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Abstract
Microvascular invasion (mVI) is the most significant independent predictor of recurrence for hepatocellular carcinoma (HCC),
but its pre-operative assessment is challenging. In this study, we investigate the use of multi-parametric MRI radiomics to predict
mVI status before surgery.We retrospectively collected pre-operative multi-parametric liver MRI scans for 99 patients who were
diagnosed with HCC. These patients received surgery and pathology-confirmed diagnosis of mVI. We extracted radiomics
features from manually segmented HCC regions and built machine learning classifiers to predict mVI status. We compared
the performance of such classifiers when built on five MRI sequences used both individually and combined. We investigated the
effects of using features extracted from the tumor region only, the peritumoral marginal region only, and the combination of the
two. We used the area under the receiver operating characteristic curve (AUC) and accuracy as performance metrics. By
combining features extracted frommultipleMRI sequences, AUCs are 86.69%, 84.62%, and 84.19%when features are extracted
from the tumor only, the peritumoral region only, and the combination of the two, respectively. For tumor-extracted features, the
T2 sequence (AUC = 80.84%) and portal venous sequence (AUC = 79.22%) outperform other MRI sequences in single-
sequence-based models and their combination yields the highest AUC of 86.69% for mVI status prediction. Our results show
promise in predicting mVI from pre-operative liver MRI scans and indicate that information from multi-parametric MRI
sequences is complementary in identifying mVI.
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Introduction

Liver cancer was predicted to be the sixth most diagnosed
cancer and the fourth major cause of death due to cancer
worldwide in 2018 [1]. Hepatocellular carcinoma (HCC)
is the most common primary liver cancer, accounting for
75–85% of total cases [1, 2], and its incidence rates have
also been steadily increasing since 2000 and are projected
to increase further until 2030 [3]. In the United States, 1-
year survival for HCC is lower than 50% [4], and median
survival was estimated to be 11 months in a German pop-
ulation [5]. Treatment of HCC can be surgical (i.e., liver
resection or transplantation), locoregional (e.g. ,
chemoembolization), or systemic (e.g., immunotherapy)
[6] and the Barcelona Clinic Liver Cancer (BCLC) system
[7] offers a way to assign a treatment option to each HCC
case. The treatment of choice for patients without cirrho-
sis is resection [6, 8], while liver transplantation can treat
both tumor and the underlying hepatic condition. Survival
rates after liver transplantation can be as high as 75% (at
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4 years) with recurrence below 15% in patients meeting
the Milan criteria [9] (i.e., one HCC of 5 cm or smaller, or
up to three nodules smaller than 3 cm), while recurrence
after resection can be as high as 70% at 5 years [10].

Predicting recurrence can inform treatment selection as
well as liver allocation, and many independent predictors
of recurrence have been analyzed in the literature. For
example, the biological markers neutrophil-lymphocyte
ratio (NLR) and alpha-fetoprotein (AFP) and tumor size
were found superior to the Milan criteria in predicting
recurrence [11]. In addition, bad tumor differentiation
and previous hepatectomy were found to be risk factors
for recurrence [12]. Nonetheless, studies show that the
most important predictor of recurrence is microvascular
invasion (mVI) [13].

Unfortunately, pre-operative assessment of mVI is dif-
ficult since mVI cannot be reliably diagnosed by needle
biopsy [14]. Serum markers like AFP are currently used
to predict mVI [8], but AFP lacks sensitivity and speci-
ficity in detecting HCCs [15] and assessing mVI [16].
Tumor size and nodule number can be determined pre-
operatively and are also useful to predict mVI [17], but
size alone cannot predict survival; recurrence-free survival
rates can be greater than 80% for tumors larger than 5 cm
if no vascular invasion is found [18]; tumors larger than
10 cm can be resected achieving 64.8% 1-year survival if
no vascular invasion is present (vs. 28% if vascular inva-
sion is found) [18].

Liver imaging such asMRI and CT (especially with the use
of contrast agents) and its visual assessment by radiologists
revealed that some image features are correlated with mVI
[19]. For example, non-smooth tumor margins [20–22] and
an incomplete tumor capsule [22, 23] are predictive of mVI,
together with tumoral and peritumoral enhancement in the
arterial phase of contrast-enhanced (CE) MRI [23, 24] or CT
[20] and peritumoral hypointensity in the hepatobiliary phase
of CE-MRI [24, 25]. Recently, a few studies showed that a set
of pre-defined radiomics/texture features extracted from the
liver tumor region are also associated with mVI. These fea-
tures may come from CT [26] or gadoxetic acid-enhanced
MRI [27–29], and the results appear to be preliminary but
encouraging.

In this work, we investigated a radiomics-based ap-
proach for pre-operative mVI detection from gadopentetic
acid (Gd-DTPA)-enhanced MRI. Different from previous
work, we studied five MRI sequences (i.e., diffusion-
weighted imaging, T1, T2, late arterial phase, and portal
venous phase) and compared their effects when used in-
dividually or combined; furthermore, we investigated the
use of imaging features extracted from not only the tumor
region but also its peripheral region. Our results show that
combining different MRI sequences is beneficial for mVI
prediction.

Materials and Methods

Study Cohort and Dataset

With institutional review board approval and waiver of
the written informed consent from patients, we retrospec-
tively identified 99 patients who underwent surgical treat-
ment for primary HCC at our institution. All patients had
pre-operative multi-parametric MRI scans (described be-
low) taken within a week before surgery and mVI was
assessed by pathologic inspection after removal of the
tumor, according to the criteria in Sumie et al. [30] (i.e.,
three mVI classes: “no mVI”, “mild mVI”, and “severe
mVI”).

Imaging Protocol

All liver MRI scans were obtained using a 1.5T MR scanner
(Sonata, Siemens Healthcare, Erlangen, Germany) and the
following protocols for the five sequences:

& T2:HASTEacquisition protocol [31]withTR = 900msec,
TE = 90msec, slice thickness = 8mm, spatial resolution =
1.32 × 1.15 mm, matrix = 256 × 256

& T1 (pre-contrast): FLASH acquisition protocol [32] with
TR = 118 msec, TE = 2.49 msec, slice thickness = 8 mm,
spatial resolution = 1.32 × 1.15 mm, matrix = 256 × 256

& DWI: EPI-DWI acquisition protocol with TR =
2800 msec, TE = 84 msec, slice thickness = 8 mm, spatial
resolution = 2.65 × 2.30 mm, matrix = 128 × 128

& T1 post-contrast arterial phase: VIBE acquisition protocol
[33] with TR = 4.78 msec, TE = 2.26 msec, slice thick-
ness = 5 mm, resolution = 1.32 × 1.00 mm, matrix =
256 × 256

& T1 post-contrast portal phase: FLASH acquisition proto-
col with TR = 118msec, TE = 2.49msec, slice thickness =
8 mm, spatial resolution = 1.32 × 1.15 mm, matrix =
256 × 256

For dynamic T1-weighted images, a three-dimensional,
volumetric interpolated breath-hold examination (VIBE) se-
quence (TR = 4.78 ms, TE = 90 ms, slice thickness = 5 mm,
matrix = 256 × 256) was used and 0.1 mmol/kg of Gd-DTPA
was injected at a rate of 2 mL/s.

Tumor and Margin Segmentation

Since previous studies indicate that tumor margins may con-
tain useful information in classifying mVI [20, 23–25, 29], we
studied both the tumor and its margin for feature extraction
and machine learning modeling. To this end, we assessed the
following three experimental setups:
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1. Tumor-only features
2. Margin-only features
3. Tumor and margin features

The purpose of the three setups was to assess the
amount of information stored in the tumor itself and in
its marginal region, as well as to investigate the potential
added value of combining the two. In the third setup, we
combined features separately extracted from the tumor
only and the margin only. We also compared the effects
of extracting features directly from the combined tumor
and margin area.

Regions of interest (ROIs) were manually drawn outlining
the tumor region (single tumor or the biggest lesion if there
were more than one) in all five MRI sequences for each pa-
tient. When analyzing patients with more than one lesion, our
physicians suggested we consider the biggest lesion only.
Two experienced radiologists worked on tumor segmentation,
where X. X. (3 years of experience) performed the initial
segmentation and X. X. (18 years of experience) reviewed,
adjusted, and confirmed the segmentation. Table 1 reports
information on the number of slices per tumor for each
sequence.

For each segmented tumor, we automatically obtained
a tumor margin for the peritumoral region. To that end,
we applied a dilation operation to the tumor’s ROI using a
squared kernel of size 11 × 11. This enlarged the ROI by
about 10 pixels around the tumor. From the dilated seg-
mentation, we subtracted the original tumor’s ROI, thus
isolating the marginal region. A 10-pixel margin corre-
sponds to approximately 1 cm around the tumor (spatial
resolution: 1.32 × 1.15 mm for all sequences but the late
arterial sequence, whose resolution is 1.32 × 1.00 mm).
The choice of a 10-pixel (or 1 cm) margin is based on
previous studies [29, 34] as well as on our expert physi-
cian’s suggestions with the consideration of allowing the
inclusion of effective information in the margin while
limiting the potential influence of extra-hepatic tissue.
Figure 1 shows examples of tumor and margin
segmentation.

Evaluation of Single and Combined MRI Sequences

In order to evaluate the effect of each individual MRI se-
quence and whether combining different sequences may pro-
vide additional information to improve mVI prediction, we
trained models on features extracted from individual se-
quences and on combinations of such features. To understand
how each sequence’s features contribute in a multi-sequence
model, we checked which features in the multi-sequence
models were also selected in the corresponding single-
sequence models. The idea is that, if two sequences capture
different aspects relevant to the mVI prediction task, this
should be reflected when combining the two sequences. It is
important to acknowledge that a feature may not be relevant
when considered in a single-sequence model, but become rel-
evant when combined with features from a different sequence.

Radiomics Feature Extraction and Modeling

We employed Pyradiomics [35] to extract 100 3D radiomics
features, including shape features, first-order features, and var-
ious texture features,1 on each of the five MRI sequences
(namely, T1, T2, DWI, late arterial, and portal venous). The
100 features were extracted separately from the volumetric
tumor segmentation and the tumor margin. Since marginal
features and tumor features may be complementary, we also
combined them to obtain 200 features (100 from the tumor
and 100 from the margins) per sequence.

We performed feature selection by Least Absolute
Shrinkage and Selection Operation (LASSO) [36]. When
using features from tumor or margin only, if a multi-
sequence combination is considered and feature selection is
run, only feature sets that include features from all the se-
quences in the combination are kept. This is because we tested
all possible combinations of the five sequences and we did not
want to learn the same model when considering different se-
quence combinations. Similarly, when using combined fea-
tures from tumor and margin, we discarded all LASSO-
selected feature sets that did not include both tumor and mar-
gin features. This means that all single-sequence models must
include features frommargin and tumor for that sequence, and
that all multi-sequence models must include features from
margin (and tumor) from at least one sequence. This is to
avoid learning models from feature sets found when using
tumor or margin features only.

We built binary machine learning classifiers to predict mVI
status: “no mVI” vs. “mild or severe mVI.” The machine
learning models we employed are support vector machines
(SVM), decision trees, k-nearest neighbor (k = 5), and
Naïve-Bayes. The implementation we used is that provided

Table 1 Number of tumor slices (for each sequence, the minimum
number of slices per tumor is 1)

Sequence Average number slices Max number slices

Arterial 12 31

DWI 6.5 18

T1 6 18

T2 6 24

Venous 7 29 1 https://pyradiomics.readthedocs.io/en/latest/features.html, last accessed Jan.
7th, 2019
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by the MATLAB R2018a Statistics and Machine Learning
Toolbox.

Considering our sample size, we used stratified 5-fold
cross-validation to evaluate the radiomics models. In each
fold, the ratio of positive and negative samples is kept con-
stant. The same folds are used to train all models to ensure
results are directly comparable. We used the area under the
receiver operating characteristic curve (AUC) [37] as a prima-
ry performance metric, reporting accuracies as well for addi-
tional information.

We performed feature stability analysis to better under-
stand the learned models. During 5-fold cross-validation, we
looked at how many features are shared among models built
on the five folds. The idea is that, if a feature is selected in
many cross-validation rounds, it can be considered “stable”
and it is likely to be meaningful/essential for the classification
task. Conversely, if a feature is selected only once, it may be

capturing differences in the data that were introduced by
chance during the cross-validation split. We considered a fea-
ture to be stable if it was chosen in at least three cross-
validation folds.

Statistical Analysis

When comparing the demographic characteristics between the
two groups (“no mVI” vs. “mVI [mild or severe mVI]”), the
Wilcoxon signed-rank test (age, max diameter, and KI67) or
the Chi-squared or Fisher exact test (all others) were used as
appropriate. We did not use t tests for continuous variables
because normality in the mVI and no mVI group could not be
verified using a Kolmogorov-Smirnov test.

After identifying which stable features are shared by the
best model and the corresponding single-sequence models, we
analyzed the relationship between such features and factors

Fig. 1 Examples of tumor and
margin segmentation in five MRI
sequences
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that are currently used to make clinical decisions about HCC
(e.g., tumor size and number in the Milan criteria). We report
correlation between the shared radiomics features and the tu-
mors’maximum diameter, and p values for Wilcoxon tests on
median values (given our limited sample size, normality can-
not be assumed and a t test cannot be performed) for the
radiomics features grouped by AFP value (dichotomized at a
threshold of 400 ng/mL), by histopathological grade (dichot-
omized as {1,2}, {3,4}), and by number of lesion (dichoto-
mized as one lesion only vs. more than one lesion). All tests
were performed using R version 3.5.1.

Results

Patient Characteristics

Table 2 reports the demographic information for the patient
cohort. Sixty-one patients out of 99 presented histological
evidence of mVI; most patients in our cohort are male (83)
and the mean age is 51 years in the mVI group and 54 years in
the no mVI group. Most of our patients have hepatitis B virus
(HBV), hepatitis C virus (HCV), or both. It is worth noticing
that the tumor size in our cohort is large with average size of
more than 6.5 cm in both groups. In addition, only 33 patients

have their biggest lesion smaller than 5 cm and 14 have their
biggest lesion smaller than 3 cm. Figure 2 shows two exam-
ples of different sizes of tumor.

The two sub-populations (mVI vs. no mVI) were not sta-
tistically different for all characteristics except for histopatho-
logic grade (p value 0.03) and number of lesions (p value
0.0074). These findings are compatible with previously re-
ported study populations [28, 39].

Effects of mVI Prediction Models

The best-performing machine learning model we tested is
SVM, which is used as the classifier for all experiment results
reported in this article. Table 3 shows the performance for
single-sequence models and Table 4 shows the summarized
results when using different combinations of features (tumor
and margin) and multiple MRI sequences. Note that we focus
on the results based on the combination of features separately
extracted from the tumor region only and the margin region
only, while the results from the features directly extracted
from the combined tumor and margin area show a consistently
inferior performance (results not shown).

We observe that the two best-performing single-sequence
models are trained on the T2 sequence (AUC= 80.84%) and
on the portal venous sequence (AUC = 79.22%), whose

Table 2 Patient demographic characteristics (notice that AFP values are not available for six patients). Continuous variables are reported as mean
(standard deviation)

No mVI mVI Number of patients p value

Age 54.34 (9.27) 51.42 (12.27) 99 0.301

Number of lesions 99 0.0005

1 36 39

> 1 2 22

Sex 99 0.273

M 34 49

F 4 12

Histopathologic grade [according to Edmondson-Steiner [38]] 99 0.031

1 or 2 10 5

2—3 7 9

3 or 4 21 47

KI67 28.08 (21.85) 30.49 (19.23) 99 0.578

Max diameter (mm) 67.18 (38.43) 71.22 (34.51) 99 0.485

Alpha FetoProtein (ng/mL) 93 0.1

≤ 400 31 37

> 400 6 19

Hepatitis 99 0.145

HBV 28 52

HBC 2 0

Both 1 3

No 7 6
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combination also achieves the highest performance (AUC=
86.69%).We can also notice that T2 and portal venous remain
the highest performing sequences in the tumor + margin setup
(AUCs = 84.19% and 84.18%, respectively) and that adding
the margin slightly increases the performance of these two
single-sequence models, although both performance measures
are within about one standard deviation between the tumor
only setup and the tumor + margin setup (for T2, AUC =
80.84 ± 12.5% vs. 84.19 ± 11.29%, for portal venous,
AUC = 79.22 ± 3.68% vs. 84.18 ± 4.48% between tumor and
tumor + margin).

Radiomics Feature Stability Analysis

Table 4 shows AUCs and accuracies for the highest-
performing SVM models in the three experimental setups,
and Table 5 reports the feature stability analysis for those
models (with feature percentage being calculated over the
number of features found in at least one fold). We observe
that the percentage of features consistently selected across
folds decreases as we increase the stability threshold. This
pattern was expected and is common to all three experimental
setups although the decrease is faster in the margin-only setup
and in the tumor + margin setup. In fact, of the 105 (over 200
total features; 100 from T2 and 100 from portal venous) fea-
tures selected in at least one fold in the tumor-only setup, 17
(16%) are shared by at least three folds. This percentage de-
creases to 10% in the other two experimental setups, where 40
features and 15 features are shared by at least three folds.

For models built on tumor features, our results show that
most of the stable predictors used in the best-performing
multi-sequence model (i.e., T2 and portal venous) are also
stable predictors in the single-sequence ones (14 out of 17).
This indicates that features that are strong predictors in single-
sequence models work synergistically when considered
together.

Correlation of Radiomics Features with Other Factors

Table 6 reports the 14 features that are in common between the
single-sequence models and the best-performingmodel for the
tumor-only setup, together with their relations with some de-
mographic variables (shown as either correlations or p values).
We can observe moderate correlation between feature #7
(gray-level size zone matrix-gray level non-uniformity) and
maximum tumor diameter and that the means (medians) of
feature #13 (shape–elongation) are significantly different be-
tween patients when grouped by AFP value and histopatho-
logic grade.

Table 6 reveals a noticeable correlation between tumor di-
ameter and feature #7 (Glszm–gray level non-uniformity).
This feature measures how heterogeneous the gray-level in-
tensities are in the ROI. In order to better understand its rela-
tionship with the tumor’s diameter, Fig. 3 shows the three
patients with the highest value for feature #7.

In all the three cases, the inside of the tumor is heteroge-
neous with respect to gray-level intensities. In particular, we
can see “patches” of relatively uniform gray-level intensity.

Table 3 Single-sequence models’ performance (means and standard deviations)

Sequence Tumor Tumor margin Tumor + margin

AUC mean
and SD (%)

Accuracy mean
and SD (%)

AUC mean
and SD (%)

Accuracy mean
and SD (%)

AUC mean
and SD (%)

Accuracy mean
and SD (%)

DWI 62.21 (12.28) 59.79 (11.28) 60.18 (11.11) 64.63 (3.63) 63.97 (11.70) 58.68 (11.04)

T1 72.88 (6.08) 65.79 (11.63) 71.08 (7.05) 60.58 (5.65) 71.11 (5.65) 67.68 (7.51)

T2 80.84 (12.5) 68.74 (12.80) 81.82 (5.95) 72.84 (8.83) 84.19 (11.29) 70.74 (12.36)

Late arterial 68.74 (12.03) 57.47 (10.34) 60.61 (10.84) 63.63 (8.93) 74.34 (14.41) 66.68 (2.37)

Portal venous 79.22 (3.68) 71.74 (4.29) 70.43 (10.26) 65.68 (8.05) 84.18 (4.48) 78.84 (6.34)

Fig. 2 Margins we automatically
identified for two different tumors
of 111 mm of diameter (left) and
of 17 mm of diameter (right)
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The size and distribution of such patches are captured by the
gray-level size zone matrix (Glszm) features, which may be
the reason why the diameter and feature #7 are correlated. In
addition, very small tumors cannot exhibit a heterogeneous
distribution of gray-level intensities, so their value for feature
#7 is reasonably low.

Comparison with Previous Work

Here, we put the results of our study in context with several
previously published related studies addressing mVI predic-
tion from pre-operative images. Our study using 1.5T MRI
scanners and Gd-DTPA as a contrast agent is different from
the study using triphasic CT scans [26] or other MRI-based
studies in field strength (e.g., 3T [27, 29] or both 1.5T and 3T
[28]), contrast agent (e.g., gadoxetic acid [27–29]), MRI se-
quence protocol, and the approach of incorporating informa-
tion for radiomics modeling [29]. Results from these related
previous studies are overall comparable to ours. For example,
a study including 28 HCC patients obtained an AUC of 0.76
by using radiomics features characterizing tumors and their
boundaries [26]. Similarly, another study achieved an AUC
of 88.2% on an independent validation cohort of 50 patients
but using only a single sequence of the Gd-EOB-DTPA-
enhanced MRI [29]. Using DWI sequence on 41 patients,
another study reported a sensitivity of 94.4% and a specificity
of 63.6% and highlighted D-value and irregular shape of the
tumor as important predictors [27]. Similarly, we found that
shape features are important factors too, but, in our case, these
features were extracted from the T2 and portal venous se-
quences. Including MRI sequences for 179 patients with

single HCC, an additional study showed features such as the
presence of satellite nodules, peritumoral hypointensity, tu-
mor sphericity, and washout were mVI predictors [28]. In
our study, Table 6 shows that tumor sphericity also plays a
similarly important role in predicting mVI.

Discussion

The goal of this study was to analyze whether it is possible to
pre-operatively assess microvascular invasion for hepatocel-
lular carcinoma from multi-parametric liver MRI scans. In
addition, we tested whether the peritumoral region provides
valuable information for this task. Our results show that
radiomics features extracted from the tumor region on pre-
operative MRI scans capture information relevant to the
mVI prediction task. At the same time, radiomics information
from tumor margin also shows an association with mVI but
with a slightly lower AUC in comparison to tumor radiomics.
When combining the tumor and margin radiomics features
together, however, the performance of the model drops, indi-
cating that information from the margin is not complementary
to (and may even be in conflict with) information from the
tumor.

Our results from the tumor radiomics setup show that dif-
ferent sequences (i.e., T2 and portal venous) can capture com-
plementary information, thus achieving increased perfor-
mance when combined. Likewise, when it comes to margin
radiomics, a similar behavior is seen because the combination
of DWI, T2, late arterial, and portal venous exhibits substan-
tially improved performance over individual sequences alone.

Table 5 Feature stability analysis results

Number of folds Tumor (T2 + venous) Margin (T2 + DWI + arterial + venous) Tumor + margin (T2)

Feature no. Feature % Feature no. Feature % Feature no. Feature %

≥ 1 105 100 400 100 147 100

≥ 2 48 45.7 106 26.5 46 31.3

≥ 3 17 16.2 40 10 15 10.0

≥ 4 4 3.8 12 3 3 2

5 2 1.9 8 2 1 0.7

Table 4 Summary of the performance for the best models in each experimental setup (means and standard deviations)

Features Best sequence
combination

AUC mean (%) AUC SD (%) Accuracy
mean (%)

Accuracy
SD (%)

Tumor T2 + venous 86.69 8.09 79.68 10.41

Margin DWI + T2 + arterial + venous 84.62 4.49 75.79 6.37

Tumor + margin T2 84.19 11.29 70.74 12.36
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These findings show that a multi-sequence approach to mVI
prediction is advisable.

The feature stability analysis results help better understand
the potential of the proposed radiomics approach. In all three
experimental setups, the number of features shared across
folds decreases as we require them to be shared by more folds.
This pattern is expected, although it seems to also reveal an
underlying heterogeneity in the 5-fold split, which likely
causes different features to be relevant when observed on dif-
ferent datasets.

Tumor Margin

When correlating radiologic assessment with mVI, previous
studies report that peritumoral enhancement patterns are good
predictors. For this reason, we assessed models built on fea-
tures extracted from an automatically generated marginal re-
gion around the tumor. While previous studies have included
peritumoral information by, for example, extracting features
from an ROI around the tumor [28], we precisely defined a
peritumoral margin and extracted features from this region. In

addition, all our features are automatically extracted and do
not require visual assessment by radiologists [26]. Our results
(Table 4) show that marginal information alone can reach a
close discrimination performance as tumor-extracted features,
achieving an AUC of 84.62% (vs. 86.69% achieved by tumor
features). Also, single-sequence models using margin
radiomics perform generally worse than their tumor radiomics
counterparts. When tumor features and margin features are
jointly modeled, we generally see an increase in average pre-
diction performance across the five folds, but also an in-
creased variability. This indicates a notable effect of the fea-
tures extracted from peritumoral areas for mVI prediction,
meriting further evaluation in larger cohorts. Note that in our
study the automatically extracted peritumoral region may in-
clude extra-hepatic areas. This is partly due to the relatively
large size of the tumors in our cohort, as exemplified in Fig. 2.
The margin of the tumor of diameter 111 mm includes extra-
hepatic regions, while that of the tumor of diameter 17 mm
only includes liver parenchyma. The extra-hepatic areas can
possibly be responsible for the heterogeneity in the marginal
radiomics feature extraction. This observation has to do with

Table 6 Features common to the single-sequence models and the best
model for the tumor feature experiment and their relation to demographic
variables. For each grouping (i.e., column in the table), we only report

p values that are < 0.05. If no test in that grouping reaches this signifi-
cance level, we show p values < 0.1

Features Sequence Diameter
(correlation)

AFP (threshold
= 400 ng/mL)

Histopathologic
grade

Number of
lesions

1 1st order—kurtosis T2 0.24

2 1st order—skewness T2 0.31

3 Glcm—Imc2 T2 0.69 0.087

4 Gldm—dependence variance T2 0.66 0.014

5 Gldm—low gray level emphasis T2 − 0.49
6 Gldm—small dependence emphasis T2 − 0.57
7 Glszm—gray level non-uniformity T2 0.80

8 Glszm—low gray level zone emphasis T2 − 0.60
9 Shape—flatness T2 0.22 0.055

10 Shape—sphericity T2 − 0.37
11 Glcm—difference variance Portal venous 0.19

12 Glszm—size zone non-uniformity normalized Portal venous − 0.53
13 Shape—elongation Portal venous 0.22 0.023 0.056

14 Shape—sphericity Portal venous − 0.31

Fig. 3 Sample T2 scans for
patients with the highest value of
feature #7. Left: diameter:
130 mm, center: diameter:
138 mm, right: diameter: 138 mm
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our choice of the margin size (i.e., 10 pixels). Choosing a
wider margin would result in the inclusion of larger portions
of extra-hepatic tissue, thus exacerbating the heterogeneity
issue, while too narrow a margin may not contain enough
information. In this study, our choice of 10 pixels (1 cm wide)
margin per suggestions of our experienced radiologists is con-
cordant with previous work in the literature [29, 34], but op-
timal margin size will need further investigation.

The issue with the margin features is also present when we
combine tumor features and margin features. In fact, the best
performing model in the third experiment is a single-sequence
model, which seems to contradict the observation drawn from
the tumor features experiment that different sequences capture
different pieces of information that can work synergistically
toward the prediction goal. As mentioned in the “Materials
and Methods” section, we forced models learned in the third
experiment to include features from both margin and tumor
region, so the best model for the first experiment (i.e., T2 and
portal venous, tumor features only) cannot be learned in the
third experimental setup. Once again, we suspect that the het-
erogeneity in the marginal features leads to the lack of im-
provement in mVI prediction whenmargin and tumor features
are combined.

Limitations

Despite our promising results, our study has some limitations.
First, the sample size is limited to 99 patients. Nevertheless,
we performed extensive analysis investigating five different
MRI sequences per patient and extracting radiomics features
from both tumor and margin region. The sample is slightly
unbalanced because there are 61 mVI positive cases. Second,
our cohort mostly includes large tumors (with average diam-
eter > 6.5 cm) and patients with either HBV, HCV, or both.
The fact that we only have 14 cases with tumor size < 3 cm
prevents us from doing a subgroup analysis on these smaller
tumors. A larger study including a broader span of patients’
characteristics is needed for results to be generalizable.
Regarding the inclusion of large tumors, tumor size and num-
ber of nodules are commonly used to gauge how aggressive a
tumor is and, consequently, whether to surgically treat it (e.g.,
the Milan criteria [9]). This notwithstanding, some studies
reported that the number (and size) of nodules was not predic-
tive of survival when corrected by mVI status [13]. Also re-
lated to generalizability, all our patients came from at the same
hospital and were scanned with the same MRI scanner. While
this data consistency reduces potential confounding effects,
external cohorts and different MRI scanners would increase
the independent validity and generalizability of our results. In
addition, because tumor ROIs were manually drawn, there
could be some differences between the tumor ROI outlines
in different sequences, and as a result, the “tumor region” in
one sequence may have been a peritumoral region in another

sequence. This could be a potential factor that had influenced
the model’s evaluation. More accurate and automated tumor
segmentation is needed for an in-depth analysis in future
work. Finally, considering our sample size, our interpretation
of the results related to the multi-sequence and tumor margin
as well as the feature analysis needs further evaluation. Our
study has important differences with related work and our
results represent an additional contribution on examining
how radiomics features may relate to possibly observable
characteristics of a tumor and its surrounding region in liver
MRI for mVI prediction.

Conclusion

In summary, our study provides encouraging results on pre-
operative assessment of mVI frommulti-parametric liverMRI
scans. Our radiomics-based machine learning algorithm
reaches an AUC of 86.69% and shows different MRI se-
quences (in our case, T2 and portal venous) provide comple-
mentary information for mVI prediction. Further evaluation
on larger datasets is needed.
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