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Abstract

Purpose of review: Macrophages play an important role in regulating homeostasis, kidney 

injury, repair, and tissue fibrogenesis. This review will discuss recent advances that explore the 

novel subsets and functions of macrophage in the pathogenesis of kidney damage and 

hypertension.

Recent Findings: Macrophages differentiate into a variety of subsets in microenvironment-

dependent manner. While the M1/M2 nomenclature is still applied in considering the pro- versus 

anti-inflammatory effects of macrophages in kidney injury, novel and accurate macrophage 

phenotypes are defined by flow cytometric markers and single-Cell RNA signatures. Studies 

exploring the crosstalk between macrophages and other cells are rapidly advancing with the 

additional recognition of exosome trafficking between cells. Using murine conditional mutants, 

actions of macrophage can be defined more precisely than in bone marrow transfer models. Some 

studies revealed the opposing effects of the same protein in renal parenchymal cells and 

macrophages, highlighting a need for the development of cell-specific immune therapies for 

translation.

Summary: Macrophage-targeted therapies hold potential for limiting kidney injury and 

hypertension. To realize this potential, future studies will be required to understand precise 

mechanisms in macrophage polarization, crosstalk, proliferation, and maturation in the setting of 

renal disease.
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Introduction

Macrophages are prototypical cells from the innate immune system, that were originally 

identified by their capacity for phagocytosis[1]. However, macrophages are multifunctional 

and perform diverse roles by integrating endocrine/paracrine signals or ligand-receptor 

signals in the local tissue environment[2–5]. In the kidney, the macrophages have been 

divided into infiltrating “bone marrow-derived macrophages” and long-lived “tissue-resident 

macrophages”[6–9]. The macrophages can either aggravate kidney injury by stimulating 
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inflammation or perform a protective role by facilitating tissue repair[10–13]. Several groups 

have elucidated the role of macrophages in regulating the progression of kidney fibrosis, a 

final common pathway of chronic kidney disease (CKD) leading to end-stage renal disease 

(ESRD)[14–16]. Pro-inflammatory macrophages can exacerbate blood pressure elevation 

and target organ damage in hypertension[17–19], whereas VEGF-C-positive macrophages 

limit salt-sensitive hypertensive responses by preventing interstitial sodium accumulation 

[20]. In this review, we highlight advances in understanding in the roles of macrophages in 

acute kidney injury (AKI), CKD, and hypertension, focusing on the regulation of 

macrophage phenotype, surface marker expression, and the crosstalk between macrophages 

and kidney parenchymal cells or other immune cells.

Macrophage origin and polarization

Following the initial discovery of macrophages as a subset of bone marrow-derived 

phagocytic cells[1], lineage tracing techniques divided macrophages into two subsets based 

on their origin: embryonic-derived resident macrophages or bone marrow-derived infiltrating 

macrophages[21–23]. These two populations have diverse roles in maintaining homeostasis, 

responses to injury, and tissue repair. Embryonic macrophages are hematopoietic stem cell 

(HSC)-derived cells in the yolk sac, which contribute to the innate immune functions, red 

blood cell maturation, and development of fetal architecture[24]. Embryonic macrophages 

also migrate to various organs during development and mature into tissue-resident 

macrophages in the brain, heart, and liver. However, the kidney-resident macrophages are 

fetal monocyte-derived FLT3 negative macrophages but not yolk sac-derived[25]. In 

response to initial injury, resident macrophages sense damage-associated molecular patterns 

(DAMPs) and pathogen-associated molecular patterns (PAMPs), leading to augmented 

phagocytosis, antigen processing and presentation, and secretion of pro-inflammatory 

cytokines[26]. Bone marrow-derived monocytes are then recruited into injured tissues and 

mature into monocyte-derived macrophages, resulting in augmented inflammatory 

responses.

Another classification of macrophages defines them as M1 (classically activated) or M2 

(alternatively activated). In vitro experiments revealed that LPS and IFN-γ stimulation 

facilitates M1 polarization and pro-inflammatory cytokine secretion, whereas interleukin-4 

(IL-4) and interleukin-13 (IL-13) administration leads to M2 polarization and anti-

inflammatory cytokine production[27]. Although the definition of M1/M2 macrophage 

provided a simplified paradigm through which to study the phenotype and function of 

macrophages in vitro, the in vivo environment is more complex and dynamic, and clearly 

polarized M1 or M2 phenotypes are not uniformly observed in tissues during disease [28]. 

For example, a recent clinical study identified more than nine different types of macrophage 

polarization [29]. Thus, the M1/M2 paradigm has limitations in explaining the phenotype of 

a mixed subset of macrophages that show plasticity. Studies using single-cell RNA-Seq have 

highlighted macrophage phenotype changes that are inconsistent with the M1/M2 paradigm 

and revealed novel macrophage populations in vivo [30, 31]. While we employ the M1/M2 

paradigm in some parts of this review for simplicity, we acknowledge that a more complex 

subset description may be necessary in certain disease settings.
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Macrophages in acute kidney injury

Macrophages are involved in both the injury and repair phase of ischemic AKI, and the 

actions of macrophages are phenotype dependent[32, 33]. Lee et al.[34] found that the 

recruitment of iNOS-positive pro-inflammatory macrophages is dramatically increased 

within the first 48 hours after ischemic AKI, whereas renal macrophages in the later phases 

of AKI are mannose receptor and arginase 1 (Arg1) positive non-inflammatory 

macrophages. Within 24 hours after experimental AKI, circulating Ly6Chigh monocytes 

migrate to the inflamed site of kidney via the Chemokine Receptor (CCR2) and CX3C 

chemokine receptor 1 (CX3CR1)[35–37]. Mincle is a transmembrane pattern recognition 

receptor that is detected in CD68+iNOS+ M1 macrophages and is essential for the 

maintenance of M1 phenotype[38]. High-mobility group box 1 (HMGB1) as an 

extracellularly released nuclear factor can stimulate macrophage recruitment at day 5 after 

ischemic AKI[39]. During the maturation of these Ly6Chigh monocytes, the polarization 

towards a pro-inflammatory (M1) phenotype is strengthened and enforced by pro-

inflammatory cytokines and DAMPs[40–42]. Suppressor of cytokine signaling 3 (SOCS3) in 

proximal tubular cells also exacerbates M1 polarization highlighting the reciprocal effects of 

renal parenchymal tissues on infiltrating macrophage phenotype during ischemic AKI. 

Exosomes deliver messages between cells via their packaged molecules. Tubular epithelial 

cell-derived exosomal RNA and microRNAs stimulate M1 macrophage responses and 

kidney injury during AKI[43–45]. Macrophage depletion prior to ischemic AKI protects 

against renal functional decline and tubular injury, whereas adoptive transfer of IFN-γ-

induced M1 macrophages to macrophage deficient mice restores kidney injury after 

ischemic AKI[34, 46]. Interleukin-1β (IL-1β) as an M1 cytokine can stimulates kidney 

injury and inflammation through IL-1 receptor. Compared to the wide-type (WT) controls, 

the total numbers of CD64+ macrophages were similar in the kidneys of IL-1 receptor knock 

out (IL1R KO) mice during cisplatin AKI, whereas the total numbers of CD11b+TNF+ 

macrophages in IL1R KO kidneys was reduced[47], indicating that IL-1R activation may 

exaggerate cisplatin nephrotoxicity by promoting TNF generation in myeloid cells. While 

pro-inflammatory (M1) macrophages can remove DAMPs and dead cells, the prolonged 

activation of pro-inflammatory (M1) macrophages leads to extensive inflammation and 

delayed tissue repair.

Anti-inflammatory (M2) macrophages are essential for the proliferation and regeneration of 

damaged epithelial cells and are increased at day 3 after ischemic AKI[34, 48, 49]. Baek et 
al.[50] found a phenotype conversion from Ly6G–F4/80+NOS-2+TNFα+ (M1 like) to Ly6G–

F4/80+Arginase-1+Dectin-1+CD206+ (M2 like) macrophages at the later phase after 

ischemic AKI. M2-like macrophages exhibit beneficial effects after ischemic AKI, such as 

clearance of intraluminal debris, promotion of epithelial regeneration, activation of 

regulatory T cells, and attenuation of kidney inflammation[33, 51–53]. Ly6Cintermediate 

macrophages facilitate kidney injury repair, whereas Ly6Clow macrophages promote kidney 

fibrosis in the long term after ischemic AKI[37, 54]. Stimulating mineralocorticoid receptors 

on myeloid cells inhibits the polarization of macrophage toward M2 phenotype, thereby 

promoting the AKI to CKD transition[55]. F4/80hiFcgr4hiFcgr1+ macrophages are newly 

defined kidney resident macrophages distinct from infiltrating monocytes[56]. These kidney 
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resident macrophages display a unique signature inconsistent with either M1 or M2 

paradigm and promote tissue repair by activating the wingless-type MMTV integration site 

family (Wnt) pathway[56, 57].

Macrophages in chronic kidney disease

Bone marrow-derived monocytes are precursors to the macrophages that accumulate in the 

injured kidney and proliferate locally during chronic kidney injury[58–60]. Accordingly, 

blockade of colony-stimulating factor 1 receptor (CSF1R) significantly inhibits monocyte 

proliferation in the bone marrow, which limits renal macrophage accumulation and 

attenuates kidney injury during nephrotoxic nephritis (NTN) and kidney allograft 

rejection[10, 61]. CCL2 mediates the migration of bone marrow-derived monocyte to the 

injured kidney, such that CCL2 blockade attenuates glomerular and interstitial infiltration of 

pro-inflammatory macrophages[62–64]. Other chemokines such as CX3CL1, CXCL16, and 

macrophage migration inhibitory factor (MIF) also contribute to renal macrophage 

recruitment in kidney disease[65–68]. Complements and deposited immunoglobulin can 

stimulate macrophage recruitment and activation through a fragment receptor (FcR)-

dependent manner[69, 70], but may not be required for vascular monocyte-driven 

autoimmune damage to the kidney[71]. By contrast, we found that the mononuclear cell 

chemokine C-C motif chemokine 5 (CCL5) constrains CCL2 expression, macrophage 

infiltration, and kidney damage and fibrosis in hypertension via blood pressure-independent 

mechanisms, emphasizing a complex network of overlapping chemokines[19].

Recruited macrophages then produce a range of cytokines including tumor necrosis factor-α 
(TNF-α) and interferon-γ (IFN-γ), which in turn exacerbate M1 polarization and CKD[16, 

72, 73]. Renal parenchyma-derived DAMPs such as DNA, high mobility group protein B1 

(HMGB1), and C-reactive protein also augment the renal accumulation of pro-inflammatory 

macrophages and aggravate kidney injury in several CKD models [74–78]. As direct 

evidence of M1 macrophage contributions to CKD pathogenesis, the adoptive transfer of M1 

polarized macrophages exacerbates glomerular and interstitial injury in CKD[73, 79]. 

Inversely, blockade M1 macrophage signaling pathways attenuates kidney injury[80–82]. In 

some renal diseases, the macrophage is not a major source of TNF-α that injures the 

kidney[83]. However, in an autoimmune nephritis model, we found that CD11b+Ly6Chi 

macrophage-derived TNF-α stimulates kidney injury and interstitial fibrosis by inducing 

epithelial necroptosis[16]. The renin-angiotensin system (RAS) activation generally 

stimulates tissue injury and inflammation. For example, activating the type 1 angiotensin 

receptor (AT1R) in renal parenchymal cells drives kidney injury, blood pressure elevation, 

and cardiac hypertrophy[84, 85]. By contrast, in our hands, AT1R activation on T 

lymphocytes blunts Th1 responses and reduces pro-inflammatory macrophage 

differentiation[86]. Similarly, stimulating the AT1R on myeloid cells attenuates M1 pro-

inflammatory cytokine production, leading to reduced kidney injury and fibrosis in rodent 

models of kidney injury induced by hypertension, obstruction, and obesity[87–89].

Anti-inflammatory (M2) macrophages are recruited in the chronic phase of the disease, 

leading to kidney repair and/or fibrosis. Clinical studies have revealed a correlation between 

renal accumulation of CD163+ (M2) macrophages and the severity of kidney fibrosis in 
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patients with immunoglobulin A (IgA) nephropathy, type 2 diabetes, or chronic kidney 

allograft injury[90–93]. Similarly, M2 macrophages promote glomerulosclerosis and 

interstitial fibrosis in rodent models of NTN[94, 95]. Adoptive transfer of splenic 

macrophages pre-conditioned with IL-10/TGF-β protect against kidney injury in adriamycin 

nephrosis[96, 97]. Macrophage-derived matrix metallopeptidases also regulate matrix 

deposition and degradation in renal disease[98, 99]. For example, our studies revealed that 

Twist1 in CD11b+Ly6Clow macrophages decreases matrix accumulation in in obstructed 

kidneys by promoting MMP13 production[15]. By contrast, Twist1 in the distal nephron but 

not infiltrating macrophages stimulates kidney inflammation and fibrosis during aristolochic 

acid nephropathy, showing that the actions of macrophage Twist1 in CKD pathogenesis is 

context-dependent[100]. Wnt / b-catenin signaling plays a key role in renal fibrogenesis, and 

we previously reported that blocking Wnt secretion by disrupting the catalytic activity of the 

Wnt-acyl transferase Porcupine ameliorates fibrosis in the obstructed kidney[101]. However, 

deleting Porcupine selectively from myeloid cells exaggerates kidney scar formation and 

renal inflammation[102]. Thus, in selected injury models, macrophage-derived Twist1 and 

Porcupine both play renoprotective roles in contrast to their pathogenic actions within 

injured kidney tubular cells.

Macrophages in hypertension

Angiotensin (Ang) II regulates blood pressure levels and natriuresis via the AT1R activation 

on renal parenchymal cells[84]. Ang II also regulates the differentiation and infiltration of 

pro-inflammatory monocyte/macrophages in the hypertensive kidney[87, 103, 104]. Bone 

marrow-derived monocytes accumulate in the vascular wall and kidney to exacerbate n 

RAS-induced hypertension[17, 105]. Hypertensive patients have increased numbers of pro-

inflammatory monocytes and elevated levels of cytokines in the circulation[106, 107]. 

Inversely, deleting monocytes and macrophages in mice limits blood pressure elevation and 

vascular damages during chronic Ang II infusion, whereas adoptive transfer of wild type 

monocytes restores the Ang II-induced hypertensive response and target organ damage[17, 

108]. In contrast to the protective effects of global AT1 receptor (AT1R) blockade, we have 

found previously that AT1R deletion on myeloid populations can aggravate target organ 

damage during hypertension, highlighting a protective effect of AT1R activation on immune 

cells[85, 109, 110]. In salt-sensitive hypertension, high salt concentrations facilitate 

macrophages polarization toward a pro-inflammatory (M1) phenotype and blunts IL-4/

IL-13-induced anti-inflammatory (M2) differentiation[111–113]. In the spontaneously 

hypertensive rat, CD161a+CD68+ pro-inflammatory macrophages infiltrate the renal 

medulla and exacerbate hypertensive responses[114]. However, the phenotype of 

macrophages is not static during the evolution of hypertension. Moore et al.[115] found that 

a shift from M1 to the M2 phenotype occurs at the 7–14 days after Ang II infusion with 

consequent increases in tissue fibrosis.

Infiltrating pro-inflammatory macrophages can regulate blood pressure by producing a 

variety of pro-inflammatory cytokines such as TNF-α and IL-1β. Renal parenchyma-derived 

TNF-α exacerbates blood pressure levels and causes targets organ damage by impairing 

nitric oxide production[116, 117]. Similarly, IL-1β stimulates hypertensive responses and 

kidney damage through IL-1 receptor activation [87, 118]. In our hands, IL-1 receptor 
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activation suppressed the maturation of NO-expressing Ly6C+Ly6G− macrophages with 

consequent inhibition of the NKCC2 sodium cotransporter[119]. Macrophages can also 

regulate hypertensive end-organ damage via blood pressure-independent mechanisms. 

Accordingly, deficiency in CCR2 or colony-stimulating factor 1 (CSF-1) reduces renal 

macrophage recruitment and both kidney and vascular damage in Ang II-induced 

hypertension[120–122].

Nevertheless, the role of macrophages in hypertension is also tissue-dependent, as dermal 

macrophages attenuate sodium retention and salt-sensitive hypertension by stimulating 

lymphangiogenesis[20]. The transcription factor tonicity-responsive enhancer-binding 

protein (TONEBP) in kidney macrophages also facilitates NOS2-dependent NO production 

leading to increased vasodilation and sodium excretion[111, 119]. Similarly, 

cyclooxygenase-2 (COX2) in skin macrophages stimulates M2 polarization and inhibits salt-

sensitive hypertension via vascular endothelial growth factor C (VEGF-C)- dependent 

lymphangiogenesis[123]. Finally, endothelin-1 (ET-1) mediates vasoconstriction via 

receptors on vascular smooth muscle cells, but, endothelin-B receptor (ETBR) deficiency on 

myeloid cells also attenuates blood pressure elevation and endothelial dysfunction without 

impacting macrophage polarization in Ang II-induced hypertension[124].

Conclusions

Monocytes/macrophages are recruited and activated by diverse chemokines and play a 

critical role in renal injury, repair, and fibrosis. Although the simplified pro-inflammatory 

(M1) and anti-inflammatory (M2) macrophage paradigm has been widely used, 

macrophages also regulate the process of wound repair, pro-/anti-fibrogenesis, and tissue 

regeneration through complex phenotypes than the simple, dichotomous paradigm. 

Moreover, differentiation of macrophages shows plasticity during renal disease 

pathogenesis, leading researchers to explore new combinations of surface markers to 

distinguish macrophage subpopulation. Several proteins including AT1R, Twist1, and 

Porcupine on renal parenchymal and myeloid cells serve opposing functions during CKD 

and hypertension. Thus, targeting macrophages to limit kidney injury and blood pressure 

elevation will require incisive and cell-directed strategies.

Thus, therapies targeting the macrophage in renal disease will require a clearer 

understanding of macrophage functions at each stage of injury or repair. Several questions 

linger: How does the microenvironment in injured kidneys impact macrophage phenotype? 

What are the key mechanisms regulating macrophage phenotype switching? How can a 

stable, therapeutic macrophage phenotype be established following renal injury? What are 

the mechanisms controlling the self-renewal of kidney resident macrophage? What is the 

nature of the crosstalk between resident and infiltrating macrophages following a kidney 

insult? Finally, how can new tools such as single-Cell RNA sequencing be harnessed to 

identify and promote healthful macrophage subpopulations in the injured kidney? Future 

studies will address these and other key questions to shape innate immune responses that can 

and limit renal damage and fibrosis and drive kidney repair.
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Key points

Macrophages are critical in maintaining kidney health and in instigating both kidney 

damage and repair.

The macrophage phenotype depends on the renal microenvironment and changes in 

different phases of kidney disease.

Macrophages have a wide range of phenotypes beyond M1 and M2.

Signaling pathways in macrophages and renal parenchymal cells may exhibit opposite 

effects during the pathogenesis of kidney disease.
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