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Urinary metabolic phenotyping 
for Alzheimer’s disease
Natalja Kurbatova1*, Manik Garg1, Luke Whiley2,3, Elena Chekmeneva2, Beatriz Jiménez2, 
María Gómez‑Romero2, Jake Pearce2, Torben Kimhofer4, Ellie D’Hondt5, Hilkka Soininen6, 
Iwona Kłoszewska7, Patrizia Mecocci8, Magda Tsolaki9, Bruno Vellas10, Dag Aarsland11, 
Alejo Nevado‑Holgado15, Benjamine Liu15, Stuart Snowden11, Petroula Proitsi11, 
Nicholas J. Ashton11,12,13,14, Abdul Hye11, Cristina Legido‑Quigley11, Matthew R. Lewis2, 
Jeremy K. Nicholson2,16, Elaine Holmes3,16,17, Alvis Brazma1 & Simon Lovestone15,18

Finding early disease markers using non-invasive and widely available methods is essential to develop 
a successful therapy for Alzheimer’s Disease. Few studies to date have examined urine, the most 
readily available biofluid. Here we report the largest study to date using comprehensive metabolic 
phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome 
in-depth in people with Alzheimer’s Disease and Mild Cognitive Impairment. Feature reduction was 
performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated 
with the genetic variants. This approach helps accuracy in identification of disease states and provides 
a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a 
Random Forests model, which not only correctly discriminates between people with Alzheimer’s 
Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who 
were later diagnosed with Alzheimer’s Disease and those who were not. Further annotation of top-
ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-
derived metabolites and small-molecules that were linked to Alzheimer’s pathology in previous 
studies.

Unmet medical need and the repeated failure of clinical trials in Alzheimer’s disease (AD) have together resulted 
in a surge of research seeking to understand disease mechanisms and generate novel therapeutic approaches. In 
order for such therapies to succeed it is widely accepted that trials will need to be performed early in the disease 
process1,2. Currently, the optimal biomarkers used to detect AD processes early in the course of the disease are 
Positron Emission Tomography (PET) imaging and cerebrospinal fluid (CSF) markers3. However, PET imaging 
is not universally available and obtaining CSF is a relatively invasive procedure. Progress has been made in the 
attempt to supplement these relatively specific biomarkers with other biomarkers that might be more applicable 
to larger populations using, for example, blood biomarkers. Putative markers in blood have been identified 
using proteomics, transcriptomics, metabolic and lipidomic phenotyping platforms. Efforts are now underway 
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to replicate these and to generate single markers or biomarker panels that might be used as part of a process 
identifying people with early disease4–6.

There are relatively few studies examining the potential of urine as a biomarker fluid in AD7–10, probably 
because being separated from the brain not only by the blood–brain barrier but also by glomerular filtration, 
urine seems inherently unlikely to possess a signature of neurodegeneration. Most of the studies reported to date 
are small both in terms of the numbers of molecular targets and numbers of individuals examined. However, 
urine is a complex fluid with metabolites that reflect a response to injury11 and oxidative stress12 amongst other 
biological events at the systems level and might, therefore, be useful as a target fluid in neurodegeneration and 
other brain diseases13. An added advantage is that urine carries information on the metabolites arising from the 
gut microbiome14, an area of research that is gaining greater focus in neurodegeneration and AD15,16. In mouse 
models a range of methods to characterize the urine metabolome have been employed, with some success in 
identifying markers that differ between transgenic animals and controls17–20, but these models do not encompass 
the full systems effect and metabolic progression of AD in humans. Therefore deep exploration of the urinary 
metabolome for biomarkers relevant to AD may yield valuable mechanistic information. We report here the 
application of in-depth urinary metabolic phenotyping in a large multi-centre study consisting of four groups 
of participants. One group consisted of individuals clinically diagnosed with AD. A second group consisted of 
individuals with no apparent clinical symptoms of cognitive decline or dementia (control group—CTL). The 
final two groups consisted of individuals diagnosed with Mild Cognitive Impairment (MCI) who either remained 
cognitively stable throughout the follow-up term of the study (sMCI) or converted to a clinical AD diagnosis 
at a later study visit (cMCI). All samples that underwent metabolic phenotyping were collected at a single time 
point (baseline assessment).

Metabolic phenotyping was completed using a complementary dual-platform approach consisting of both 
proton nuclear magnetic resonance spectroscopy (1H-NMR) and ultra-high-performance liquid chromatogra-
phy coupled with mass spectrometry (UHPLC-MS) to ensure comprehensive metabolite coverage. Critically, 
in order to address the challenge of rich metabolic datasets, where analytical variables far exceed the numbers 
of samples available to study, we applied a novel approach consisting of metabolomic dataset normalisation 
followed by a feature reduction process that only selected those metabolites which associated with a metabolic 
regulatory genetic element—a technique known as Quantitative Trait Loci for metabolites (mQTL). In this way, 
we identified a panel of metabolites that might accurately classify the participant groups. Of particular interest 
was the ability of the classification model to differentiate between baseline MCI participants, who later either 
remained cognitively stable (sMCI) or converted to clinical AD (cMCI) which heralds promise for non-invasive 
scoping for early biomarkers of AD.

The classification model was used to prioritise metabolites for annotation according to their importance to 
predict AD. The analysis of the annotated metabolites revealed multiple direct and a few indirect links to the 
etiopathological processes in AD.

Results
We report here the largest study to date of metabolic phenotyping analysis of urine as a potential marker of AD. 
Metabolic phenotyping was performed on urine obtained from the AddNeuroMed/Dementia Case Registry 
(ANM/DCR) cohorts21–23 using two analytical platforms: UHPLC-MS ( n = 561 samples) and 1H-NMR ( n = 575 
samples). The cohort of participants used in the analysis includes participants with normal cognition (control 
group—CTL), stable mild cognitive impairment (sMCI), mild cognitive impairment converting to dementia 
(cMCI) and participants with Alzheimer’s disease (AD) (Table 1). The number of available samples and metabolic 
features is summarised in Table 2. Using an innovative approach to the challenge of very high dimensionality 
data analysis, we first prioritise a set of metabolites using mQTL mapping, ensuring that features with a degree 
of genetic regulation were selected. From this reduced feature selection, we were then able to select metabolites 
that are associated with AD and were able to predict conversion to dementia from MCI.

Dimensionality reduction of metabolic features.  Given that the number of metabolic features found 
in the cohort samples was orders of magnitude higher than the number of samples (specifically 55,675 features), 
as the first step we developed a novel feature reduction method. We utilised the availability of genetic data, in 
particular, 12 million SNPs obtained in the previous study24 and looked for an association between these SNPs 
and the metabolic features, performing metabolic quantitative trait locus analysis. We hypothesized that an asso-
ciation between a metabolite and a disease state is more likely to be relevant to an etiopathological mechanism 
if this metabolite was also associated with a genetic variant previously linked to a relevant disease phenotype.

The mQTL analysis resulted in a total of 1542 individual metabolic features relating to either a chemical shift 
in the case of 1H NMR (233 metabolic features) or a chromatographic retention time and mass to charge ratio 
(m/z) feature in the UHPLC-MS data (1309 features). The resultant metabolic features were associated with 6932 
SNPs at a q-value < 0.01 (Table 3, Fig. 1). Of these, 6047 unique SNPs were linked to features from the UHPLC-
MS data, 876 SNPs to features from the 1H NMR data, with 838 SNPs common to both. Given the 12 million 
SNPs tested, the probability of observing 838 or more SNPs in the intersection between UHPLC-MS and 1H 
NMR results by chance is vanishingly small (p-value < 2.23E−308). Previously, a total of 276 metabolomic QTLs 
have been reported25–30, and 83% of these SNPs were reproduced in the current study (Supplementary Materials 
Table S2), thereby, validating our pipeline.

Ranking of metabolic features for annotation.  Metabolite annotation remains the bottleneck and 
limitation of metabolic phenotyping studies31,32. After reducing the number of metabolic features to 1542, we 
aimed to prioritise them according to their relative importance of correctly predicting the AD state of the sam-
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ple. We first built and tested Random Forests classification models on different combinations of features and 
diagnostic classes (for details see “Methods”). Briefly, we hypothesised that genomics data in combination with 
metabolic features and sample covariates could improve the prediction quality and tried combinations of fol-
lowing features: (1) 1542 metabolic features after the mQTL filtering, (2) 6932 SNPs associated with metabolic 
features and (3) sample covariates—age, sex and study site. Also, to account for the imbalance between the diag-
nostic classes, with the prevalence of AD and CTL classes over sMCI and cMCI classes, we applied re-sampling. 
First, we analysed all data in relation to the four original diagnostic categories (AD/CTL/cMCI/sMCI). Then, 
hypothesising that cMCI would be most similar to AD and sMCI most similar to control, we performed binary 
over-sampling by creating AD + cMCI and CTL + sMCI groups. Finally, we applied the under-sampling by using 
AD and CTL groups only. As the model trained on 1542 metabolic features together with sample covariates and 
only two diagnostic classes (AD and CTL) gave the lowest prediction error, it was selected as the final model 
(Fig. 2).

To further validate the performance of the final model, MCI samples were used. The model proved effective 
in separating MCI samples from individuals who subsequently converted to dementia (cMCI) from those who 
remained stable (sMCI), finding that 82.96% of cMCI samples were predicted as AD and 77.78% of sMCI samples 
as CTL (Fig. 3). This provided additional evidence that our feature reduction method resulted in a meaning-
ful set of metabolites enabling the detection of early AD patients, along with the previous validation of 83% of 
associated SNPs in AD-related literature. The AUROC value of the model was 0.99 (Table 4 and Fig. 3), showing 
that the final model was quite robust.

Next, we used the developed Random Forest model for prioritisation of the metabolic features by computing 
the permutation importance score for each metabolic feature (Supplementary Materials Table S3). This method 
gave us 235 metabolic features with a score of at least 10−4 . Out of these, 32 features were successfully annotated 

Table 1.   Overview of study participants. CTL normal cognition (control) participants, sMCI stable mild 
cognitive impairment, cMCI mild cognitive impairment converting to dementia, AD participants with 
Alzheimer’s disease, MMSE Mini-Mental State Examination.

CTL sMCI cMCI AD Total

Number of participants 214 200 55 197 666

Age

Mean± sd 76.1± 5.1 76.7± 5.5 77.9± 7.9 76.6± 5.8

Sex

Male 103 99 20 101 323

Female 111 101 35 96 343

MMSE score

Mean ± sd 28.9± 1.1 27.3± 1.7 26.3± 1.8 20.0± 4.3

Metabolic UHPLC-MS data obtained 172 167 45 177 561

Metabolic NMR data obtained 174 173 46 182 575

Metabolic data obtained (UHPLC-MS and NMR) 132 140 36 162 470

Genetic and metabolic UHPLC-MS data available 119 80 24 122 345

Genetic and metabolic NMR data available 120 83 23 126 352

APOE genotype available 154 155 44 174 527

APOE genotype

E3E3 84 84 13 70 251

E3E4 37 50 24 66 177

E2E3 22 10 4 9 45

E4E4 7 7 3 27 43

E2E4 3 4 0 2 9

E2E2 1 1 0 0 2

Table 2.   Summary of samples and metabolic features available for the analysis. Details of used metabolomic 
platforms and assays are available in “Methods” section. Number of metabolic QTL samples—genetic and 
metabolic data availability.

Platform Assay Abbreviation # metabolic features # samples # metabolic QTL samples

UHPLC-MS

HILIC ESI+ UHPOS 6851 561 345

RPC ESI− URNEG 16,961 561 345

RPC ESI+ URPOS 13,217 561 345

NMR 1H NMR NMR 18,646 575 352
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Figure 1.   Manhattan plots presenting significant QTL associations with metabolic features across the 
metabolite phenotyping datasets. The x-axis shows each SNP that was analysed, sorted by chromosome and 
position. The y-axis shows the −log10 of the p-value for association with metabolic features concentration. Four 
sections correspond to four different metabolomic assays presented in our study: UHPOS, URNEG, URPOS 
and NMR.
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by spectral interpretation. Since multiple analytical signals can correspond to the same metabolite, the annota-
tion process resulted in a total list of 23 metabolites (Table 5).

Analysis of annotated metabolites.  We found three broad groups of annotated metabolites differen-
tially present in the disease state: (1) conjugated metabolites of cholesterol derived compounds, (2) small mol-
ecule metabolites and (3) metabolites of exogenous sources.

Following the annotation, we quantified the differences in the levels of assigned metabolites across study 
groups using ANOVA (Table 5). A heatmap demonstrating inter-annotation correlations is shown in Fig. 4.

Having assigned chemical identity, we then investigated whether the associated SNPs were linked to any pre-
viously reported GWAS traits to gain potential insight into the relationship between metabolomic and genomic 

Table 3.   Metabolic QTL mapping results. Numbers of associations between metabolic features and SNPs 
found using q-value cut-off 0.01, resulting in a number of unique metabolic features and a number of unique 
SNPs for each metabolomic assay.

Assay # SNP/metabolic feature associations # unique SNPs # unique metabolic features

UHPOS 26,256 3004 256

URNEG 50,251 3974 518

URPOS 46,617 4479 535

NMR 12,518 876 233

Table 4.   Performance of the final classification model. Performance of the final classification model in 
discriminating AD vs CTL and cMCI vs sMCI.

Dataset Balanced accuracy AUROC Sensitivity Specificity
Positive predictive 
value

Negative predictive 
value

Final model AD vs CTL 0.9872 1 1 0.9744 0.9796 1

Final model cMCI vs 
sMCI 0.8037 0.8785 0.7778 0.8296 0.5490 0.9333

Figure 2.   Performance of Random Forest models for different feature sets and three tested ways of 
classification. Tested feature sets: (A) metabolic features only, (B) metabolic and genomic features, (C) metabolic 
and genomic features together with sample covariates, and (D) metabolic features with sample covariates. 
Tested ways of classification: original multi-class—AD/CTL/cMCI/sMCI, binary over-sampling—AD + cMCI/
CTL + sMCI, and binary under-sampling— AD/CTL. The best performing final model: set (D), binary under-
sampling classification AD/CTL. The x-axis shows a number of trees used in the Random Forest run. The y-axis 
shows the Out-Of-Bug (OOB) prediction error.
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variations. We mapped any polymorphisms associated with our annotated metabolites to the GWAS Catalog’s 
SNPs48 by genomic regions ans summarised them in Table 6.

We speculate that all endogenous annotated metabolites are linked to AD processes through alteration of 
DNA methylation, gut microbiota malfunction and possibly altered metabolism of polyamines, cholesterol and 
sugar (Table 6, Fig. 5). The key observations from these analyses are reported in the sections below.

Figure 3.   Receiver Operating Characteristic (ROC) curves for RF model discriminating AD vs CTL and then 
applied to cMCI and sMCI study groups. The model was trained with 1542 prioritised metabolic features and 
three covariates (age, sex, study site) identified from the AD vs CTL comparison only. The area under the ROC 
curve (AUROC) value for the AD vs CTL is 0.99. The AUROC value for cMCI vs sMCI classes is 0.88.

Figure 4.   The heatmap showing concentrations of the annotated metabolic features. Note (*) indicates 
metabolite conjugation with N-acetylglucosamine, note (**) indicates metabolite conjugation with 
N-acetylglucosaminide. Columns sharing the same metabolite names are isomers of each other.
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Cholesterol metabolism.  There are three unique metabolites derived from cholesterol metabolism, all in the 
conjugated form: tauro(cheno)deoxycholic acid, pregnenolone and pregnanediol. These metabolites have higher 
levels in the AD and cMCI study groups (Table 5).

We found the two hormones, pregnenolone and pregnanediol, conjugated with sulfate and N-acetylglucosa-
mine, both biotransformations were observed in human urine previously49.

Annotated tauro(cheno)deoxycholic bile acid (an isomer of taurochenodeoxycholic or taurodeoxycholic 
acid) is conjugated with an N-acetylglucosamine, known biotransformation prior to bile acid renal excretion50. 
There is an increased level of taurochenodeoxycholic or taurodeoxycholic acid conjugates in AD patients (see 
“Discussion” section).

Sugar metabolism and gut microbiota.  We identified sucrose and galactose sugars with sucrose levels signifi-
cantly higher in AD study group.

The following annotated metabolites are produced in or derived from gut microbiota processes: N,N,N-tri-
methyl-l-alanyl-l-proline betaine, 3-aminoisobutyrate, trimethylamine, lysine, butyrylcarnitine, and mentioned 
above, taurodeoxycholic acid. These metabolites have increased levels in AD patients (Table 5).

DNA methylation and polyamine metabolism.  Evidence of DNA methylation in AD patients’ urine is found in 
the observation of two methylcytidine metabolites: 5-methylcytidine, and 2-O-methylcytidine. Another metab-
olite that shared the pattern of alterations with two methylated cytidine metabolites was annotated as “unknown 

Table 5.   Annotated metabolites. Note (*) signifies isomers that cannot be differentiated using mass 
spectrometry fragmentation data. Column headers: Assay—metabolomic assay; #—a number of metabolic 
features in the dataset; PIC—Permutation Importance Score from Random Forest algorithm showing the 
importance of metabolite for classification purpose; F (3, 471)—ANOVA results (MANOVA in case of multiple 
metabolic features) presented as F-statistic; p-value—ANOVA (MANOVA in case of multiple metabolic 
features) results presented as adjusted p-value; CTL vs AD, CTL vs cMCI and CTL vs sMCI—post hoc tests 
results presented as adjusted p-value. In the last four columns, Scientific Notation is used due to the presence 
of very small numbers.

Metabolite family Metabolite annotation Assay # PIC F (3, 471) p-value CTL vs AD CTL vs cMCI CTL vs sMCI

Exogenous metabolites

N-Desmethyl O-desacetyl diltiazem 
glucuronide UHPOS 1 0.04943 112.8 < 2E − 16 1.53 E − 11 1.54 E − 11 5.94 E − 02

N-Desmethyl O-desacetyl hydroxy 
diltiazem glucuronide UHPOS 1 0.02553 80.3 < 2 E − 16 1.53 E − 11 1.54 E − 11 3.32 E − 02

N-Desmethyl hydroxy diltiazem 
glucuronide URPOS 1 0.00741 40.13 < 2 E − 16 1.53 E − 11 1.54 E − 11 1.27 E − 01

Paracetamol UHPOS 1 0.02314 59.34 < 2 E − 16 1.53 E − 11 9.98 E − 01 7.30 E − 09

Paracetamol sulphate URPOS 1 0.003 26.66 6.19 E − 16 1.53 E − 11 9.26 E − 01 9.66 E − 01

3-Methoxy-paracetamol sulphate URPOS 1 0.00105 11.97 1.45 E − 07 4.00 E − 07 1.26 E − 01 7.85 E − 01

Quinine UHPOS 1 0.00028 13.26 2.56 E − 08 3.66 E − 07 2.66 E − 03 1.02 E − 06

Cholesterol derived metabolites

Hydroxylated pregnenolone sulphate
N-Acetylglucosamine isomer 2* URNEG 1 0.0051 34.75 < 2 E − 16 1.53 E − 11 5.61 E − 02 9.86 E − 01

Hydroxylated pregnenolone sulphate 
N-acetylglucosamine isomer 1* URNEG 1 0.01073 46.28 < 2 E − 16 1.53 E − 11 8.84 E − 03 8.26 E − 02

Pregnenolone sulphate N-acetylglu-
cosamine URNEG 5 0.00463 26.42 8.39 E − 16 1.54 E − 11 4.87 E − 03 8.22 E − 02

Pregnanediol sulphate N-acetylglu-
cosamine URNEG 1 0.00025 13.06 3.34 E − 08 3.02 E − 07 9.49 E − 01 9.30 E − 01

Taurochenodeoxycholicc or taurode-
oxycholic acid Nacetylglucosaminide* URNEG 1 0.00052 20.31 2.18 E − 12 3.14 E − 10 9.99 E − 01 9.03 E − 01

Nucleosides, amines, carnitines, 
glycines

3-Aminoisobutyrate NMR 2 0.00015 2.18 8.99 E − 02 9.44 E − 01 6.25 E − 01 3.75 E − 01

N,N,N-Trimethyl-L-alanyl-L-proline 
betaine URPOS 2 0.00299 34.09 < 2 E − 16 1.53 E − 11 8.65 E − 02 5.57 E − 02

Butyryl or isobutyryl carnitine* UHPOS 1 0.00054 14.54 4.57 E − 09 1.16 E − 08 7.25 E − 03 3.53 E − 01

Trimethylamine NMR 1 0.00014 1.68 1.71 E − 01 2.81 E − 01 9.48 E − 01 1.67 E − 01

L-Lysine NMR 1 0.00011 1.33 2.56 E − 01 9.90 E − 01 9.07 E − 01 4.65 E − 01

5-Methylcytidine UHPOS 2 0.00075 18.56 2.16 E − 11 2.67 E − 11 1.79 E − 01 9.89 E − 02

2-O-Methylcytidine UHPOS 1 0.00033 20.54 1.62 E − 12 1.93 E − 09 7.12 E − 01 9.79 E − 01

Unknown nucleoside with adenosyl 
moiety UHPOS 1 0.00026 9.24 5.99 E − 06 2.90 E − 06 1.71 E − 01 3.18 E − 01

N-Acetylisoputreanine-gamma-
lactam URPOS 2 0.00046 13.42 2.06 E − 08 4.55 E − 09 1.74 E − 02 5.36 E − 03

Sugars
Sucrose NMR 1 0.00027 0.17 9.20 E − 01 6.78 E − 04 5.99 E − 01 1.56 E − 01

Galactose NMR 2 0.0001 0.17 9.20 E − 01 9.05 E − 01 9.77 E − 01 9.74 E − 01
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Metabolic pathway Metabolite annotation Chr Genes/genomic region Phenotypic traits Relationship to AD

N-Desmethyl O-desacetyl 
diltiazem glucuronide

N-Desmethyl O-desacetyl 
hydroxy diltiazem glucuronide 1 Regulatory feature: 

ENSR00000006069
Anxiety and major depressive 
disorder, Obesity-related traits

N-Desmethyl hydroxy 
diltiazem glucuronide 15 MESP2 Coronary artery aneurysm in 

Kawasaki disease

Paracetamol

Paracetamol sulphate

3-Methoxy-paracetamol 
sulphate 4 AND 17 SORCS2 AND CNTROB Biopolar disorder, Interleu-

kin-10 levels

SORCS2 belongs to the Vps10 
receptor family that has 
previously been linked to neu-
rodegeneration and AD34–35, 
and is known to play functional 
roles in protein transport. In 
addition, the receptor family 
includes the SORL1 gene that 
encodes protein SorLA—a key 
protein in amyloid-beta precur-
sor protein (APP) processing36.

Quinine 2 AOX1 Late-onset Alzheimer’s disease

The mQTL association links 
aldehyde oxydase 1 (AOX1) 
gene and quinine. AOX1 gene 
has a previously reported 
GWAS trait “Late-onset Alzhei-
mer’s disease”37.

Cholesterol metabolism (CM)

Hydroxylated pregnenolone 
sulphate N-acetylglucosamine 
isomer 2*

7 CHN2
Age at onset, Alzheimer’s 
disease, Obesity-related traits, 
Psychosis

Beta-chimaerin (CHN2) 
gene plays a role in neural 
development by regulating 
Rac1 activity38 and is known 
to be downregulated with age. 
Through Rac1 activation, gene 
CHN2 is linked with Alzhei-
mer’s disease39.

Hydroxylated pregnenolone 
sulphate N-acetylglucosamine 
isomer 1*

Pregnenolone sulphate 
N-acetylglucosamine

Pregnanediol sulphate N-acetyl-
glucosamine

Tauro(cheno) deoxycholic acid 
N-acetylglucosaminide * 5 UGT3A1 Blood metabolite levels, Pri-

mary biliary cholangitis (PBC)

Neither the gene UGT3A1 
nor the PBC has a known 
relationship to AD, although 
we note that a progressive 
cognitive impairment differ-
ent to delirium is a feature 
of PBC, independently of 
liver pathology40,41. In animal 
models of biliary cirrhosis that 
has led to memory impairment, 
hippocampal pregnenolone 
sulphate infusion resulted in a 
memory-enhancing effect42.

CM, gut microbiota 3-Aminoisobutyrate 5 AGXT2
Metabolite levels, Asymmetri-
cal dimethylarginine levels, 
Symmetrical dimethylarginine 
levels

Gut microbiota

N,N,N-Trimethyl-l-alanyl-
l-proline betaine 11 AND 21

Regulatory feature: 
ENSR00000961656 AND 
intergenic variant

Butyryl or isobutyryl carnitine * 15 intergenic variant

Trimethylamine 10 PYROXD2
General cognitive ability, 
Obesity-related traits, Metabo-
lite levels

l-Lysine 19 SLC7A9 Estimated glomerular filtration 
rate, Creatinine levels

Continued
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nucleoside with adenosyl moiety”. We were not able to identify its structure definitively in this analysis but the 
mass spectrometric data provided the molecular formula C10H11N5O3, and fragmentation data indicated the 
presence of adenosyl moiety in the molecule (some details regarding structure elucidation effort are presented in 
the “Supplementary Document” “Metabolite_Annotation_details.docx”).

Another annotated metabolite is N-acetylisoputreanine-gamma-lactam, a catabolic product of spermidine. 
This metabolite levels alter not only in AD but also in cMCI and sMCI groups (Table 5).

Exogenous metabolites.  Amongst exogenous metabolites, we found two prescribed medications, paracetamol 
and the calcium channel blocker diltiazem, in addition to the metabolite quinine. All three exogenous metabo-
lites have associations with genetic variants (Table 6) and their levels significantly alter in study groups, as shown 
in Table 5.

Discussion
Previous studies have reported data suggesting that a panel of metabolites circulating in blood was able to predict 
incipient AD with very high degrees of accuracy51,52, raising considerable hopes for finding pre-clinical AD bio-
markers in blood. Subsequent studies using a similar, if not identical approach, in multiple, larger cohorts failed 
to replicate these findings53–55. Other studies have reported metabolic and lipidomic differences in blood from 
people with disease compared to age-matched controls with various degrees of power, success and outcome56–59. 
However, none of these studies have been unequivocally replicated. One of the limitations of studies with high 
dimensionality datasets and relatively small numbers of samples is susceptibility to over-fitting. Additionally, 
because of the inherent problems of heterogeneity in neurodegenerative disease and the diversity of analytical 
platforms used in metabolic profiling (1H-NMR, GC-MS, UHPLC-MS, CE-MS etc.), it is perhaps not surprising 
that there has been relatively little replication of metabolic phenotyping studies that seek biomarkers of disease. 
Similar problems plagued early genetic studies seeking susceptibility factors, but these have been largely overcome 
by the introduction of studies based on tens of thousands of individuals. In genetics it was possible to combine 
data from different cohorts using imputation techniques. This approach is more challenging for metabolic phe-
notyping approaches, which often utilize heterogeneous technologies and independent assays, the results from 
which are more difficult to build a comprehensive picture of the metabolic landscape. With increased throughput 
and lower cost of metabolic assays, such larger studies will become possible in future.

In the absence of studies with large sample size, one approach to combat the limitation of high dimension-
ality in molecular studies is to reduce the dimensionality of the data. To achieve this, here we used the mQTL 
approach. In doing so, we provide for the possibility of a degree of validation in other, much larger dataset derived 
from genetic associations studies, also enabling the inference of a degree of causality when an association is 
discovered. While this work requires replication, this finding holds promise for biomarkers in urine—arguably 
the most readily available biomarker fluid. Using this mQTL targeting approach, we show a highly significant 
association of a relatively small set of 32 metabolic features with AD. A model generated from these features not 
only accurately predicts the disease state, but more importantly, the same model when applied to samples from 
participants with the clinical diagnosis of mild cognitive impairment (MCI), distinguishes those subjects that 

Table 6.   Annotated metabolites with mQTL results, phenotypic traits and literature findings. Note (*) signifies 
isomers that cannot be differentiated using mass spectrometry fragmentation data. We present phenotypic 
traits previously associated with a genomic region of interest, and possible linkage of found genes to AD 
processes.

Metabolic pathway Metabolite annotation Chr Genes/genomic region Phenotypic traits Relationship to AD

DNA methylation

5-Methylcytidine 4 CC2D2, FBXL5, FAM200B, 
BST1

Parkinson’s disease, Blood 
protein levels, Cerebrospinal 
fluid biomarker levels

The FBXL5 gene is a 
critical component of iron 
metabolism43. It is associated 
with Parkinson’s disease (PD) 
in a region of chromosome 4. 
Iron dysregulation has long 
been associated with both PD 
and AD44.

2-O-methylcytidine 9 NUP188, DOLK, PHYHD1, 
SH3GLB2 Body mass index

The PHYHD1 gene encodes 
2-oxoglutarate oxygensase, 
an amyloid-beta interacting 
protein that has been shown 
to be dysregulated in both AD 
brain and in transgenic models 
with plaque pathology45,46.

Unknown nucleoside with 
adenosyl moiety 12 Intergenic variant

The nearest gene to mQTL 
region is SYT1. It encodes pro-
tein synaptotagmin—a novel 
cerebrospinal fluid biomarker 
for Alzheimer’s disease47.

Polyamine metabolism N- Acetylisoputreanine-
gamma-lactam 2 Long intergenic non-protein 

coding RNA LINC01914

CM, insulin resistance
Sucrose 8 Intergenic variant

Galactose 19 FUT2 Estimated glomerular filtration 
rate, Cholesterol levels
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subsequently progress to dementia (cMCI) from those that remain stable (sMCI). Note that, MCI is commonly 
referred to as a prodromal condition, but in fact, is a highly heterogeneous state defined by impaired cognitive 
function relative to age-adjusted norms. An easy to perform test to identify people in the prodromal phase of 
AD, distinguishing the subjects with MCI that are likely to convert to AD from those remaining stable, would 
be an important advance for the field. Our results suggest that the analysis of urinary metabolites might provide 
such a test.

Given that the sample size in our study is small, in the absence of a larger replication cohort, it is important 
to provide as much additional evidence as possible showing that the method we developed is reliable. One such 
type of evidence comes from the analysis of the annotated metabolites. One set of metabolites that we found is 
related to cholesterol—a critical biological precursor, required for the biosynthesis of downstream metabolites 
such as bile acids, hormones and steroids, which are commonly found in their conjugated form in the urine. 
Hormones and related steroidal structures derived from cholesterol are known to have a role in brain function. 

Figure 5.   Annotated metabolites and their linkage to AD. Red colour indicates metabolites annotated in the 
study. Up arrow next to the metabolite’s name indicates increased levels in AD patients samples. Down arrow 
shows decreased levels in AD patients samples.
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Observed in this study pregnenolone sulfate is a known neuro-steroid species60,61 reported to influence cognition 
in rodent models62 and patient studies, perhaps through its role in modulating gamma-aminobutyric acid subunit 
A (GABAA) and N-methyl d-aspartate (NMDA) receptors61. The other hormone we annotated—pregnanediol, 
a metabolite of pregnenolone, was previously reported to be lower in the urine of older men62, however, this 
has not been linked to AD. Concentrations of non-conjugated bile acids were observed to be altered in AD in 
human blood and brain samples and in transgenic models of the disease58,63. A recent study on mouse models 
discovered that bile acids strongly inhibit the cysteine dioxygenase type-1-mediated (CDO1-mediated) cysteine 
catabolic pathway resulting in depletion of the free cysteine pool and reduction of the glutathione concentration64. 
Here, we found an increased level of taurochenodeoxycholic or taurodeoxycholic acid conjugates in AD patients. 
Taurodeoxycholic acid, is the secondary bile acid that was previously observed to be increased in AD patients 
as the result of hypothesised gut microbiota malfunction65. The need for further investigation of cholesterol 
related metabolites in AD pathology is strongly supported both by previous research and by our study results.

Sugar metabolism was previously implicated in AD pathophysiology linking dysregulation in glucose metabo-
lism and insulin resistance56. We found sucrose and galactose sugars to be important for the AD classification. 
Studies in mice suggest that sucrose disrupts mitochondrial activity and promotes amyloid deposition in the 
brains of transgenic AD mice66. Additionally, treatment of ovariectomised rats using d-galactose leads to AD-like 
pathology and the development of AD in a rodent model67. The researchers reported the observed AD pathol-
ogy was prevented following injections of 17-β estradiol, suggesting a potential interlinked role for disruptions 
in sugar and sex hormone metabolism, alternations of both are reported in our results. However, it is necessary 
to highlight that we have very limited known covariates of this retrospective data cohort that was collected ten 
years ago. Original study participants exclusion criteria included other neurological or psychiatric diseases, 
significant unstable systemic illness or organ failure and alcohol or substance misuse21. That knowledge gives us 
some assurance that study participants did not have other diagnosed medical conditions like diabetes mellitus 
type 2 and renal disease.

Evidence of gut microbiota malfunction is a noticeable trait in our findings. We annotated trimethylamine, 
N,N,N-trimethyl-l-alanyl-l-proline betaine, 3-aminoisobutyrate, l-lysine and butyrylcarnitine metabolites 
with different levels of concentrations amongst study groups. We detected several metabolites closely linked to 
betaine, though not betaine directly. Betaine is a source for trimethylamine production and an alternate methyl 
source for converting homocysteine to methionine68, increasing DNA methylation and altering gene expression69. 
We detected trimethylamine, a metabolite released in gut microbiota from trimethylamine-containing dietary 
phospholipid components such as choline, lecithin, l-carnitine and mentioned above betaine. The oxidation of 
trimethylamine generates trimethylamine N-oxide that was reported to be elevated in Alzheimer’s patients15. In 
addition, observed here N,N,N-trimethyl-l-alanyl-l-proline betaine is a recently discovered plasma biomarker 
of kidney function. Plausibly this metabolite is a product of betaine and myosin light chain degradation70, though 
this hypothesis has yet to be confirmed. Another detected product of gut microbiota processes is butyrylcarni-
tine—a product of l-carnitine processing in the human body. Previous research conducted in the mouse brain 
has shown that in old age, the AD genetic load significantly increase levels of butyrylcarnitine71. Changes in 
butyrylcarnitine concentrations together with the observation of elevated levels of lysine in AD patients sug-
gest alterations of carnitine in AD, since lysine is one of the sources for carnitine production in humans. These 
complex metabolic processes in gut microbiota require further investigation.

We speculate that changes in DNA methylation during AD processes are verified through observed altera-
tions of 5-methylcytidine and 2-O-methylcytidine. These results correlate with recent reports showing signifi-
cant alterations in 5-methylcytidine in early stages of Alzheimer’s disease72. Alterations in the concentrations of 
N-acetylisoputreanine-gamma-lactam, a catabolic product of spermidine that is formed from N-actetylspermi-
dine73 support a potentially altered metabolism of polyamines in AD: the stimulation of ornithine decarboxylase 
in the AD process leads to increased levels of N-acetylspermidine and spermidine74.

Exogenous metabolites found in this study and their linkage with genomic variants (paracetamol and quinine) 
or with possible dementia protective effect (diltiazem metabolomic profile) are significant findings for further 
investigation. Given that the prescription of quinine preparations is recommended only for malaria prophylaxis, 
this is an unlikely explanation for the quinine finding in this European population of older people. However, its 
prevalence in dietary sources may explain its presence in the population. This finding, along with the reporting 
of altered levels of diltiazem and paracetamol in AD is not obviously explicable, although reverse causality, where 
the disease state is resulting in a change in either prescription or compliance with medication, is an obvious 
possible explanation of the finding.

While the strengths of the study lie in the mQTL approach and the acquisition of a large amount of metabolic 
phenotyping data, there are undoubtedly limitations to consider. First, although large compared to previously 
reported urine studies, the analysis remains vulnerable to over-fitting and bias as the number of features is 
three times that of the number of samples, even following the mQTL based feature reduction. Clearly, larger 
and independent datasets are necessary to replicate the findings we report here. This could be achieved using 
a targeted quantitative mass spectrometry assay, specifically designed to quantitate the metabolic pathways of 
the key metabolites identified here. This would both help validate the findings and provide greater insight into 
pathway mechanisms and the networks involved. Secondly, the cohort used here, lacks specific diagnostic bio-
markers (such as PET or CSF measures) indicative of pathological load and the diagnostic categorisation rests 
on experienced clinician assessment together with systematic assessment by a research worker, albeit using a 
widely tested and proven methodology. Ideally, data would also be collected on diet and life-style factors such as 
exercise and other environmental exposures together with detailed assessments of co-morbid and prior medi-
cal history and medication use. Such exploration of factors beyond diagnostic category that might influence 
the metabolic profile will be important topics for future studies. Lastly, by focusing on the metabolites with 
an associated genetic variant, we may exclude metabolites that have a significant association with AD but are 
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largely influenced by the environment, lifestyle and not as strongly by genetics. The further research of exogenous 
metabolites, such as medicines and dietary compounds, as well as effects of environmental factors on metabolic 
processes in AD is necessary.

Methods
We confirm that: all experiments were performed in accordance with relevant guidelines and regulations; all 
methods were carried out in accordance with relevant guidelines and regulations; all experimental protocols 
were approved by the European Union AddNeuroMed program.

Study participants.  The data and biospecimens were collected (AddNeuroMed/Dementia Case Registry 
(ANM/DCR) cohort) in European, multi-site study, public-private partnership21–23. The cohort includes partici-
pants with established AD, MCI and normal cognition who were evaluated using well-established systematic 
interviews for diagnosis. Formally, the diagnoses are not pathologically confirmed or supported by specific bio-
markers of pathology, but it has been shown that this diagnostic method is highly predictive using MRI scans21 
and subsequent post-mortem classification75. In addition, all disease categories, and conversion to dementia 
from MCI, were diagnosed by an experienced clinician according to criteria as described below. Briefly, the 
inclusion and exclusion criteria for study groups were as follows. Inclusion criteria for AD study group: (1) 
ADRDA/NINCDS and DSM-IV criteria for probable Alzheimer’s disease; (2) mini Mental State Examination 
score ranged from 12 to 28; (3) age 65 years or above. Inclusion criteria for MCI and CTL study groups: (1) mini 
Mental State Examination score range between 24 and 30; (2) geriatric Depression Scale score less than or equal 
to 5; (3) age 65 years or above; (4) medication stable; (5) good general health. The distinction between MCI and 
controls was based on two criteria: (1) subject scores 0 on Clinical Dementia Rating Scale = control; (2) Subject 
scores 0.5 on Clinical Dementia Rating scale = MCI. For the MCI subjects it was preferable that the subject and 
informant reported occurrence of memory problems. All AD subjects had a CDR score of 0.5 or above. The 
distinction between cMCI (converted MCI) and sMCI (stable MCI): based on follow-up interviews and tests. 
Exclusion criteria (all study groups): (1) significant neurological or psychiatric illness other than AD; (2) signifi-
cant unstable systematic illness or organ failure; (3) alcohol or substance misuse.

All samples were collected under human participant research protocols, including informed consent contain-
ing the clause necessary for allowing bio-specimens and data sharing abroad. Blood and urine were collected 
at baseline and stored at −80

◦
C . Genetic data from blood samples were obtained using the Illumina 610-Quad 

chip in two different batches as previously described24, while the third batch was obtained using HumanOm-
niExpress 24 v1.1. For this study morning (non-first void) urine samples were collected at baseline assessment 
and were subjected to metabolic profiling analysis via UHLC-MS and by 1H NMR spectroscopy (561 and 575 
samples respectively) (Table 1).

1H NMR metabolic phenotyping.  Samples were analyzed by 1H-NMR spectroscopy in-line with previ-
ously published standard protocols for the study of human urine samples76. In brief, samples were prepared 
using a Gilson 215 liquid handling robot and transferred to 4 in. length × 5 mm outer diameter NMR tubes in 
batches of 80 patient samples and four QC pooled samples. Racks of 96 prepared NMR tubes were transferred to 
a refrigerated SampleJet sample handler robot (Bruker Co) working at 5◦C . One dimensional 1H-NMR general 
profile and two-dimensional J-resolved (Jres) experiments were acquired on a Bruker Avance III HD 600 spec-
trometer following the set up previously described76. Experiments were acquired and processed in automation 
using TopSpin 3.2 and ICON NMR. Phasing, baseline correction and calibration to TSP were also carried out in 
automation after each acquisition. Spectra quality was assessed using an in-house developed bioinformatics tool 
nPYc77 following the quality criteria previously described76.

UHPLC‑MS metabolic phenotyping.  UHPLC-MS analysis of urine samples was performed as previ-
ously described78 utilizing a combination of reversed-phase chromatography (RPC) and hydrophilic interaction 
chromatography (HILIC). UHPLC was performed using Waters Acquity UPLC systems (Waters Corp., Milford, 
MA, USA), coupled to Waters Xevo G2-S QTOF mass spectrometers (Waters Corp., Wilmslow, UK) via Z-spray 
electrospray ionization (ESI) sources. RPC separations were paired with both positive and negative ion mode 
detection (generating URPOS and URNEG datasets respectively), while the HILIC separation was paired with 
positive ion mode detection only (UHPOS). All UHPLC-MS datasets underwent feature extraction using Pro-
genesis QI 2.1 software (Nonlinear Dynamics, Newcastle, UK) as previously described, and feature filtering was 
performed using previously described quality control materials78. Preprocessing including batch and run order 
correction was performed using an in-house developed bioinformatics tool nPYc77. Features were removed from 
the data sets where their analytical variation, assessed by repeated measurement of a pooled quality control 
sample (study reference), exceeded 30% (relative standard deviation) or where the analytical variation exceeded 
the total observed variation among all study samples. Features were also inspected for correlation between their 
observed intensity and sample dilution within a pooled QC dilution series and features with Pearson correlation 
coefficients less than 0.7 were removed.

Metabolic QTL mapping.  The goal of QTL mapping is to identify associations between genetic markers 
and phenotypic variation79, in the case of metabolic QTL, the genome-wide contribution of individual alleles 
to a metabolic feature concentration27. The R package MatrixEQTL80 was used for QTL mapping by modelling 
the effect of genotype as additive linear including covariates to account for: age, sex, data collection centre and 
cohort. The null-hypothesis, “there is no QTL effect for the metabolic feature concentration”, was tested against 
the alternative, “there is QTL effect between SNP and metabolic feature concentration”, for each pair of meta-
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bolic feature and SNP. We corrected results for multiple comparisons by calculating q-value using the Benja-
mini–Hochberg procedure81. The number of metabolic features and SNPs found to be associated using stringent 
q-value threshold 0.01 is presented in Table 3.

Data preparation For mQTL analysis.  UHPLC-MS metabolic datasets UHPOS, URPOS and URNEG were 
normalised with EigenMS method82 that removes bias of unknown complexity from this type of metabolomics 
experiment at the same time preserving known bias, diagnoses in the case of this study. Subsequently, both 
EigenMS processed UHPLC-MS data, and raw one-dimensional 1H NMR metabolic data were normalised using 
the quantile normalisation83 method to make metabolomics data suitable for the QTL mapping.

Imputation and quality control of genomics data.  After quality control using PLINK84, genomics data from 
separate batches were assembled and remapped to “hg19-build37” reference genome. The imputation was per-
formed with IMPUTE2 software85. Since SNPs with low minor allele frequency are non-informative and have 
a potential of creating spurious findings, the imputation results were converted into matrix form and filtered 
using minor allele frequency threshold 10%. The final genomics matrix includes 12,105,785 SNPs. The results 
of population stratification indicated biases by cohort and data collection centres (Supplementary materials 
Figures S1 and S2).

Model selection.  We used the Random Forests algorithm86 to prioritise metabolic features that can poten-
tially be used as Alzheimer’s disease biomarkers. The main focus of this study is on metabolic features. However, 
there are also 6923 SNPs that metabolic features are associated with and covariates available for the samples: age, 
gender and data collection centre. To find the best prediction model, we considered the following sets of features: 

A.	 Metabolic features only;
B.	 Metabolic features and SNPs;
C.	 Metabolic features, SNPs and covariates;
D.	 Metabolic features and covariates.

As discussed earlier, we tested three different ways of classifying diagnostic groups: four original diagnostic 
categories (AD/CTL/cMCI/sMCI), binary over-sampling AD + cMCI/CTL + sMCI, and binary under-sampling 
AD/CTL by removing cMCI and sMCI data. We explored different classifications approaches and feature sets 
by using the R implementation of RF87,88 to find the best combination. As the comparison criteria, we used the 
Out-Of-Bag (OOB) errors which is a standard approach for Random Forests. OOB error is a method of meas-
uring the prediction error utilising bootstrap aggregation to subsample data used for training. It helps to avoid 
the need for an independent validation dataset89. Results in the form of OOB errors of the RF models built for 
the different combinations of feature set and diagnostic groups are shown in Fig. 2. Each model was repeated 
ten times, using an increasing number of trees per run. The binary classification AD/CTL gives the best OOB 
errors for all four feature sets: the feature set A—0.0325, B—0.0404, C—0.0363 and D—0.0292, correspondingly. 
The feature set D, metabolic features and covariates, and binary classification AD/CTL, Alzheimer’s disease and 
healthy control samples only, after the tuning of RF parameters, gave the OOB predicted error 0.0241. The value 
of the area under the receiver operating characteristic curve (AUROC)90 for the model is 0.99 (Table 4 and Fig. 3). 
This model is our final RF model used in further analysis.

Tuning of random forests parameters.  There are two parameters to tune for the RF algorithm: the number of 
trees used in the forest—ntree, and the number of variables used in each tree-mtry. We applied the alternating 
iterative procedure to find the best possible parameters values for ntree and mtry. The results plotted on Supple-
mentary materials Figure S3 shows that with the ntree value equal to 680 the out-of-bag error rate stabilises and 
reaches its minimum 0.0254 with standard deviation 0.0056. The best mtry value we found is 90 (Supplementary 
materials Figure S4). It gives minimal OOB error rate 0.0241 with standard deviation equals to 0.0046.

Ranking of metabolic features.  We ranked metabolic features using the permutation importance score 
obtained from the final RF model. This score is based on the idea that if the feature is not essential, then rearrang-
ing the values of that variable does not degrade classification accuracy. The list of ranked metabolic features with 
calculated permutation importance score and added metabolite annotations are presented in the Supplementary 
materials Table S3.

Metabolite annotation.  For metabolite identification features of interest derived from the UHPLC-MS 
datasets first underwent correlation analysis using an R script developed in-house. This enabled the observation 
of co-eluting adducts and in-source fragments that are characteristic of metabolites. Further structural data were 
obtained via the use of high-resolution accurate mass to charge ratio (m/z) values and collision-induced dissoci-
ation (CID) fragmentation patterns. CID experiments were completed at a range of collision voltages at 5 V step 
intervals (5–45 V). The front quadrupole of the QTOF MS system was engaged to select for the feature of interest 
prior to CID. Chromatographic retention time matching to in-house standards was also completed where the 
standard was available for purchase. Online databases such as METLIN91, and the Human Metabolome Database 
(HMDB)92 were also used to assist with metabolite identification. Where available, analytical standards were 
purchased and spiked into representative samples to increase confidence in the annotation.
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Tentative annotation of features of interest derived from 1H NMR analysis was completed by searching on 
literature and using in-house databases to match possible patterns of interest with the relevant spectra of standard 
compounds. The multiplicity of the signals of interest was confirmed using the corresponding Jres spectrum 
and a cassette of 2D spectra of representative samples including 1H,1H-COSY, 1H,1H-TOCSY, 1H,13C-HSQC.

Data availability
Genomics data in European Nucleotide Archive PRJNA​26653​1.

Code availability
Githu​b repos​itory​.
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