View full-text article in PMC Sensors (Basel). 2020 Dec 3;20(23):6923. doi: 10.3390/s20236923 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Algorithm 4: A diffusion distributed Kalman filter separating diffusion update. For the node i∈V and node j∈Ni, Initialize with: x^i,0∣0loc=Ex0, Pi,0∣0loc=E[(x0−Ex0)(x0−Ex0)T], x^i,0∣0=Ex0, Pi,0∣0=E[(x0−Ex0)(x0−Ex0)T]; Local update: x^i,t∣t−1loc=Ax^i,t−1∣t−1loc, Pi,t∣t−1loc=APi,t−1∣t−1locAT+ΓQΓT, (Pi,t∣tloc)−1=(Pi,t∣t−1loc)−1+HiTRi−1Hi, x^i,t∣tloc=x^i,t∣t−1loc+Pi,t∣tlocHiTRi−1(yi,t−Hix^i,t∣t−1loc); Diffusion incremental Update: x^i,t∣t−1=Ax^i,t−1∣t−1, Pi,t∣t−1=APi,t−1∣t−1AT+ΓQΓT, (Pi,t∣tdiffusion)−1=Pi,t∣t−1−1+HiTRi−1Hi, x^i,t∣tdiffusion=x^i,t∣t−1+Pi,t∣tdiffusionHiTRi−1(yi,t−Hix^i,t∣t−1); Communication and fusion update: Send x^j,t∣tdiffusion and Pj,t∣tdiffusion to adjacent node i, Pi,t∣t−1=∑j∈Niwj(Pi,t∣tdiffusion)−1+wi(Pi,t∣tloc)−1, x^i,t∣t=Pi,t∣t∑j∈Niwj(Pi,t∣tdiffusion)−1x^j,t∣tdiffusion+wi(Pi,t∣tloc)−1x^i,t∣tloc, where wj and wi is calculated by Equation (5).