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Interactions among individuals in natural populations often occur in a
dynamically changing environment. Understanding the role of environ-
mental variation in population dynamics has long been a central topic in
theoretical ecology and population biology. However, the key question of
how individuals, in the middle of challenging social dilemmas (e.g. the
‘tragedy of the commons’), modulate their behaviours to adapt to the fluctu-
ation of the environment has not yet been addressed satisfactorily. Using
evolutionary game theory, we develop a framework of stochastic games
that incorporates the adaptive mechanism of reinforcement learning to
investigate whether cooperative behaviours can evolve in the ever-changing
group interaction environment. When the action choices of players are just
slightly influenced by past reinforcements, we construct an analytical con-
dition to determine whether cooperation can be favoured over defection.
Intuitively, this condition reveals why and how the environment can mediate
cooperative dilemmas. Under our model architecture, we also compare this
learning mechanism with two non-learning decision rules, and we find that
learning significantly improves the propensity for cooperation in weak social
dilemmas, and, in sharp contrast, hinders cooperation in strong social dilem-
mas. Our results suggest that in complex social–ecological dilemmas,
learning enables the adaptation of individuals to varying environments.
1. Introduction
Throughout the natural world, cooperating through enduring a cost to endow
unrelated others with a benefit is evident at almost all levels of biological organ-
isms, from bacteria to primates [1]. This phenomenon is especially true for
modern human societies with various institutions and nation-states, in which
cooperation is normally regarded as the first choice to cope with some major
global challenges, such as curbing global warming [2,3] and governing the com-
mons [4]. However, the mechanism underlying cooperative behaviour has
perplexed evolutionary biologists and social economists for a long time [5,6].
Since according to the evolutionary theory of ‘survival of the fittest’ and the
hypothesis of Homo economicus, this costly prosocial behaviour will be defini-
tively selected against and should have evolved to be dominated by selfish act [7].

To explain how cooperation can evolve and be maintained in human
societies or other animal groups, a large body of theoretical and experimental
models have been put forward based on evolutionary game theory [6,8,9]
and social evolution theory [10]. Traditionally, the vast majority of the previous
work addressing this cooperative conundrum concentrates on the intriguing
paradigm of a two-player game with two strategies, Prisoner’s Dilemma
[6,11]. Motivated by abundant biological and social scenarios where inter-
actions frequently occur in a group of individuals, its multi-person version,
the public goods game, has attracted much attention in recent years [12].
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Meanwhile, it also prompts a growing number of researchers
to devote to studying multi-player games and multi-strategy
games [13–18]. However, these prominent studies implicitly
assume, as most of the canonical work does, that the game
environment is static and independent of players’ actions.
In other words, in these models, how players act by choosing
game-play strategies only affects the strategic composition in
the population, but the game environment itself is not influ-
enced. As a result, a single fixed game is played repeatedly.
Of course, this assumption is well grounded, if the timescale
of interest (e.g. the time to fixation or extinction of a species)
is significantly shorter than that of the environmental change.
For most realistic social and ecological systems, however, it
seems to be too idealized. Hence, an explicit consideration
of environmental change is needed. A prototypical instance
is the overgrazing of common pasture lands [19], where the
depleted state may force individuals to cooperate and accord-
ingly the common-pool resources will increase, whereas the
replete state may induce defection and the common-pool
resources will decrease [20,21]. Other examples also exist
widely across scales from small-scale microbes to large-scale
human societies [22]. A common feature of these examples
is the existence of the feedback loop where individual beha-
viours alter environmental states, and are influenced in turn
by the modified environment [20,23].

Although the effect of environmental variations on popu-
lation dynamics has long been recognized in theoretical
ecology and population biology [24–26], it is only recently
that there has been a surge of interest in constructing
game–environment feedbacks [20,21,23,27,28] to understand
the puzzle of cooperation, especially in structured popu-
lations [29–31]. Different from the conventional set-up in
evolutionary game theory [8,9], the key conceptual inno-
vation of these works is the introduction of multiple games
[32,33], evolving games [34,35], dynamical system games
[36] or stochastic games [37,38]. By doing so, the players’
payoff depends on not only strategic interactions but also
the environmental state, and meanwhile, the fluctuation of
the environment will be subject to the actions adopted by
players. In this sense, the consideration of a dynamic game
environment for the evolution of cooperation has as least
two significant implications. First, it vastly expands the exist-
ing research scope of evolutionary game theory by adding a
third dimension (multiple games) to the prior two-dimension
space (multiple players and multiple strategies) [33]. That is,
this extension generalizes the existing framework to encom-
pass a broader range of scenarios. Second, the new key
component, environmental feedbacks [20,23], is integrated
seamlessly into the previous theoretical architecture.

While these promising studies primarily focused on
pre-specified or pre-programmed behavioural policies to
analyse the interdependent dynamics between individual
behaviours and environmental variations, the key question
of how individuals adjust their behaviours to adapt to
the changing environment has not yet been sufficiently
addressed. In fact, when confronting complex biotic and
abiotic environmental fluctuations, how organisms adap-
tively modulate their behaviours is of great importance for
their long-term survival efforts [25,39]. For example, those
plants growing in the lower strata of established canopies
can adjust their stem elongation and morphology in response
to the spectral distribution of radiation, especially the ratio of
red to far-red wavelength bands [40]; in arid regions, bee
larvae, as well as angiosperm seeds, strictly comply with a
bet-hedging emergence and germination rule such that repro-
duction activities are only limited to a short period of time
following the desert rainy season [41]. Particularly, as an indi-
vidual-level adaptation, learning through reinforcement is a
fundamental cognitive or psychological mechanism used by
humans and animals to guide action selections in response
to the contingencies provided by the environment [42–44].
Employing the experience gained from historical interactions,
individuals always tend to reinforce those actions that will
increase the probability of rewarding events and lower the
probability of aversive events. Although this learning prin-
ciple has become a central method in various disciplines,
such as artificial intelligence [44,45], neuroscience [43],
learning in games [46] and behavioural game theory [47],
there is still a lack of theoretical understanding of how it
guides individuals to make decisions in order to resolve
cooperative dilemmas.

In the present work, we develop a general framework to
investigate whether cooperative behaviours can evolve by
learning through reinforcement in constantly changing multi-
player game environments. To characterize the interplay
between players’ behaviours and environmental variations,
we propose a normative model of multi-player stochastic
games, in which the outcome of one’s choice relies on not
only the opponents’ choices but also the current game environ-
ment. Moreover, we use a social network to capture the spatial
interactions of individuals. Instead of using a pre-specified
pattern, every decision-maker in our model learns to choose
a behavioural policy by associating each game outcome with
reinforcements. By doing so, our model not only considers
the environmental feedback, but also incorporates a cognitive
or psychological feedback loop (i.e. players’ decisions deter-
mine their payoffs in the game, and in turn are affected by
the payoffs). When selection intensity is so weak that the
action choices of players are just slightly influenced by past
reinforcements, we derive the analytical condition that
allows for cooperation to evolve under the threat of the
temptation to defection. Through extensive agent-based simu-
lations, we validate the effectiveness of the closed-form
criterion in well-mixed and structured populations. Also, we
compare the learning mechanism with two non-learning
decision rules, and interestingly, we find that learning
markedly improves the propensity for cooperation in weak
social dilemmas whereas it hinders cooperation in strong
social dilemmas. Furthermore, under non-stationary con-
ditions, we analyse how cooperation coevolves with the
environment and the effect of external incentives on the coop-
erative evolution by agent-based simulations.
2. Model and methods
2.1. Model
We consider a finite population of N individuals living in
an evolving physical or social environment. The population
structure describing how individuals interact with their neigh-
bours is characterized by a network, where nodes represent
individuals and edges indicate interactions. When individuals
interact with their neighbours, only two actions, cooperation
(C) and defection (D), are available, and initially, every individ-
ual is initialized with a random action in the set A ¼ {C, D}
with a certain probability. In each time step, one individual is



Table 1. Payoff table of the d-player stochastic game.

no. C
co-players d− 1 … j … 0

C ad−1(s) … aj(s) … a0(s)

D bd−1(s) … bj(s) … b0(s)
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chosen randomly from the population to be the focal player,
and then d− 1 of its neighbours as co-players are selected at
random to form a d-player (d≥ 2) stochastic game [37,38]. To
ensure that the game can always be organized successfully,
we assume that each individual in the population has at least
d− 1 neighbours. Denote the possible number of C players
among d− 1 co-players by the set J W {0, 1, . . . , d� 1}, and
possible environmental states by the set S W {s1, s2, . . . , sM},
where si, i = 1, 2,…, M, represents the environmental state of
type i. Then, depending on the co-players’ configuration
j [ J and the environmental state s [ S in the current
round, each player will gain a payoff given in table 1. Players
who take action C will get a payoff a j(s) [ R, whereas
those who take action D will get a payoff b j(s) [ R, where R

represents the set of real numbers. Players update their
actions asynchronously; that is, in each time step, only
the focal player updates its action, and other individuals
still use the actions in the previous round. Furthermore,
to prescribe the action update rule, we define the policy
p(s, j, a; u, b) :S � J �A ! [0, 1] with two parameters θ and
β to specify the probability that action a is chosen by the focal
player when there are j opponents taking action C among
d− 1 co-players in the environmental state s [ S. Therein,
u [ RL is the column vector of L-dimension used for updating
the policy by learning through reinforcement, and β∈ [0, +∞)
is the selection intensity [48], also termed the adaptation rate
[49], which captures the effect of past reinforcements on the
current action choice.

After each round, players’ decisions regarding whether to
cooperate or defect in the game interaction will not only
influence their immediate payoffs but also the environmental
state in the next round. That is to say, the probability of the
environmental state in the next round is conditioned on the
action chosen by the focal player and the environmental
state in the current round. Without loss of generality, we
here assume that the dynamics of environmental states {st}
obey an irreducible and aperiodic Markov chain, which
thus possesses a unique stationary distribution. Also, from
table 1, it is clear that the payoff of each player is a function
of the environmental state. Therefore, when the environment
transits from one state to another, the type of the (multi-
player) normal-form game defined by the payoff table may
be altered accordingly.

The emergence of the new environmental state in the next
round, apart from influencing the game type, may also trigger
players to adjust their behavioural policies. This is because
those previously used decision-making schemes may no
longer be appropriate in the changed environment. We here
consider a canonical learning mechanism, the actor–critic
reinforcement learning [42–44], to characterize the individual
adaptation to the fluctuating environment. Specifically, after
each round, the players’ payoffs received from the game inter-
action will play a role of the incentive signal of the interactive
scenario. If one choice gives rise to a higher return in a certain
scenario, then it will be reinforced with a higher probability
in the future when encountering the same situation again.
By contrast, those choices resulting in lower payoffs will be
weakened gradually. Technically, this process is achieved via
updating the learning parameter θ of the policy after each
round (see Methods for more details). In the successive
round, the acquired experiencewill be sharedwithin the popu-
lation and the updated policy will be reused by the newly
chosen focal player to determine which action to be taken. In
a similar way, this dynamical process of game formation and
policy updating is repeated infinitely (figure 1).

2.2. Methods
2.2.1. Actor–critic reinforcement learning
As the name suggests, the architecture of the actor–critic
reinforcement learning consists of two modules. The actor
module maintains and learns the action policy. Generally, there
are two commonly used forms, ϵ-greedy and Boltzmann explora-
tion [44,45]. Here, we adopt the latter for convenience, and
consider the following Boltzmann distribution with a linear
combination of features:

p(s, j, a; u, b) ¼ ebu
Tfs,j,aP

b[A ebu
Tfs,j,b

, 8 s [ S, j [ J , a [ A, (2:1)

where fs,j,a [ RL is the column feature vector with the same
dimension of θ, which is handcrafted to capture the important
features when a focal player takes action a given the environ-
mental state s and the number of C players j among its d− 1
co-players. Moreover, the dimension of the feature vector will
in general be chosen to be much smaller than that of environ-
mental states for the computational efficiency, i.e. L≪M. For
the construction of the feature vector, there are many options,
such as polynomials, Fourier basis, radial basis functions and
artificial neural networks [44]. As mentioned in the Model, β con-
trols the selection intensity, or equivalently the adaptation rate.
If β→ 0, it defines a weak selection and the action choice is
only slightly affected by past reinforcements. When β = 0, in par-
ticular, players choose actions with uniform probability. By
contrast, if β→ +∞, the action with the maximum θTϕs,j,a will
be exclusively selected.

Another module is the critic, which is designed to evaluate
the performance of the policy. In general, the long-run expected
return of the policy per step, ρ(π), will be a good measurement of
the policy’s performance, which is defined by

r(p) W lim
t!1

1
t
E{r1 þ r2 þ � � � þ rtjp}, (2:2)

where rt+1∈ {ad−1(s), … , a0(s), bd−1(s), … , b0(s)} is a random vari-
able which denotes the payoff of the focal player at time t∈ {0, 1,
2, … }. In particular, if one denotes the probability that the
environmental state at time t is st under the policy π when start-
ing from the initial state s0 by Pr{st = s|s0, π}, and the average
probability that all possible individuals chosen as the focal
player encounter j opponents taking action C among d− 1
co-players by p·j, then ρ(π) can be computed by

r(p) ¼
X
s[S

dp(s)
X
j[J

p�j
X
a[A

p(s, j, a; u, b)Ra
s,j, (2:3)

where dp(s) ¼ limt!1 Pr{st ¼ sjs0, p} is the stationary distribution
of environmental states under the policy π; Ra

s,j is the payoff of
the focal player when it takes action a given the environmental
state s and the number of C players j among its d− 1 co-players,
which is given by

Ra
s,j ¼

aj(s), if a ¼ C;
bj(s), if a ¼ D:

�
(2:4)
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t
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Figure 1. Illustration of evolutionary dynamics for 4-player stochastic games in the structured population. (a) At a time step t, a random individual is chosen as the
focal player (depicted by the dashed red circle), and then three of its neighbours are selected randomly as co-players to form a 4-player game (because the focal
player only has three neighbours, all of them are chosen), which is depicted by the light magenta shaded area. Conditioned on the focal player’s action and the
environmental state st at time t, the environmental state at time t + 1 will be changed to st+1 with a transition probability. Similarly, a new round of the game will
be reorganized at time t + 1. This process is repeated infinitely. (b) At time t, after perceiving the environmental state st and the co-players’ configuration j, the focal
player uses policy π to determine which action to be taken, whereas its co-players still use their previous actions in the past round. At the end of this round, each
player will gain a payoff, which will play a role of the feedback signal and will assist the focal player to update its policy.
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Moreover, tomeasure the long-term accumulative performance
of the policy, we define a Q-value function,

Qp(s, j, a) W
X1
t¼1

E{rt � r(p)js0 ¼ s, j0 ¼ j, a0 ¼ a, p}, 8 s [ S,

j [ J , a [ A,

(2:5)

which is a conditional value depending on the initial environ-
mental state s0 = s, the number of C players j0 = j among d− 1
co-players, and action a0 = a at time t = 0. Since the space of the
environmental state is usually combinatorial and extremely large
in many game scenarios, it is in effect impossible to calculate the
Q-value function exactly for every environmental state within
finite time with given computational resources [44]. Typically,
one effective way to deal with this problem is to find a good
approximation of the Q-value function. Let fw(s, j, a) be the
approximation to theQ-value function and satisfy the compatibility
condition [50,51]

fw(s, j, a) ¼ wT @p(s, j, a; u, b)
@u

1
p(s, j, a; u, b)

� �

¼ wT fs,j,a �
X
b[A

p(s, j, b; u, b)fs,j,b

" #
b, (2:6)

where w [ RL is the column vector of weight parameters. To effec-
tively approximate theQ-value function, it is natural to learn fw(s, j,
a) by updatingw via the leastmean squaremethodunder the policy
π. After acquiring the approximated measurement of the policy’s
performance fw(s, j, a), policy π can be then improved by following
the gradient ascent of ρ(π). Thus, the full algorithm of the actor–
critic reinforcement learning can be given by (see electronic
supplementary material SI.1 for details)
wtþ1 ¼ wt þ at[rtþ1 � �Rt þ fwt (stþ1, jtþ1, atþ1)� fwt (st, jt, at)]
@fwt (st, jt, at)

@wt
,

utþ1 ¼ ut þ gt
@p(st, jt, at; ut, b)

@ut

1
p(st, jt, at; ut, b)

fwt (st, jt, at),

9>>>=
>>>;

(2:7)
where �Rt is the estimation of ρ(π), and iterates through
�Rtþ1 ¼ �Rt þ [rtþ1 � �Rt]=(tþ 1) and �R0 ¼ 0, t = 0, 1, 2, … ; αt and
γt are learning step-sizes which are positive, non-increasing for
8 t, and satisfy

P
t at ¼

P
t gt ¼ 1, Pt a

2
t , 1 and

P
t g

2
t , 1,

and gt=at ! 0 for t ! 1. These conditions required for the learn-
ing step-sizes guarantee that the policy parameter θt is updated
at a slower timescale than that of the function approximation
wt, and thus ensure the convergence of the learning rule [51,52].

2.2.2. Evolution of cooperative behaviours
To capture the evolutionary process of cooperation, we first
denote the number of C players in the population by nt at



royalso

5
time t. Since there is only one individual to revise its action per
step in our model, all possible changes of nt in each time step
will be limited to increasing by one, decreasing by one, or
keeping unchanged. It implies that the evolutionary process of
cooperation can be formulated as a Markov chain {nt} defined
over the finite state space N ¼ {0, 1, 2, . . . , N}. Meanwhile, the
transition probability from nt ¼ u [ N to ntþ1 ¼ v [ N can be
calculated by
cie
typublishing.org/journal/rs
pu,v(t) ¼
X
s[S

Pr{st ¼ sjs0, p}
X
j[J

pCpC,jp(s, j, C; ut, b)þ pDpD,jp(s, j, D; ut, b), for v ¼ u;
pCpC,jp(s, j, D; ut, b), for v ¼ u� 1;

pDpD,jp(s, j, C; ut, b), for v ¼ uþ 1;

0, otherwise,

8>>><
>>>:

(2:8)
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J.R.Soc.Interface

17:2
where pC = u/N (respectively, pD = (N− u)/N) is the probability that
an individual who previously took action C (respectively, D) is
chosen as the focal player at time t; pC,j (respectively, pD,j) is the aver-
age probability that players who previously took action C
(respectively, D) encounter j opponents taking action C among
d− 1 co-players at time t. It is clear that the Markov chain is non-
stationary because the transition probabilities change with time.

To find the average abundance of cooperators in the
population, we first note that the actor–critic reinforcement
learning converges [50,51] and the environmental dynamics
have been described by an irreducible and aperiodic Markov
chain. As such, we denote the limiting value of the policy
parameter θt for t→∞ by θ* (a local optimum of ρ(π); see
electronic supplementary material SI.1 for details), and the
unique stationary distribution of environmental states by
dp(s) ¼ limt!1 Pr{st ¼ sjs0, p}. It follows that the probability
transition matrix P(t) = [ pu,v(t)](N+1)×(N+1) will converge to
P� ¼ [p�u,v](Nþ1)�(Nþ1) for t→∞, where
02
00639
p�u,v ¼ lim
t!1 pu,v(t) ¼

X
s[S

dp(s)
X
j[J

pCpC,jp(s, j, C; u�, b)þ pDpD,jp(s, j, D; u�, b), for v ¼ u;
pCpC,jp(s, j, D; u�, b), for v ¼ u� 1;

pDpD,jp(s, j, C; u�, b), for v ¼ uþ 1;

0, otherwise:

8>>><
>>>:

(2:9)
Moreover, it is noteworthy that the Markov chain described
by the probability transition matrix P* will be irreducible
and aperiodic. This is because based on the matrix P*, any two
states of the Markov chain are accessible to each other and the
period of all states is 1. Hence, one can conclude that the non-
stationary Markov chain {nt} is strongly ergodic [53,54], and
there exists a unique long-run (i.e. stationary) distribution
X ¼ [xn]1�(Nþ1), n [ N . Therein, X can be obtained by calculating
the left eigenvector corresponding to eigenvalue 1 of the
probability transition matrix P*, i.e. the unique solution to
X(P*− I) = 0N+1 and

P
n[N xn ¼ 1, where I is the identity matrix

with the same dimension of P* and 0N+1 is the row vector with
N + 1 zero entries. When the system has reached the stationary
state, the average abundance of C players in the population can
be computed by hxCi ¼

P
n[N (xn � n=N). If 〈xC〉 > 1/2, it implies

thatC players aremore abundant thanD players in the population.
3. Results
3.1. Conditions for the prevalence of cooperation
We first study the condition under which cooperation can be
favoured over defection, and restrict our analysis in the limit
of weak selection (β→ 0) given that finding a closed-form
solution to this problem for arbitrary selection intensity is
usually NP-complete or # P-complete [55]. In the absence of
mutations, such a condition can be obtained in general by com-
paring the fixation probability of cooperation with that of
defection [48]. In our model, however, how players update
their actions is conducted by the policy with an exploration–
exploitation trade-off, which possesses a property similar to
the mutation–selection process [56]. Thus, in this case, we
need to calculate the average abundance of C players when
the population has reached the stationary state, and determine
whether it is higher than that ofD players [57]. Using all aj(s) to
construct the vector A = [a(s1), a(s2), … , a(sM)]T, and all bj(s)
to construct the vector B = [b(s1), b(s2), … , b(sM)]T,
where a(sk) = [a0(s

k), a1(s
k), … , ad−1(s

k)] and b(sk) = [bd−1(s
k),

bd−2(s
k), … , b0(s

k)], k = 1, 2, … , M, it follows that under weak
selection the average abundance of C players in the stationary
state is (see electronic supplementary material SI.2 for details)

hxCi ¼ 1
2
þ 1
N

X
s[S

dp(s)u�TFs(A� B)

" #
bþ o(b), (3:1)

and thus it is higher than that of D players if and only ifX
s[S

dp(s)u�TFs(A� B) . 0, (3:2)

whereΦs is the coefficientmatrix corresponding to the environ-
mental state s, and needed to be calculated for the given
population structure, but independent of both aj(s) and bj(s)
for 8 j [ J and 8s [ S.

To obtain an explicit formulation of condition (3.2), we
further consider two specific population structures, well-
mixed populations and structured populations. In the former
case, the interactive links of individuals are described by a com-
plete graph, whereas in the latter case, they are described by a
regular graph with node degree d− 1. When the population
size is sufficiently large, we find that in the limit of weak selec-
tion, condition (3.2) in these two populations reduces to an
identical closed form (see electronic supplementary material
SI.3 for details):

X
s[S

dp(s)
Xd�1

j¼0

d� 1
j

� �
1

2dþ1 u
�T[fs,j,C � fs,j,D] . 0: (3:3)

Through extensive agent-based simulations, we validate
the effectiveness of this criterion. As illustrated in figure 2,
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Figure 2. Average abundance of C players in the population as a function of the stationary proportion of different games. In each homogeneous environmental state,
s1 or s2, one of the three normal-form games, PGG, TPGG and dSD, is played. In the top row, three transition graphs are depicted to describe how the environment
transits from one state to another. Corresponding to these three transition graphs, the bottom row shows the average abundance of C players in various population
structures, based on theoretical calculations and simulations. All simulations are obtained by averaging 40 network realizations and 108 time steps after a transient
time of 107, and θ is normalized per step to unify the magnitude. The feature vector ϕs,j,a is chosen to be the one-hot vector. Parameter values: N = 400, β = 0.01,
C ¼ c ¼ 1, rs = 3 in the PGG while rs = 4 in the TPGG, Bs ¼ 12 in (b) while Bs ¼ 4 in (c), and T = [d/2] + 1 ([ · ] represents the integer part).
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we calculate the average abundance of C players in the popu-
lation with two distinct environmental states, s1 and s2,
which, for instance, can represent the prosperous state and
degraded state of a social–ecological system [20,58], respect-
ively. To specify the type of the (multi-player) normal-form
game defined by the payoff table 1 for each given environ-
mental state, in figure 2, we consider that one of the three
candidates, the public goods game (PGG) [19], threshold
public goods game (TPGG) [3,59] and d-player snowdrift
game (dSD) [60], is played in each state. In these three
kinds of games, the implication of defection is unambiguous
and it means not to contribute. However, in defining
cooperation and calculating payoffs, there are some differ-
ences. In the PGG, action C means contributing a fixed
amount c to the common pool. After a round of donation,
the sum of all contributions from the d-player group will be
multiplied by a synergy factor rs > 1 and then allotted equally
among all members, where rs depends on the current game
environment s. In this case, the payoffs of cooperators and
defectors are computed by aj(s) = ( j + 1)rsc/d− c and bj(s) =
jrsc/d, j [ J , respectively. The aforementioned setting is
also true for the TPGG, except that there exists a minimum
contribution effort, T, for players to receive benefits. More
specifically, only when the number of C players in the d-
player game is not smaller than T can each player receive a
payoff from the common pool; otherwise, everyone gets noth-
ing. It then follows that a C player will receive a payoff
aj(s) = ( j + 1)crs/d− c for j≥ T− 1 and aj(s) = 0 otherwise,
whereas a D player will receive bj(s) = jcrs/d for j≥ T and
bj(s) = 0 otherwise. Different from the PGG and TPGG, in
the dSD, action C means endowing everyone with a fixed
payoff Bs and simultaneously sharing a total cost C evenly
with the other C players, where Bs depends on the environ-
mental state s. In this case, the payoffs of cooperators and
defectors are then changed to aj(s) ¼ Bs � C=(jþ 1) for
j [ J , and bj(s) ¼ Bs for j > 0 and b0(s) = 0, respectively. As
shown in figure 2, the theoretical predictions for the average
abundance of C players are highly consistent with simulation
results, which suggests that criterion (3.3) is effective for
determining whether cooperation can outperform defection.

Moreover, conditions (3.2) and (3.3) offer us an intuitional
theoretical interpretation of why the environment can mediate
social dilemmas [22]. As shown in figure 2, in an identical scen-
ario, the average abundance ofC players is always less than 1/2
in the homogeneous state where the PGG is played, whereas it
is greater than 1/2 in some homogeneous states where a TPGG
or dSD is played. The reason is that the social dilemma in the
TPGG and dSD is weaker than that in the PGG. Thus,
cooperation in these two kinds of games is easier to evolve.
Namely, if the environment is homogeneous, condition (3.2)
or (3.3) in the PGG is more difficult to be satisfied in contrast
to the TPGG or dSD. Due to the existence of the underlying
transition of the environment, however, the population may
have some opportunities to extricate itself from those hostile
environmental states where defection is dominant (e.g. the
state of the PGG). This case is especially likely after some
prosocial behaviours have been implemented by players
[21,29,58]. As such, the population will spend some time stay-
ing in the states where defection is not always favourable (e.g.
the TPGG or dSD). Consequently, the changing environment
balances the conditions that favour versus undermine
cooperation, andmeanwhile the social dilemma that the popu-
lation is confronted with is diluted. Such an observation is also
in line with the fact that the final condition of whether
cooperation can prevail is a convex combination of those
results in each homogeneously environmental state, as
shown in conditions (3.2) and (3.3).
3.2. Learning versus non-learning
Here, we exclude the effect of reinforcement learning, and
apply our model framework to study two prototypical non-
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learning processes of action choices, the smoothed best
response [11] and the aspiration-based update [59,61]. For the
former, in each time step, the focal player chosen in our
model revises its action by comparing the payoff of cooperation
with that of defection, and the more profitable action will be
adopted. Instead of doing this in a deterministic fashion, in
many real-life situations, it is more reasonable to assume that
the choice of the best response is achieved smoothly and influ-
enced by noise. One typical form to model this process is the
Fermi function [11]:

p(s, j, a; b) ¼ 1

1þ e�b[Ra
s,j�Rb

s,j]
, 8 s [ S, j [ J , a, b(=a) [ A,

(3:4)

which specifies the probability for the focal player to choose
action a [ A. For the latter, however, the focal player
determines whether to switch to a new action by comparing
the action’s payoff with an internal aspiration level. If the
payoff is higher than the aspiration level, the focal player will
switch to that action with a higher probability. Otherwise, its
action is more likely to keep unchanged. Similarly, the com-
monly used form to quantify the probability that the focal
player switches to the new action a [ A is still the Fermi
function [59,61]:

p(s, j, a; b) ¼ 1

1þ e�b[Ra
s,j�E)] , 8 s [ S, j [ J , a [ A, (3:5)

where a constant aspiration level E is adopted because
heterogenous aspirations [61] or time-varying aspirations (see
electronic supplementary material SI.4) cannot result in alter-
ing the evolutionary outcome under weak selection. Using
these two non-learning update rules as the decision-making
policy of the focal player, under our model framework, we
find that in the limit of weak selection, cooperation is more
abundant than defection if and only ifX

s[S
dp(s)

X
j[J

sj[aj(s)� bd�1�j(s)] . 0, (3:6)

where σj, 8j [ J , are some coefficients needed to be calculated
for the given population structure, but independent of both
aj(s) and bj(s). In either well-mixed populations or structured

populations, we find that the coefficients are sj ¼ d�1
j

� �
=2dþ1

for the smoothed best response and sj ¼ d�1
j

� �
=2dþ2 for the

aspiration-based update (see electronic supplementarymaterial
SI.4 for details). In particular, if the population consistently stays
in a fixed environment, condition (3.6)will reduce to the ‘sigma-
rule’ of multi-player normal-form games [15].

In a population where there are three distinct environ-
mental states and in each state one of the PGG, TPGG and
dSD is played, we compare the results obtained by learning
through reinforcement with those obtained from the two
non-learning updates. As illustrated in figure 3, we calculate
the average abundance of C players and the expected payoff
of focal players per round for all possible stationary distri-
butions of environmental states. Intriguingly, one can find
that learning enables players to adapt to the varying environ-
ment. When the population stays in the environment where
players are confronted with a weak social dilemma (i.e. the
TPGG or dSD will be more likely to be played than the
PGG), learning players will have a higher propensity for
cooperation than those non-learning players. Meanwhile,
they will reap a higher expected payoff per step. By contrast,
when the population stays in the environment where the
social dilemma is strong (i.e. the PGG will be more likely to
be played than the TPGG and dSD), learning players will
have a lower propensity for cooperation and accordingly
they will get a lower expected payoff per step than non-learn-
ing players. Once again, we demonstrate that the analytical
results are consistent with the agent-based simulations (see
electronic supplementary material, figure S5).

3.3. Evolutionary dynamics under non-stationary
conditions

The aforementioned analysis mainly focuses on the stationary
population environment, i.e. the dynamics of environmental
states have a unique stationary distribution and the payoff
structure of the game does not change in time. Here, we
relax this set-up to study the evolutionary dynamics of
cooperation under two kinds of non-stationary conditions
by agent-based simulations.

3.3.1. Non-stationary environmental state distribution
The first case that we are interested in is that the probability
distribution of environmental states changes with time. In a
population with two environmental states, s1 and s2, we
denote the average proportion of the time that the environ-
ment stays in state s1 (i.e. the average probability that the
environment stays in s1 per step) by z∈ [0, 1]. Then, the aver-
age fraction of time in state s2 is 1− z. To describe the type of
game played in each environmental state, let s1 be the pros-
perous state where environmental resources are replete and
players are at the risk of the ‘tragedy of the commons’ (i.e.
a PGG is played), whereas s2 be the degraded state where
environmental resources are gradually depleted. In both
environmental states, cooperation is an altruistic behaviour
that will increase the common-pool resources, whereas defec-
tion is a selfish behaviour that will lead the common-pool
resources to be consumed. Furthermore, the state of
common-pool resources (i.e. the environmental state) will
conversely affect individual behaviours. To characterize this
feedback relation, we here adopt the difference form of the
replicator dynamics with environmental feedbacks [20,23]
to describe the evolution of the average time proportion of
state s1:

Dz(t) ¼ hz(t)(1� z(t))(xC(t)� �xC), (3:7)

where η denotes the positive step-size, xC(t) is the proportion
of C players in the population at time t, and �xC is the tipping
point of the proportion of C players. If the proportion of C
players xC(t) is above the tipping point �xC, it means that the
number of cooperators is competent to sustain the supply
of common-pool resources. At the same time, the environ-
ment will be more likely to stay in the prosperous state s1,
leading z(t) to increase. Otherwise, cooperators are insuffi-
cient and the public resources will be continuously
consumed. In this case, z(t) will decrease as the environment
will more frequently stay in the degraded state s2.

We consider that in the prosperous state s1 players play a
PGG. However, in the degraded state s2, one of four different
games, the PGG, IPGG (inverse public goods game, which
reverses the payoffs of action C and D in the PGG), dSH
(d-player stag hunt game, which is a variant of the TPGG,
and whose only difference from the TPGG is that cooperators
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always entail a cost c even if j < T), and dSD, is played. The
reason that we select these four types of games is twofold.
On the one hand, they are commonly used to mimic the
essence of a vast number of real-life group interactions [12];
on the other hand, they encompass all possible evolutionary
behaviours for the frequency-dependent selection between C
and D under the classic replicator dynamics [9]: D domi-
nance, C dominance, bistability, and coexistence (figure 4).
Through agent-based simulations, in figure 4, we show the
co-evolutionary dynamics of cooperation and the environ-
ment under moderate selection intensity. Depending on the
game type and the value of the tipping point �xC, the popu-
lation emerges various dynamic behaviours. Particularly,
although our model is stochastic and incorporates the effect of
environment and learning, we can still observe those domi-
nance, bistability and coexistence behaviours analogously
obtained under the deterministic replicator dynamics.
In addition, when replicator dynamics predict that cooperation
will be the dominant choice in the degraded state s2, our results
show some persistent oscillations between cooperation and the
environment (panel I in figure 4).
3.3.2. External incentives
Another interesting case is the existence of external incentives,
whichwill undermine the stationarity of the payoff structure of
the game. Like two sides of a coin, reward and punishment are
two diametrically opposed external incentives for sustaining
human cooperation [63,64]. The former is a type of positive
incentives where players who cooperate will get an additional
bonus, while the latter is a kind of negative incentives where
those who defect will be sanctioned and need to pay a fine.
At a certain moment during the evolution of cooperation, we
separately implement punishment and reward, or jointly
enforce them to all players in the populationwith four environ-
mental states. One can observe that both punishment and
reward are effective tools in promoting cooperation, even if
the game environment may change (figure 5).
4. Discussion
In natural populations, the biotic and abiotic environment
that organisms are exposed to varies persistently in time and
space. To win the struggle for survival in this uncertain
world, organisms have to timely adjust their behaviours in
response to the fluctuation of their living environments
[25,39]. For the longstanding conundrum of how cooperation
can evolve, however, the majority of the existing evolutionary
interpretations has been devoted to understanding the
static interactive scenarios [1,6]. Therefore, when individual
interactions, especially involving multiple players at a time,
occur in the changing environment, determining whether
cooperation can evolve will become fairly tricky. Here, we
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developed a general model framework by introducing the
adaptation mechanism of reinforcement learning to investigate
how cooperation can evolve in the constantly changing multi-
player game environment. Our model not only considers the
interplay between players’ behaviours and environmental
variations, but also incorporates a cognitive or psychological
feedback loop where players’ choices determine the game out-
come, and in turn are affected by it. Such a setting is, to some
extent, analogous to the human decision in the context of the
hybrid human–machine cooperation [65], a key research
theme in the emerging interdisciplinary field of machine be-
haviour [66], in which humans can use algorithms to make
decisions and subsequently the training of the same algorithms
is affected by those decisions.

The importance of environmental variations in popu-
lation dynamics has long been recognized in theoretical
ecology and population biology [24–26]. In a realistic social
or ecological system, individual behaviours and environ-
mental variations are inevitably coupled together [24,25].
By consuming, transforming, or producing common-pool
resources, for example, organisms are enabled to alter their
living environments, and consequently, such modification
may consequentially be detrimental or beneficial to their sur-
vival [22]. Our analytical condition for determining whether
cooperation can be favoured over defection indeed provides
us a plausible theoretical explanation for this phenomenon.
If mutual actions of individuals lead the environment to
transit from a preferable state where cooperation is more prof-
itable to a hostile one where defection is more dominant,
cooperation will be suppressed. By contrast, cooperation
will flourish if the transition order is reversed. In particular,
if the population has access to switching among multiple
environmental states, the environment will play the role of
intermediates in social interactions and the final outcome
of whether cooperation can evolve will be the synthesis of
results in each environmental state. Such an observation is
different from the recent findings where game transitions
can result in a more favourable outcome for cooperation
even if all individual games favour defection [21,29]. One
important reason for this is that we do not follow the
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scheme to explicitly assign a specific rule to prescribe the
update of environmental states (i.e. model-specific methods),
but rather simply assuming the ergodicity for the environ-
mental dynamics (i.e. model-free methods). Thus, in this
sense, our model is general and can be applied to a large
variety of environmental dynamic processes.

Moreover, compared with the existing studies on the
evolution of cooperation in the changing environment
[20,21,23,27–29], another striking difference is that, apart
from the environmental feedback, our model introduces the
learning mechanism of reinforcement. Since, when the
environment changes, the previous decision-making scheme
adopted by individuals may fail to work, they must learn
how to adjust their behaviours in response to the contingencies
given by the environment, in order to obtain a higher fitness.
Such a scenario is also closely related to some recent work
across disciplines, including complexity science [49,67–70],
artificial intelligence [44,56,71], evolutionary biology [72,73]
and neuroscience [43]. However, their dominant attention has
been paid to learning dynamics, the deterministic limit of the
learning process, the design of new learning algorithms in
games, or neural computations. In comparison, our model is
discrete and stochastic, and focuses on multi-player stochastic
games. In particular, our analysis for the game system is sys-
tematic and encompasses a variety of factors, such as group
interactions, spatial structures and environmental variations.
In addition, our work may offer some new insight into the
interface between reinforcement learning and evolutionary
game theory from the perspective of function approximation
[44,50], because most existing progress in combining tools
from these two fields to explore the interaction of multiple
agents is based on value-based methods [49,56,70,71].

In the present work, one of the main limitations is that the
strategic update is restricted to the asynchronous type and the
learning experience is required to be shared among individuals.
Although such a setting is appropriate in those scenarios where
individuals modify their strategies independently, and typical
in economics applications and for overlapping generations
[11], it has been suggested that the unanimous satisfactory
decisions reached by all asynchronous update individuals
cannot always be guaranteed by synchronous updates [74]. In
particular, if individuals are able to communicate with each
other via a network or leverage the perceived information to
model and infer the choices of others [45,47], the asynchronous
updatewill suffer from some difficulties. Thus, further work on
synchronously strategic revisions is worth exploring in the
future. Of course, such an extension will also be full of chal-
lenges, because updating strategies concurrently for multiple
agents will inevitably give rise to some complications, such as
the curse of dimensionality, requirement for coordination,
non-stationarity and exploration–exploitation trade-off [45].
Moreover, some further efforts should be invested in the partial
observability of the Markov environmental states and relaxing
the perfect environmental information required in our model
to the unobservable or unpredictable type [75].
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