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Abstract

Background: HER2-targeting agents have dramatically changed the therapeutic landscape of HER2+ advanced
breast cancer (ABC). Within a short time frame, the rapid introduction of new therapeutics has led to the approval
of pertuzumab combined with trastuzumab and a taxane in first-line, and trastuzumab emtansine (T-DM1) in
second-line. Thereby, evidence of T-DM1 efficacy following trastuzumab/pertuzumab combination is limited, with
data from some retrospective reports suggesting lower activity. The purpose of the present study is to investigate
T-DM1 efficacy in pertuzumab-pretreated and pertuzumab naïve HER2 positive ABC patients. We also aimed to
provide evidence on the exposure to different drugs sequences including pertuzumab and T-DM1 in HER2 positive
cell lines.
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Methods: The biology of HER2 was investigated in vitro through sequential exposure of resistant HER2 + breast
cancer cell lines to trastuzumab, pertuzumab, and their combination. In vitro experiments were paralleled by the
analysis of data from 555 HER2 + ABC patients treated with T-DM1 and evaluation of T-DM1 efficacy in the 371
patients who received it in second line. Survival estimates were graphically displayed in Kaplan Meier curves,
compared by log rank test and, when possibile, confirmed in multivariate models.

Results: We herein show evidence of lower activity of T-DM1 in two HER2+ breast cancer cell lines resistant to
trastuzumab+pertuzumab, as compared to trastuzumab-resistant cells. Lower T-DM1 efficacy was associated with a
marked reduction of HER2 expression on the cell membrane and its nuclear translocation. HER2 downregulation at
the membrane level was confirmed in biopsies of four trastuzumab/pertuzumab-pretreated patients.
Among the 371 patients treated with second-line T-DM1, median overall survival (mOS) from diagnosis of advanced
disease and median progression-free survival to second-line treatment (mPFS2) were 52 and 6 months in 177
patients who received trastuzumab/pertuzumab in first-line, and 74 and 10 months in 194 pertuzumab-naïve
patients (p = 0.0006 and 0.03 for OS and PFS2, respectively).

Conclusions: Our data support the hypothesis that the addition of pertuzumab to trastuzumab reduces the
amount of available plasma membrane HER2 receptor, limiting the binding of T-DM1 in cancer cells. This may help
interpret the less favorable outcomes of second-line T-DM1 in trastuzumab/pertuzumab pre-treated patients
compared to their pertuzumab-naïve counterpart.

Keywords: HER2+ breast cancer, Trastuzumab/pertuzumab blockade, T-DM1 efficacy

Background
Human epidermal growth factor receptor 2 (HER2) is a
member of the HER family of receptor tyrosine kinases,
also including the epidermal growth factor receptor
(EGFR), HER3, and HER4. Ligands binding to EGFR,
HER3 and HER4 induce homo- and heterodimerization
among the family members. Despite the lack of specific
ligands, activated HER2 homodimerizes in HER2 posi-
tive (HER2+) breast cancer (BC) cells and is then re-
cruited as a preferred partner in heterodimers, resulting
in the activation of cancer-driving pathways [1].
HER2 overexpression and/or gene amplification occurs

in approximately 15–20% of BC, and is associated with a
more aggressive behavior, with high rates of cell prolifer-
ation and metastasis, and poor patient outcomes [2].
HER2+ advanced breast cancer (ABC) has significantly
benefited from the approval of several HER2-targeting
agents in the last decades. Trastuzumab, a monoclonal
antibody targeting HER2, has revolutionized the thera-
peutic landscape of HER2+ ABC [3]. Despite this, up to
40% of ABC patients show innate trastuzumab-
resistance, and most patients develop acquired resistance
whithin the first year of trastuzumab treatment [4, 5].
The approval of three additional anti-HER2 agents, i.e.,
lapatinib, pertuzumab, and trastuzumab emtansine (T-
DM1), has converted HER2+ ABC into a highly treatable
disease, with more favorable outcomes [6–9]. Pertuzu-
mab is a monoclonal antibody binding HER2 at a differ-
ent site compared with trastuzumab. A more
comprehensive signaling blockade underlies the notice-
bly enhanced antitumor activity of trastuzumab and per-
tuzumab combination treatment [10]. Results from the

CLEOPATRA trial showed an unprecedented median
overall survival (mOS) advantage of 15.7 months in the
pertuzumab arm, and the double-block combination has
therefore become the new standard first-line treatment
in HER2+ ABC [7]. T-DM1 is an antibody-drug conju-
gate of trastuzumab with emtansine (DM1), an antimi-
crotubule maytansine derivative [11, 12]. The activity of
T-DM1 depends on both trastuzumab antitumor effects
and intracellular DM1. Following T-DM1 binding to
membrane HER2 receptor, the HER2-T-DM1 complex
enters into the cell via receptor-mediated endocytosis
[13]. Subsequently to the release from the lysosome,
DM1-containing metabolites inhibit microtubule assem-
bly, causing cell death [14].
In second-line treatment, after treatment with taxane

and trastuzumab or as first-line in patients with rapid
progression after adjuvant trastuzumab (≤6 months),
TDM-1 has shown greater efficacy than lapatinib and
capecitabine in the phase III EMILIA trial [8]. Conse-
quently, TDM-1 has become the standard second-line
treatment in HER2+ ABC patients.
To the aims of the present study, it is noteworthy that

patients accrued in randomized trials of T-DM1 had not
received prior pertuzumab. Therefore, we lack solid evi-
dence on T-DM1 efficacy following trastuzumab/pertu-
zumab-containing regimens. Data from observational
trials are limited. We have previously shown evidence of
lower T-DM1 efficacy in trastuzumab/pertuzumab-pre-
treated patients providing data from a retrospective,
multicentric study of 250 HER2+ ABC patients [15]. In a
further retrospective evaluation of T-DM1 activity as
second-line or later treatment from Dzimitrowicz and
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colleagues [16], results in terms of tumor response rates
and progression free survival (PFS) appeared less favor-
able than those reported in randomized trials of T-DM1.
These findings suggest the need to investigate the biol-

ogy of HER2 through sequential treatments in order to
define the molecular basis for the appropriate thera-
peutic approach.
Based on the above reported evidence, we explored

the effects of the exposure to trastuzumab and/or pertu-
zumab on HER2 receptor expression and cellular
localization in HER2+ BC cell lines, and their effects on
T-DM1 activity. The pre-clinical experiments were par-
alleled by the conduct of a large, multicentric, retro-
spective observational study, i.e., the SePHER study,
Administration Sequence in Pertuzumab-pretreated
HER2 + ABC patients, aimed to explore the efficacy of
T-DM1 in light of prior trastuzumab/pertuzumab treat-
ment in the real-world setting.

Materials and methods
Study approval
The SePHER study is a multicenter, observational trial
with retrospective design including HER2+ ABC patients
from 45 Italian cancer centers. This study was approved
by the Institutional Review Board (IRB) of the Regina
Elena National Cancer Institute, Rome, Italy [reference
number: RS793/16(1815)]. The approval of the coordin-
ating centre was tempestively notified to all the partici-
pating partners for further consideration and approval
by the respective IRBs. An ad hoc written informed con-
sent was developed and implemented for this study
participants.

Patients’ selection
Information on demographics, clinical, histopathological
and immunohistochemical (IHC) features, anti-tumoral
therapies and related outcomes were retrieved from pa-
tients’ medical records by specifically trained research
assistants. All included patients were treated for ad-
vanced disease. Each patient was evaluated during treat-
ment according to the follow-up strategies of each
center. Clinical response was evaluated by response
evaluation criteria in solid tumours (RECIST) criteria,
version 1.1. Anonymized data were entered into a dedi-
cated database with a SPSS operating interface. Median
follow up was calculated starting from diagnosis of
metastatic disease to death or date at last follow up.
Endpoints for efficacy outcome included progression
free survival (PFS) and overall survival (OS). Progression
free survival for any specific line of treatment was calcu-
lated from the time of treatment start to the time of dis-
ease progression, interruption of treatment for toxicity,
death or loss to follow-up. Overall survival was calcu-
lated starting from diagnosis of metastatic disease to

death or last follow-up. Median PFS (mPFS) and OS
(mOS) were calculated using the Kaplan-Meier product
limit estimator method.
We first analyzed 371 patients treated with T-DM1 in

second-line. We then split the whole cohort of 555 pa-
tients into five subgroups, as follows: 1. Patients treated
in first-line without pertuzumab/second-line with T-
DM1 (Number of patients, N, 194 patients); 2. Patients
treated in first-line without pertuzumab/T-DM1 in
third-line or beyond (N: 148); 3. Patients treated in first-
line with pertuzumab/second-line with T-DM1 (N: 177);
4. Patients treated in first-line with pertuzumab/T-DM1
in third-line or beyond (N: 11); 5. Patients treated in
first-line with T-DM1 (N: 25). The groups defined upon
treatments’ sequence, as previously specified, were se-
lected by hypothesizing a possible effect of the adminis-
tration sequence on the main clinical outcomes, i.e., OS
and PFS to first-line, second-line and third-line of treat-
ment (PFS1, PFS2 and PFS3, respectively). Survival esti-
mates were first computed for the whole cohort and
then by treatments’ sequence. Subsequently, data on OS
and PFS2 were also analyzed across strata defined by
IHC tumor features, namely, estrogen receptor (ER) and
progesterone receptor (PgR) positive (triple positive,
TP), ER or PgR positive, and both hormonal receptors
(HRs) negative.
Pathology assessment was performed in surgical speci-

mens of primary tumors by dedicated pathologists at the
participating centers as per national standards. Estrogen
receptor and PgR status were determined at each center
by IHC according to the local standards. Positivity was
considered at a cut-off of ≥1%. HER2 testing was per-
formed according to the 2013 ASCO/CAP guidelines on
HER2 Testing in Breast Cancer. A positive HER2 status
required an IHC score of 3+ or positive fluorescence in
situ hybridization/cromogenic in situ hybridization
(FISH/CISH).

Generation of drug-resistant cell lines
Drug-resistant cells were obtained by continuous expos-
ure of HER2+ BT474 and SkBr3 cell lines, obtained from
the American Type Culture Collection (ATCC), to
20 μg/ml trastuzumab or pertuzumab, or 10 μg/ml tras-
tuzumab + 10 μg/ml pertuzumab, for 2 months, followed
by 7 months of culture in medium supplemented with
50 μg/ml trastuzumab or pertuzumab, or 25 μg/ml tras-
tuzumab + 25 μg/ml pertuzumab. Further details are re-
ported in the Supplementary materials and methods and
are available online.

Statistical analysis
Within the overall cohort of the 555 patients, the associ-
ations of interest were also evaluated in light of: a. T-
DM1 administration in second- or subsequent line, and
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b. molecular subgroups, with these latter being set based
on the results of IHC analysis and according to the cri-
teria fully reported in the patients’ selection paragraph.
The covariates used in the Cox uni/multivariate models
included the following categorical variables: “first-line
pertuzumab” (yes vs. no) and “treatment sequence”,
which both concurred to define the five categories de-
scribed in detail in the methods section; age; IHC sub-
type; Ki-67 (> 20% vs ≤20%); metastasis at diagnosis (yes
vs no); number of metastatic sites (> 1 vs 1); visceral me-
tastasis (yes vs no); brain metastasis (yes vs no); bone-
only metastasis (yes vs no), lenght of PFS1 and disease
free interval (DFI). This latter was calculated from the
time of surgery to the time of metastatic disease diagno-
sis. Variables testing significant in univariate analyses
were further tested in multivariate models. The level of
statistical significance was set at p ≤ 0.05, with a 95%
confidence interval (95%CI). The SPSS software (SPSS
version 21.0, SPSS Inc., Chicago, IL) was used for all
statistical evaluations.
Regarding the experiments in cell lines, all data were

reported as mean +/− standard deviation. Differences
were considered statistically significant when p ≤ 0.05,
with a 95%CI. Student’s t test was performed for the
comparison of results from all different tests (*p < 0.05,
**p < 0.001, ***p < 0.0001).

Results
Generation of trastuzumab, pertuzumab, and
trastuzumab+pertuzumab resistant SkBr3 and BT474 cells
in vitro
To investigate the mechanisms underlying lower T-DM1
efficacy following trastuzumab/pertuzumab in ABC pa-
tients, we established trastuzumab (T), pertuzumab (P),
and trastuzumab+pertuzumab (T + P)-resistant HER2+
SkBr3 and BT474 cell lines (Fig. 1a). In agreement with
previously reported data, Western Blot (WB) analysis re-
vealed that short-term trastuzumab treatment inhibits
the phosphorylation of HER family members and AKT,
but not of ERKs (Fig. 1b, leftpanels) [17]. This effects
were emphasized in trastuzmab+pertuzumab short term
-treated cells. Wester Blot analysis of the generated re-
sistant cell lines revealed reduced HER2 activity and ex-
pression and marked induction of ERKs phosphorylation
in T + P cells as compared to parental and both T and P
cells, whereas HER3 and EGFR were upregulated despite
the reduced phosphorylation, in both BT474 and SkBr3
(Fig. 1b, right most panels). T + P cells maintained de-
creased HER2 phosphorylation and total expression, as
confirmed by periodically testing resistant and control
cell lines following their establishment (Fig. 1c). Resist-
ant cell lines exhibited a higher proliferation rate (Fig.
1d) and invasive capability (Fig. 1e) compared to control
cells. The number of invading T + P cells was

significantly higher compared to T cells in both cell
lines. Overall this data indicate that a more aggressive
behavior is induced by the chronical exposure of HER2+
breast cancer cell lines to the combination trastuzumab/
pertuzumab rather than trastuzumab.

Dual HER2 blockade is associated with reduced T-DM1
efficacy due to HER2 downregulation
Following T-DM1 treatment, the percentage of re-
sponsive T + P cells was significantly lower compared
to T cells in BT474 (p < 0.0001), and in SkBr3, al-
though at a lower level of statistical significance (p <
0.05) (Fig. 2a). Full T-DM1 dose-response curves of T
and T + P cell lines are reported in Fig. 2b, that con-
firm significantly lower T-DM1 efficacy in cells
chronically exposed to the combination trastuzumab/
pertuzumab. T-DM1 induced a marked down-
regulation of HER2 as well as HER3 and EGFR, in
parental, T and P BT474 cells, whereas T + P BT474
cells maintained unmodified levels of these receptors
(Fig. 2c). T-DM1 inhibited ERKs phosphorylation in
control cells, T and P cells, whereas it considerably
induced ERKs activation in T + P cells, in both cell
lines (Fig. 2c, data available upon request). The down-
regulation of HER2 induced by trastuzumab/pertuzu-
mab combination was confirmed in vivo, by the
immunohistochemical assessment of bioptic specimens
from four trastuzumab/pertuzumab-treated ABC pa-
tients prior to and following exposure to double-block
(Table 1). Representative images of eosin-hematossilin
and HER2 staining from two patients are shown in
Fig. 2d.

The combination trastuzumab+pertuzumab induces HER2
nuclear translocation
When administered in vitro as short-term treatments,
trastuzumab and pertuzumab alone barely down-
regulate HER2 [18–20], while their combination in-
duces a stronger HER2 downregulation [19, 20]. To
investigate the long-term effects of trastuzumab and
pertuzumab on HER2 subcellular distribution, we per-
formed immunofluorescence experiments. As shown
in Fig. 3a, in control cells, T and PBT474 and SkBr3
cells, HER2 was mainly localized at the plasma mem-
brane level, and concentrated on cellular protrusions
[17]. A diffuse cytoplasmic signal was also present.
Conversely, T + P cells lost membrane-HER2 and
retained HER2 cytoplasmic distribution (Fig. 3a).
Western Blot analysis of the cytoplasmic and nuclear
fractions of control and resistant cells showed a
marked translocation of HER2 to the nucleus in T + P
BT474 and SkBr3 cells (Fig. 3b). Nuclear HER2 was
phosphorylated, suggesting its active involvement in
transcriptional control mechanisms [21, 22]. A short
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Fig. 1 Characterization of resistant cell lines. Cell viability of control (CTR), Trastuzumab (T), Pertuzumab (P), and T + P cell lines treated with 10
and 100 μg/ml trastuzumab, pertuzumab and trastuzumab+pertuzumab for 5 days was evaluated by MTT assay (a). Western Blot (WB) analysis of
phosphorylated and total HER2, HER3, EGFR, AKT and ERKs was performed on total cell lysates from untreated/treated parental cell lines for 7 days
(b, leftmost panel). The basal levels of phosphorylated and total HER2, HER3, EGFR, AKT and ERKs were evaluated by WB in CTR, T, P, and T + P
resistant cell lines (b, rightmost panel). HER2 total and phosphorylated levels evaluation by WB was repeated in CTR, T, P, and T + P cell lines
following resistant cell lines establishment (c). The anti-HSP70 antibody was used to validate equivalent amount of loaded proteins in each lane.
Proliferation curves (d) and Invasion assay (e, upper panel) of CTR, T, P, and T + P cell lines. Representative images of invaded cells are reported
for each cell line (e, lower panel)
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Fig. 2 Trastuzumab+pertuzumab combination is associated with HER2 downregulation. Cell viability of CTR, T, P, and T+ P SkBr3 and BT474 cells treated with
0.1μg/ml and 1 μg/ml T-DM1, respectively, for 48 h was evaluated by Crystal Violet Assay (a). The results are expressed as percentage of T-DM1-responsive cells
relative to control cells, as mean +/− standard deviation. T-DM1 dose-response curves of T and T+ P cells are reported for both SkBr3 and BT474 (b). The
expression of phosphorylated and total HER2, HER3, EGFR, AKT and ERKs was evaluated by Western Blot (WB) following exposure to 1 μg/ml T-DM1 for 48 h (c).
Representative pre- and post-therapy sections from 2 ABC patients, stained by immunohistochemistry with eosin-hematossilin and anti-HER2 antibody (d)

Table 1 Immunohistochemical expression of Estrogen Receptor (ER), Progesterone Receptor (PgR) and HER2 in pre- and post-
treatment bioptical tissue samples from 4 HER2+, pertuzumab pretreated, advanced breast cancer patients

Pre-treatment Post-treatment

ER PgR HER2 score HER2% FISH ER PgR HER2
score

HER2% FISH

Patient 1 90% 90% 2+ 70% amplified 90% 90% 0 0% –

Patient 2 90% 40% 2+ 30% amplified 90% 60% 1+ 30% –

Patient 3 46% 0% 2+ 100% amplified 75% 18% 1+ 15% amplified

Patient 4 88% 42% 3+ 100% – 99% 1% 1+ 60% amplified

Bon et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:279 Page 6 of 14



trastuzumab/pertuzumab pre-exposure of parental BT474
did not affect T-DM1 efficacy compared to control cells,
and no HER2 nuclear translocation was observed (Fig. 3c
and d). Hence, prolonged exposure to trastuzumab/

pertuzumab induces the loss of membrane HER2 and its
nuclear traslocation, that represent a mechanism of ac-
quired resistance, which in turn reduces the T-DM1 tar-
geting potential and efficacy.

Fig. 3 Prolonged trastuzumab+pertuzumab induces HER2 nuclear translocation. Control, T, P, and T + P cell lines were plated on poly-l lysine
coated slides, and stained 24 hous later with anti-HER2 (green signal) (a). These cells were counterstained with Hoechst to highlight nuclei. Red
arrows indicate HER2 localization on cellular protrusions. Cytoplasmic and nuclear fractions extracted from control, T, P, and T + P cells were
analysed by Western Blot (WB) for the expression of phosphorylated and total HER2. Lamin A and α-tubulin were used to validate purity of
nuclear and cytoplasmic extracts respectively (b). Following pre-treatment with 5 μg/ml trastuzumab + 5 μg/ml pertuzumab for 72 h, cell viability
of control cells, pre-treated and T + P BT474 exposed to1 μg/ml T-DM1 for 72 h was evaluated by Crystal Violet Assay (c). Cytoplasmicand nuclear
fractions of control, pre-treated and T + P BT474 cells were analysed by WB for the expression of total HER2 (d)
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Patients’ cohort description
Overall, 555 patients were treated with T-DM1 for
ABC. Table 2 shows the main patient- and tumor-
related characteristics. Briefly, 25 patients (4.5%) re-
ceived T-DM1 in first-line, following relapse while
on/within 6 months from neo−/adjuvant treatment,
371 (66.8%) were treated in second-line, 96 (17.3%)
in third-line, and 63 (11.4%) beyond the third-line.
Details on treatments received in first-, second- and
third-line for the whole population are available in
Supplementary Table 1. The median length of
follow-up for the whole population of 555 patients
was 41 months.

Comparing clinical outcomes according to the T-DM1 line
of treatment
Among the 371 patients who received T-DM1 in
second-line, 177 had been treated with a trastuzu-
mab/pertuzumab-based first-line, while the remaining
194 were pertuzumab naïve and had received a first-
line trastuzumab-based regimen. In Table 3, we show
the main baseline characteristics of pertuzumab naïve
and pertuzumab-pretreated patients who received T-
DM1 in second-line. Median OS from diagnosis of
metastatic disease was 52 months in the pertuzumab
pre-treated population vs 74 months in the pertuzu-
mab naïve patients (p = 0.0006; Fig. 4a). Median OS
calculated from the start of T-DM1 treatment was
not significantly different, being not reached in the
first group, and being 34 months in the second group
(p = 0.78; Fig. 4b). Median PFS on first-line treatment
(mPFS1) for patients who received a pertuzumab-
trastuzumab-based regimen compared to those who
received a trastuzumab-based regimen were 11 and
10 months, respectively (p = 0.22). Median PFS on
second-line T-DM1 (mPFS2) was 6 months in patients
who had received pertuzumab-trastuzumab in first-
line compared to 10 months in those who were pertu-
zumab naïve (p = 0.03; Fig. 4c). Cox regression was
performed for significantly differing outcomes

Table 2 Clinicopathological characteristics of the study
participants (N = 555)

Characteristics N(%)

Age yr, median (range) 54 (26–87)

Estrogen Receptor

Negative 202 (36.4)

Positive 353 (63.6)

Progesterone Receptor

Negative 297 (53.5)

Positive 258 (46.5)

Ki-67

≤ 20 103 (18.6)

> 20 389 (70.1)

unknown 63 (11.3)

Grading

G1 6 (1.1)

G2 148 (26.7)

G3 339 (61.1)

unknown 62 (11.2)

Immunohistochemical Subtype

TP 244 (44.0)

ER or PgR positive 109 (19.6)

ER and PgR negative 202 (36.4)

Metastatic at Diagnosis

No 398 (71.7)

Yes 157 (28.3)

Neo−/adjuvant treatmenta

Yes 363 (91.2)

No 35 (8.8)

Neo−/adjuvant trastuzumaba

Yes 212 (53.3)

No 186 (46.7)

Metastatic Sites

Visceral 397 (71.5)

Bone-Only 25 (4.5)

Brain 155 (27.9)

Number of Metastatic Sites

1 397 (71.5)

2 85 (15.3)

> 2 73 (13.2)

Disease Free Interval in months, median

No first-line Pertuzumab / T-DM1 in second-line 40

No first-line Pertuzumab / T-DM1 subsequent lines 53

First-line Pertuzumab / T-DM1 in second-line 47

No first-line Pertuzumab / T-DM1 in subsequent lines 28

T-DM1 in first-line 17

Table 2 Clinicopathological characteristics of the study
participants (N = 555) (Continued)

Characteristics N(%)

T-DM1 treatment line

First-line 25 (4.5)

Second-line 371 (66.8%)

Third-line 96 (17.3%)

Subsequent lines 63 (11.4%)
aFor patients with early disease at diagnosis (398 patients)
Abbreviations: N Number; yr Years; TP Triple positive; ER Estrogen receptor;
PgR Progesterone receptor
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between these two groups, namely OS and PFS2. Uni-
variate analysis confirmed a negative impact of first-
line pertuzumab for both OS [Hazard Ratio, HR 1.79;
95%CI 1.23–2.61; p = 0.002] and PFS2 [HR, 1.23; 95%
CI 1.00–1.67; p = 0.049], which was exclusively con-
firmed in multivariate analysis of OS [HR 1.89; 95%CI
1.24–2.89; p = 0.003]. Conversely, among 159 patients
who received T-DM1 in third-line or beyond, no dif-
ferences by pertuzumab-pretreatment emerged for
OS, PFS1 and PFS2 (adjusted p-values were 0.99, 0.76
and 0.26, respectively; Table 4).

Comparing clinical outcomes according to the treatment
sequences and immunohistochemical subtypes
Overall, with a median follow up of 41 months, mOS for
the whole cohort of 555 patients treated with T-DM1 in
any treatment lines was 73months. Altogether, the ad-
ministration sequence of anti-HER2 agents significantly
affected mOS (p < 0.0001) and mPFS2 (p = 0.001)
(Table 4), with poorer outcomes in the group of patients
having received pertuzumab-based first-line treatment
followed by second-line T-DM1. No differences by tras-
tuzumab/pertuzumab-pretreatment emerged for mOS,

Table 3 Clinical-pathological characteristics of the study participants who received T-DM1 in second-line after a trastuzumab-based
first-line (N = 194) and after a pertuzumab-trastuzumab-based first-line (N = 177)

Characteristics First-line trastuzumab/ Second-line T-DM1
[N (%)]

First-line pertuzumab-trastuzumab/Second-line T-DM1 [N (%)] p-value

Progesterone Receptor 0.83

Positive 91 (46.9%) 85 (48.0%)

Negative 103 (53.1%) 92 (52.0)%

Estrogen Receptor 0.46

Positive 132 (68%) 114 (64.4%)

Negative 62 (32%) 63 (35.6%)

Ki-67% 0.05

≤ 20 45 (25.6%) 26 (16.6%)

> 20 131 (74.4%) 131 (83.4%)

Immunohistochemical Subtype 0.57

TP 87 (44.8%) 81 (45.8%)

ER or PgR positive 45 (23.2%) 33 (18.6%)

ER and PgR negative 62 (32.0%) 63 (35.6%)

Metastatic at Diagnosis 0.05

No 147 (75.8%) 117 (66.1%)

Yes 47 (24.2%) 60 (33.9%)

Number of Metastatic Sites 0.14

1 142 (73.2%) 117 (66.1%)

> 1 52 (26.8%) 60 (33.9%)

Neo−/adjuvant treatment * 0.38

Yes 128 (66.0%) 109 (61.6%)

No 66 (34.0%) 68 (38.4%)

Neo−/adjuvant trastuzumab * 0.48

Yes 76 (39.2%) 63 (35.6%)

No 118 (60.8%) 76 (39.2%)

Visceral Metastatic Site(s) 0.11

Yes 133 (68.9%) 135 (76.3%)

No 60 (31.1%) 42 (23.7%)

Disease Free Intervala 0.10

< 3 years 66 (46.8%) 47 (41.2%)

≥ 3 years 75 (53.2%) 67 (58.8%)
aFor patients with early disease at diagnosis
Abbreviations: N Number; TP Triple positive; ER Estrogen receptor; PgR Progesterone receptor
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mPFS1 and mPFS2 in patients who received T-DM1 in
third-line or beyond (Table 4).
When the overall cohort of 555 patients was strati-

fied by IHC subtype, a lower mOS in pertuzumab
pre-treated patients was confirmed only in HRs-
negative patients (p < 0.0001), while a shorter mPFS2
was observed in both TP (p = 0.04) and HRs-negative
patients (p = 0.003). However, multivariate analysis
showed no effect of the IHC-defined subtype on
mOS, mPFS1 or mPFS2.

Discussion
Resistance to HER2 targeting agents is a challenging
topic in BC. Several pre-clinical studies explored poten-
tial resistance mechanisms to T-DM1, involving reduc-
tion of lysosomal proteolytic activity [23], STAT3
activation [24], HER2 genomic amplification [25], and
sustained signaling from neuregulinβ1 [26]. Moreover,
previous evidence has shown that trastuzumab-mediated
engagement of immune effector cells induces HER2
downregulation in BC cells by STAT1 activation [27].

Fig. 4 Overall survival (OS) from diagnosis of metastatic disease (a), OS from T-DM1 start (b) and progression free survival to the second-line of
treatment (PFS2) (c), in patients treated with trastuzumab-based first-line and T-DM1 in second-line (T - > T-DM1) and in patients treated with
pertuzumab-trastuzumab-based first-line and T-DM1 in second-line (P + T - > T-DM1)

Table 4 Median OS, median PFS in first-line of treatment and median PFS in second-line of treatment by treatment sequences in
the overall population and by subgroups defined upon immunohistochemical characterization of molecules features (N:5555)
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To our knowledge, no previous study has specifically fo-
cused on the potential cross-resistance mechanisms be-
tween pertuzumab pre-treatment and T-DM1 at a
molecular level, particularly if compared to previously
documented cross-resistance mechanisms due to trastu-
zumab alone.
We herein show first time evidence that dual

HER2 blockade by trastuzumab/pertuzumab is asso-
ciated with a marked inhibition of HER2 receptor
expression on plasma membrane of cancer cells
in vitro and in vivo, which limits the targetable
HER2 receptor available to T-DM1. Our results also
indicate that a significant amount of HER2 is trans-
located to the nuclei of trastuzumab+pertuzumab-re-
sistant BC cells in vitro. Conversely, this effect is not
shown in trastuzumab-pretreated BC cell lines. In
agreement, our data from BC cell lines indicate that
T-DM1 treatment induces internalization of mem-
brane HER2 receptor in trastuzumab-resistant and
pertuzumab-resistant BC cells lines; on the contrary,
the expression levels of HER2 are not affected by T-
DM1 in trastuzumab+pertuzumab-resistant BC cells,
since the amount of membrane HER2 is already re-
duced by the previous double-block determining
HER2 nuclear localization.
Nuclear HER2 has been reported to act as a transcrip-

tional regulator and represents an independent prognos-
tic factor of poor clinical outcome [21, 22]. In preclinical
trastuzumab-resistant BC models, the inhibition of nu-
clear HER2 suppresses cell growth, indicating that nu-
clear HER2 is the major proliferation driver in
trastuzumab-resistant BC. In this context, the inability of
trastuzumab to disrupt the neregulinβ1-induced assem-
bly of a nuclear HER2/HER3/STAT3 transcriptional
complex has been demonstrated [28]. The lack of HER2
nuclear translocation following exposure to trastuzumab
or pertuzumab alone highlights the synergy emerging
from the combination of these two drugs.
These findings, together with the increased invasive-

ness and marked activation of MAPK/ERK pathway of
trastuzumab+pertuzumab-resistant BC cell lines, suggest
that the administration of pertuzumab in combination
with trastuzumab favors the selection of a more aggres-
sive phenotype of HER2+ BC cells, as compared to tras-
tuzumab alone.
We have a preliminary evidence of higher tumor

growth in mice subcutaneously injected with T + P
resistant cells, as compared to T cells. The validation
of reduced T-DM1 efficacy following trastuzumab+
pertuzumab in a mouse model would strengthen our
results, and experiments aimed at this goal are
ongoing.
The selection of patients to be included in the

present study was conditional in terms of considering

only those who received T-DM1 at some point during
their clinical history for advanced BC, and the
analysis focused on trastuzumab/pertuzumab or
trastuzumab-based pretreatment and second-line T-
DM1 efficacy.
Among patients treated with T-DM1 in second-line,

mOS from the start of the first-line and mPFS2
resulted longer in patients who had received a
trastuzumab-based first-line, with respect to the coun-
terpart pretreated with a pertuzumab/trastuzumab-
based-regimen. The mPFS2 advantage observed within
the first patient group may be reconciled with a
higher efficacy of T-DM1 in patients pre-treated with
trastuzumab alone, compared to those having received
the double-block. Conversely, when addressing the ad-
vantage in mOS from the start of the first-line in the
pertuzumab-naïve group, the link to differences in T-
DM1 efficacy based on the administration sequence is
less immediate. Indeed, we observed no difference in
mOS from the start of T-DM1 between trastuzumab-
pretreated and pertuzumab/trastuzumab-pretreated
patients. In patients who did not received pertuzumab
in first-line but for whom TDM-1 was instead already
available at further disease progression, a quite long
time to disease progression may be hypothesized,
which may itself reflect a less aggressive biologic be-
havior on behalf of cancer. In brief, for patients in
the pertuzumab-naïve group, the longer mOS from
the first-line treatment may be more closely related
to a more indolent disease course due to intrinsic dis-
ease characteristics than to the sequence of anti-
HER2 agents administration.
The issue of a possible decrease in T-DM1 efficacy

if given immediately after the double pertuzumab-
based HER2 double-block has not been exhaustively
addressed in previous studies [8, 9]. The EMILIA [8]
and TH3RESA [9] trials were the two pivotal random-
ized phase III clinical studies that brought T-DM1 as
a standard of care in second-line or beyond for pa-
tients with HER2+ advanced BC that progressed to
standard treatments. TH3RESA trial showed clinical
advantage by using T-DM1 compared to treatment of
choice by the clinician also in patients that had re-
ceived lapatinib and capecitabine, while EMILIA trial
showed superiority of T-DM1 in second-line even
when compared head to head with the lapatinib plus
capecitabine regimen. Unfortunately, none of the pa-
tients included in the EMILIA and TH3RESA trials
had received pertuzumab before being treated with T-
DM1. Data from prospective studies is lacking in this
context. Evidence on the topic under debate comes
from three recent retrospective studies showing lower
response rate and shorter survival outcomes in pa-
tients treated with T-DM1 following pertuzumab
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administration [15, 16, 29] In a previous retrospective
multicentric study from our group involving 250 pre-
treated HER2 positive BC patients we showed lower
efficacy of T-DM1 in the pertuzumab-pretreated co-
hort in comparison with the trastuzumab pretreated
group [15]. In the Dzimitrowicz paper, authors
showed results that are congruent with our findings
[16]. In this study, including only patients that had
received a pertuzumab-trastuzumab-based first-line, a
lower efficacy of T-DM1 in terms of response rate
was reported when compared to the response rates
observed in the randomized clinical trials, where pa-
tients were only trastuzumab resistant. In the Noda-
Narita et al. retrospective study enrolling 42 advanced
HER2 positive patients, median PFS and objective re-
sponses were lower in the group pretreated with per-
tuzumab/trastuzumab in comparison to the
trastuzumab subgroup [29].
The main limitation of the observational section of the

present study is its retrospective, multicenter design,
which per se represents a considerable source of data
heterogeneity. Moreover, the lack of central assessment
on IHC features of primary and metastatic lesions de-
serves mentioning, although quality controls routinely
performed at the pathology labs of the institutions in-
volved increase our confidence in data quality. At the
same time, the involvement of a relevant number of can-
cer centres/oncologic divisions, i.e., N: 45, has allowed to
collect and analyze the largest amount of data ever made
available to investigate the efficacy of T-DM1 following
trastuzumab/pertuzumab-based treatment. Beyond its
intrinsic limitations and bias, this approach allowed us
to confirm the reduced T-DM1 efficacy following dual
HER2 blockade by trastuzumab/pertuzumab in HER2+
ABC patients.
Our choice of relying on an observational study with a

retrospective approach has paved the way to confounding
and bias, which we attempted to minimize in the phase of
data analysis throughout stratification and statistical mod-
eling. In more detail, concerning stratification, data were
analyzed within strata defined upon a given pre-specified
variable. In doing so, we managed the confounding effects
of a given variable possibly acting as a confounding at the
price of a reduction of the study power in detecting the as-
sociation of interest in the case of small strata. Within the
SePHER study, statistical modeling translated into the de-
velopment of multivariable Cox models. These latter ap-
proach allowed to simultaneously control for more than
one confounder at the time, and help interpret the effect
of each confounder in light of the others. In addition, data
retrieving was performed by ad hoc trained research assis-
tants who worked in strict collaboration with the oncolo-
gists involved at the single centre level. This may have
minimized the chances of residual confounding.

The main strength of the present study is that, to our
knowledge, we first reported on HER2 downregulation
as a key mechanism underlying lower T-DM1 efficacy
observed in the clinical setting when this drug is admin-
istered as second-line therapy in trastuzumab/pertuzu-
mab-pretreated HER2+ ABC patients. Results from the
experiments performed in bioptic specimens of trastuzu-
mab/pertuzumab pretreated advanced breast cancer pa-
tients were further confirmative. Indeed, when
comparing the pre- and post-treatment HER2 scores for
each of the 4 patients examined, the IHC assessment
uniformly showed a score reduction. This evidence pro-
vides support to our study hypothesis, in that the re-
duced HER2 scores at the IHC evaluation of the post-
treatment samples are in key with a lower availability of
the HER2 at the membrane level, which may per sè at
least partly account for less favorable outcomes in pa-
tients exposed to pertuzumab.
As shown in Tables 1, 2 cases among the 4 assessed

resulted negative at the FISH in the post-treatment win-
dow of evaluation. The co-existence of HER2-negative
and HER2-positive clones is plausible from a biological
standpoint. In addition, it may reflect the selective pres-
sure applied by the prior administration of anti-HER2
agents. Indeed, HER2-negative clones may concur to less
favorable outcomes in patients treated with anti-HER2
agents. The extent to which the “degree” of HER2-
negative clone selection has been driven by the specific
sequence of anti-HER2 agents administration and/or this
mechanism concurs with the mechanism we have origin-
ally hypothesized deserves further investigation in more
adequately sized samples.
Although hypothesis-generating, data from the study

herein presented, as well as from prior similar studies
within this same research pipeline, are limited in nature.
Still, they provided an appropriate ground in terms of pre-
liminary evidence, on which we designed a randomized
clinical trial investigating the optimal treatment sequence
in HER2-positive ABC patients. In more detail, our team at
the IRCCS Regina Elena National Cancer Institute is the
coordinating center of the STEP trial, an active randomized
multicenter prospective trial exploring the optimal Se-
quence TrEatment in HER2+ Pertuzumab-pretreated ABC
patients. The STEP trial was granted formal approval and
financial support by the Italian Ministry of Health (project
code: GR-2018-12,367,431). Evidencefrom the STEP and
similar ad hoc, prospective randomized trials are eagerly
awaited to delineate the optimal treatment sequence in
HER2 +ABC patients, in order to gain more favorable
treatment outcomes in this patients’ population.

Conclusion
Overall, our findings suggested HER2 downregulation
following dual HER2 blockade by trastuzumab/
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pertuzumab as a key mechanism underlying lower T-
DM1 efficacy as second-line therapy in HER2+ ABC pa-
tients. Results from our retrospective study showed in-
deed lower T-DM1 efficacy in terms of mOS and mPFS
in 177 patients who received trastuzumab/pertuzumab
in first-line, as compared to 194 pertuzumab-naïve pa-
tients. In addition, we showed HER2 nuclear transloca-
tion in trastuzumab+pertuzumab-resistant HER2+ BC
cell lines in vitro.
The design of prospective randomized trials may lead

to delineate the optimal treatment sequence in HER2 +
ABC, and ultimately to more favorable outcomes in
these patients’ population.
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