CNN method of skull strip-
ping, proposed by Lucena et al. [99], uses fully trained silver-
standard mask [100]. The particular proposedmethod analysis
indicates that their auto-context CONSNets are comparable to
the latest automated approaches. This method is considered as
the first truly big data one for skull striping methods [100].

Another skull stripping method named as a sparse patch–
basedMulti-cONtrast brain STRippingmethod (MONSTR) is
proposed by Roy et al. [74]. It is an atlas-based approach
where non-local patch information from more than one atlas
contains multiple MR sequences and reference delineations of
brain masks are joined to produce a targeted brain mask. One
of the advantages of MONSTR is that it uses multiple MR
sequences, i.e., T1, T2, and other imaging modalities like CT
scans. MONSTER outperforms the brain extraction task when
compared with BEaST, SPECTRE, OptiBET, and ROBEX.

Salehi et al. [84] proposed auto-context CNN brain extrac-
tion method. Two parallel approaches 2D FCN U-Net and
parallel voxel-wise networks followed by an auto-context
CNN classifier were inspected in auto-net method [100].
Auto-context CNN classifier works by concatenating the
probability maps and then they are used as an input data to
another CNN followed by the auto-context algorithm [101].
This proposed methodology aims to design an accurate, ge-
ometry-independent, registration-free, and learning-based
brain extraction. The auto-context CNNs, i.e., Auto-Nets:
2.5D and U-net, outperformed over an approach of deep learn-
ing and conventionally used brain extraction approaches
3dSkull, HWA, BET and Robex.

Duy et al. [102] proposed a fusion of Active Shape Model
(ASM) and CNN-based skull stripping method, and they col-
lectively named them as Active Shape Model and
Convolutional Neural Networks (ASM-CNN). The method
works on 2D image sequences in sagittal plane instead of
whole 3D structures. At first, to estimate the brain region an
improved version of ASM is used with optimal features and

Table 6 Different machine
learning methods for skull
stripping

Methodology MR modality Learning approach

Fuzzy-ASM [88] Not specified Unsupervised

clustering and 2D region growing [89] T1-weighted image Supervised
Method based on deformable models [90]

ROBEX [20]

generative/discriminative

MASS [91]

Active contour and fuzzy membership function [87]

PCA-based method [92]

SVM classifier for skull stripping [93]

Skull stripping of FLAIR axial brain MR [71] FLAIR Supervised
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the brain boundary is refined by a CNN constructed and
trained. Finally, CRF and Gaussian processes are used for
the post-processing of the brain region. The ASM-CNN ap-
proach can produce accurate segmentation in all cases, even
with the small and dispersed brain regions.

An algorithm named Multistable Cellular Neural Network
(mCNN) for skull stripping is proposed by Yilmaz [103]. It
has the ability to perform on both T1- and T2-weighted brain
MR images. mCNN uses cellular neural networks (CNNs)
and multistable CNN structures along with contrast enhance-
ment and noise reduction algorithm.

Dey et al. [104] proposed Complementary Segmentation
Networks (CompNets) for accurate brain extraction of both
pathological and normal brain from T1-weighted images. This
study investigates multiple complementary CompNets.
Generally, CompNets architecture has two paths: one is learning
of brain tissues and generation of brain masks and the other step
learns brain’s outside environment and generates an approxi-
mate brain mask. There are three existing types of CompNets,
i.e., the plain, the probability, and the optimal CompNets. This
novel CompNet increase the roubustness of segmentation by
incorporation of the object of interest learning process [83].
Five different types of techniques are compared qualitatively,
i.e., plain U-Net, dense U-Nets, probability, plain, and optimal
CompNets on both the normal and pathological disorder brain
scans. Optimal CompNets outperforms for both the normal or
pathological images among all the other networks.

CNN is proposed for segmenting brain region by Selvathi
[104]. They remove the noise first from MR images using
Non-Local Mean (NLM) filter, and the skull portions are re-
moved by using CNN. Kebir et al. [105], proposed a hybrid
technique based on FCM, GMMand active contour to identify
brain regions inMR scan. The skull stripping is evaluated, and
the results indicate that the proposed method outclasses the
most popularly used skull stripping algorithms, i.e., BET,
BSE, ROBEX, and ASM-CNN. Hwang et al. [19] proposed
usage of 3D-UNet for skull stripping, that is an end-to-end
deep learning segmentation approach. It is a fully automatic
skull stripping method and is widely used for volumetric seg-
mentation. Its results are successful in real brain MRI datasets.

Deep segmentation network (DSN) proposed by Sikka,
et al. [44] is a supervised deep-learning-based approach for
extraction of brain. It is capable of learning many anatomical
features of the brain MR scan automatically even on the train-
ing of smaller dataset. The method has been performed using
T1-weighted MR image, but the training can be done using
T2-weighted image or PD modality making it more versatile
across multiple modalities.

A supervised automatic neonatal skull stripping method is
named as multi-view Pyramid Skull Stripping Network
(PSSNet) proposed by Gao et at. [44]. This method is a mod-
ification of pyramid scene parsing network [44] and robust on
neonatal T1-weighted MR images and feasible in clinical

applications. A deep learning pipeline (DLP) with a triple
network framework is proposed by Yogananda et at. [54]
using T1-weighted image performs skull stripping and brain
segmentation into CSF, GM, and WM. Table 7 comprises of
various deep-learning-based skull stripping methods.

Comparative Analysis of Skull Stripping
Algorithms

This section will discuss a brief comparison of conventional,
machine-learning, and deep-learning-based skull stripping
methods. A comparative analysis of four brain extraction
tools, i.e., McStrip [85], SPM2 [85], BET [23], and BSE
[16] using T1-weighted MR brain images given by Boesen
et al. [107], is discussed with respect to their performance.
According to the analysis [107] McStrip, a hybrid algorithm
outperformed SPM2, BET, and BSE; however, on processing
time BET and BSE outperformed McStrip. Another compar-
ative study on skull stripping methods, conducted by
Fennema et al. [108], compares BET [23], 3dIntracranial
[41], HWA [69], and BSE [38] to find effects of bias correc-
tion, image type, and local anatomy of brain slice. According
to this study HWA [78] removes substantial non-brain tissues
from the complicated regions of face and neck while retaining
the area of brain. BSE reaches the brain boundary and rarely
also removes some brain tissue. 3dIntracranial and BET some-
times leave non-brain regions behind and removes the brain
region. BET [23] and BSE [16] are compared in a study [108],
and both methods produce under and over-segmentation, and
also, these methods are not completely insensitive to subject
characteristics. MONSTR [74] when compared with other
stripping algorithms BEaST, SPECTER, OptiBET, and
ROBEX produces more precise results on both the healthy
and with pathological cases such as TBI and tumor [106].
The performance of PCA-based skull stripping methods [92]
are compared with popularly used brain extracting methods,
i.e., ROBEX, BEaST, MASS, BET, BSE, and the Kleesiek’s
method. PCA-based skull stripping method performs better
than these competing methods on IBSR, LPBA40, and the
TBI datasets.

Auto-context CNN that outperformed the Kelsie’s method,
accurate and reliable automated brain extraction BET,
3dSkullStrip, ROBEX, and HWA. ANTS, STAPLE, and
BEaST achieve the highest dice coefficients [99], which is a
compromise between specificity and sensitivity, but they are
not robust as BEaST, ANTs, and MBWSS achieve compara-
ble results and segments the brain fissures accurately. ASM-
CNN [106] has remarkable dice coefficients and Jaccard in-
dexes when tested on IBSR, LPBA, and OASIS datasets in
both 2D and 3D structures and performed well on BET, BSE,
3DSS, BEAST, and ROBEX. CompNets [109] compared,
and with Kleesiek’s method, a plain and a dense U-Net and
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tested on normal images and pathological images. When tu-
mors are at the boundary U-Net considered the brain tissues as
non-brain. The plain U-Net over segments skull area as the
brain when the intensity of skull is different. Whereas,
CompNets identifies the brain region, and the optimal
CompNet shows the visual results accurately. 3D-UNet
[110] outperforms the conventional skull stripping methods
with respect to its sensitivity, dice coefficient, and specificity.
The results of 3D-UNET method have been compared with
the popularly used conventional approaches BSE and
ROBEX, and one is a deep-learning-based method, i.e.,
Kleesiek’s method and 3D-UNet outperformed [110]. DSN
performs well on BET for IBSR, LBPA, OASIS, and outper-
forms ROBEX for IBSR dataset [44].

Neuroimaging is a very sensitive and complex task. It
gives researchers different types of challenges. As the brain
tumor and other pathological brain disorder detection and
prognosis is a very sensitive task for this purpose many
pre-processing steps are followed; among them skull striping
is the most important one. This paper provides
classification of skull stripping techniques into conventional,
machine-learning and deep-learning-based methods. Some
of the challenges we highlighted through the whole process
of the survey is listed below and also tried to give our
opinion to the researchers. The brain scans are acquired
through different imaging modalities with different contrasts,
e.g., MRI and CT scans. Bain scans even acquired through
MRI have multiple modalities like T1-weighted, T2-weight-
ed, and FLAIR images. These imaging modalities have

different contrasts and scan quality. Majorly skull stripping
algorithms proceed only for T1-weighted MR images. Brain
structures have different signal intensities, and in some cases
intensities of the brain and non-brain regions like neck skull
and scalp may overlap. Inhomogeneity in brain structures
that vary from individual to individual is also one of the
challenging task in automated skull stripping methods. To
ensure the automated skull stripping methods performance
in terms of some quantitative parameters like accuracy and
retaining region of interest, prior noise calculation is re-
quired. Image artifacts and noise may be present, while the
accusation of brain MR scans due to motion and some other
noises. Selection of appropriate brain extraction method de-
pends upon the nature of the problem and dataset, and the
MRI characteristics also have a lot of influence. For accurate
skull stripping many factors should be taken under consid-
eration like scanner vendor and magnetic field intensity.
Skull stripping becomes more complex in case of tumors
especially when tumors are located near the border of the
skull. Every method has its own merits and demerits no
matter either conventional, machine, or deep-learning-based
skull stripping methods. There is always a parameter for
improving these methods accordingly. Keeping the above
challenges in mind a quite robust automated method for
stripping skull is needed that is not effected by different
brain morphologies, sizes, and intensities. Since skull strip-
ping is a preprocessing step, it must be accurate with less
execution time and sufficiently robust to be helpful in both
the research and clinical aspect.

Table 7 State of the art deep learning skull stripping methods

Methodology MR modality Dataset used Learning
approach

3D CNN [94] T1-weighted,T2-weighted, and FLAIR images IBSR LPBA40 and OASIS Supervised
Auto-Net for Brain Extraction [95] LPBA40 and OASIS

MONSTR [74] ADNI, MRBrainS, and
NAMIC

VoxResNet For brain extraction [97] T1-weighted, T2-weighted, and FLAIR
images

Private Dataset Supervised

Silver standard masks for data augmentation [99] T1-weighted images LPBA40, CC-359, OASIS Supervised
CNN for skull stripping using Consensus-based

Silver Standards Masks [99]
CC-359, LPBA40, and OASIS

Accurate brain extraction using ASM-CNN
[106]

IBSR, LPBA, and OASIS

mCNN [103] T1-weighted and T2-weighted images Brainweb
NAMIC

Supervised

Novel CNN [103] T1-weighted images OASIS Supervised

3D-UNet [19] T1-weighted images NFBS Supervised

DSN [44] T1-weighted images IBSR LPBA40 and OASIS Supervised

PSSNet [44] T1-weighted images Private dataset Supervised

Complementary segmentation network for brain
MRI extraction [44]

T1-weighted images OASIS Semi-supervised

Skull stripping using hybrid method [50] T1-weighted and T2-weighted images IBSR, LPBA40, and OASIS Unsupervised
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A fully automated method covers all the above-mentioned
challenges and will be able to develop a method that strips the
skull automatically and be able to performwell on the multiple
morphologies of the brain. When dealing with less data con-
ventional techniques can work well for more robust and ap-
propriate results machine learning and deep learning ap-
proaches are used as the medical data are too big, so deep
learning approaches perform so well. Deep learning ap-
proaches have been raised as a front-runner in the field of
neuroimaging, so, the researchers new to this field should
spend more time in the deep learning domain. As the results
of skull stripping methods using deep learning outperform

many other techniques of conventional and machine learning
approaches. In medical image analysis algorithms, the deep
learning paradigm shows outstanding performance. The accu-
racy of deep learning network is higher than classical ap-
proaches of machine learning. Additionally, greater the data
more will be the performance of deep networks as compared
to conventional machine learning with complex algorithms as
mentioned in [19]. The trainings of deep learning approaches
are much data-hungry and time-consuming.The training of
deep learning approaches is time-consuming and data-hungry.
Therefore, such learning algorithms require parallel process-
ing tools, like Graphics Processing Units (GPUs), to

Table 9 Measure of quantitative analysis of different methods of machine-learning-based skull stripping

Skull stripping methods Methods Quantitative analysis measures

Dice
coefficient
(DC)

Sensitivity Specificity Hausdorff
distance
(HD)

Absolute volume
difference (AVD)

Mean Jaccard
coefficient
(JC)

Machine learning methods Fuzzy-ASM x √ x x x x x

SVM classifier
for skull stripping

√ x x x x x x

Active contour and fuzzy
membership function

x x x x x x x

ROBEX √ √ √ √ x x x

MASS √ √ √ √ x x x

PCA-based method √ √ √ x x x x

Clustering and
2D region growing

√ x x x x x √

FLAIR axial method of
skull stripping

√ x x x x x x

Total 6 4 3 2 0 0 1

Table 10 Measure of quantitative analysis of different methods of deep-learning-based skull stripping

Skull stripping methods Methods Quantitative analysis measures

Dice
coefficient
(DC)

Sensitivity Specificity Hausdorff
distance
(HD)

Absolute
volume
difference (AVD)

Mean Jaccard
coefficient
(JC)

Deep learning methods Auto-Net √ √ √ x X x x

3D CNN √ √ √ x x x x

MONSTR √ x x x x x x

VoxResNet √ x x √ √ x x

CNN Consensus-based
Silver Standards Masks

√ √ √ √ x √ x

ASM-CNN √ √ √ √ x x √
Multistable cellular CNN √ x x x x x √
DSN √ √ √ √ x x x

PSSNet √ √ √ x x x x

CompNets √ √ √ x x x x

Total 11 8 8 4 1 1 2
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accelerate the training process of such a larger dataset [111].
To lessen the computational cost of deep learning methods
few architectures are used like Mobilenet, Xception, and
GoogleNet that decrease the computational time of deep learn-
ing methods. As it is quite evident through the survey that
majority of the skull stripping methods are generally applica-
ble on T1-weighted brain MR images, such a robust model is
required in future that is capable of working and showing near
to perfect results for all the MR modalities like T1-weighted,
T2-weighted, and FLAIR images. In neuroimaging process-
ing and identification skull stripping is considered as a de-
manding research field providing researchers with a vast area
to study and help radiologists and neurologists. In order to
skull strip well in case of brain scans with a tumor near the
skull boundary, more detection of features is required that
carefully check the shape deformities and intensities so close-
ly and accurately.

Model of Quantitative Analysis Measures
Based on Skull Stripping Methods

This section contains a model of different quantifying param-
eters being used in the study of skull stripping. Various quan-
tifying parameters are used for the accurate analysis of skull
stripping, and the most frequently used are dice coefficient
(DC), sensitivity, and specificity. The following Table 8 de-
scribes the analysis of quantitative measures of conventional
skull stripping methods in detail.

Table 9 gives the detailed analysis of quantitative parame-
ters used in case of machine-learning-based skull stripping
methods.

The analysis of quantitative measures for deep-learning-
based skull stripping methods is depicted in the following
Table 10.

The above Tables 8, 9, and 10 give the detailed analysis of
quantitative measures of conventional, machine, and deep-
learning-based skull stripping methods. According to the
above analysis the most accurate quantitative measures are
DC, sensitivity, specificity, and JC. The total number of re-
search articles in this survey that used them are 23, 17, 16, and
14, respectively. The other less frequently used quantitative
measures found in research articles are HD, AVD, and mean;
the number of research articles considering them are 6, 1, and
4, respectively. Based on the assessment of related literature, it
is observed that the quantitative analysis is influenced by the
system technology, skull stripping method, and context. Thus,
an insight is presented to propose quantifying parameters used
in skull stripping. Figure 8 shows the model of quantifying
parameters frequently used in skull stripping methods.

Additionally, designers and developers need to fully under-
stand these contextual factors and determine which quantify-
ing parameters are considered appropriate for the design

process and the evaluation of the system. For this reason, it
is important to determine the core quantifying parameters in
term of skull stripping. Initially, these parameters are cross-
verified by well-known skull stripping methods in the field of
conventional , machine learning, and deep learning methods.
Likewise, reviews are performed to determine parameters that
evaluate existing skull stripping techniques. The findings
present three parameters that are necessary for the evaluation
of skull stripping. It means that the parameters are measured,
which are strongly influenced by contextual factors. The
quantifying parameters include data coefficient, sensitivity,
and specificity. Dice coefficient (DC) describes the similarity
level between the algorithm of skull stripping or segmentation
results and ground truth. Sensitivity is the actual proportion of
correctly identified positives. Specificity is the measure of
correctly identified proportion of actual negatives.

Conclusion and Future Work

An elaborated survey of the existing conventional and state-
of-the-art automated machine and deep-learning-based skull
stripping techniques are discussed in this paper. Here the aim
is to introduce current skull stripping algorithms at one plat-
form. It is a significant pre-processing step in analyzing brain
MRI and differentiating between the brain and skull portion.
In many neuroimaging processes, the importance of the skull
stripping step cannot be denied, and once achieved, it

Fig. 8 Model of quantifying parameters used in skull stripping
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increases the computational speed of the neuro-based algo-
rithms, as the brain images are acquired using different imag-
ing modalities. Hence, every time the brain images are with
varying contrast, scan quality, and intensities inhomogeneity,
this makes the skull stripping a challenging task. Different
stripping algorithms are proposed, i.e., manual, semi-automat-
ed, and automated algorithms. Automated skull stripping in-
creases the accuracy and efficiency of many neuroimaging
algorithms. The current deep-learning-based skull stripping
algorithm results are more precise and accurate than the con-
ventionally existing techniques.

In future, there is a need to develop state-of-the-art robust
and optimized fully automated supervised or unsupervised
skull stripping algorithm that fulfills all the lope holes of the
previously existing techniques. The novel skull stripping
method should provide all the possible solutions for the chal-
lenges of skull stripping methods. Brain MRIs can be used for
the identification of pathological disorders in future, so, there
is a need to optimize the network that decreases the computa-
tional complexity. As the majority of skull stripping algo-
rithms proceeds only for T1 weighted MR images, to increase
the output accuracy it is expected to use the multiple modal-
ities, like FLAIR, T1 and T2 weighted brianMR images along
with their training data sets. Moreover, the novel method
should also be able to work on multiple brain orientations
and acquisition sequences without parameters adjusting.
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