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Abstract

Structured low-rank (SLR) algorithms, which exploit annihilation relations between the Fourier 

samples of a signal resulting from different properties, is a powerful image reconstruction 

framework in several applications. This scheme relies on low-rank matrix completion to estimate 

the annihilation relations from the measurements. The main challenge with this strategy is the high 

computational complexity of matrix completion. We introduce a deep learning (DL) approach to 

significantly reduce the computational complexity. Specifically, we use a convolutional neural 

network (CNN)-based filterbank that is trained to estimate the annihilation relations from 

imperfect (under-sampled and noisy) k-space measurements of Magnetic Resonance Imaging 

(MRI). The main reason for the computational efficiency is the pre-learning of the parameters of 

the non-linear CNN from exemplar data, compared to SLR schemes that learn the linear filterbank 

parameters from the dataset itself. Experimental comparisons show that the proposed scheme can 

enable calibration-less parallel MRI; it can offer performance similar to SLR schemes while 

reducing the runtime by around three orders of magnitude. Unlike pre-calibrated and self-

calibrated approaches, the proposed uncalibrated approach is insensitive to motion errors and 

affords higher acceleration. The proposed scheme also incorporates image domain priors that are 

complementary, thus significantly improving the performance over that of SLR schemes.

Index Terms—

parallel MRI; reconstruction; structured low rank; annihilation; DL

I. Introduction

Parallel MRI was introduced to speed up the traditionally slow MR acquisitions. 

Specifically, the redundancy between the k-space samples is capitalized to highly 

undersample k-space data, thereby reducing the scan time. The recovery of images from 

highly under-sampled multi-channel Fourier measurements is a classical problem in MRI 

[1]. Pre-calibrated approaches such as SENSE [2] rely on coil sensitivities that are estimated 

using additional calibration scans. Several image priors [3], including sparsity, have been 
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used to regularize pre-calibrated image recovery, resulting in improved image recovery at 

high acceleration factors. Researchers have recently introduced model-based deep-learning 

(DL) algorithms that use a forward model (capturing the imaging physics) combined with a 

deep-learned prior [4], [5], [6], [7]. An improvement in image quality as a result of multiple 

iterations of optimization blocks, sharing weights across the network, and end-to-end 

training, along with the ability to use multiple learned regularization priors, has been 

demonstrated in [7]. Since these methods use pre-estimated coil sensitivity maps within the 

forward model, they suffer from errors in the sensitivity maps resulting from motion or high 

accelerations. Self-calibrated approaches such as GRAPPA [8], SPIRiT [9] and ESPIRiT 

[10] estimate coil sensitivities from a fully sampled calibration region in the center of k-

space. However, the need for a fully sampled region restricts the achievable acceleration in 

these settings.

Structured low-rank (SLR) matrix completion approaches [11], [12], [13] were introduced to 

overcome the challenges with the above calibration based schemes and have been very 

effective in uncalibrated parallel MRI [10] and multishot acquisitions [14]. In the context of 

parallel MRI, these methods exploit the annihilation relations between multi-channel Fourier 

data rather than relying on explicit coil sensitivity estimates. Similar SLR approaches have 

been used to exploit a variety of other signal properties, including support constraints[12], 

continuous domain sparsity [15], [16], phase [12], and the exponential structure of an MRI 

time series [11]. Iterative re-weighted least-squares (IRLS) SLR algorithms make use of the 

convolutional structure of the matrices [17] to accelerate the algorithms. IRLS methods 

alternate between estimating an annihilation (null space) filterbank and updating the Fourier 

coefficients of the signal from the available measurements. Specifically, the missing Fourier 

coefficients are chosen so they match the measurements while being annihilated by the 

filterbank; the projection energy of the signal to the signal subspace measured by a residual 

convolution-deconvolution filterbank, is maximized. While this algorithm is considerably 

faster than earlier approaches, the iterative estimation of the annihilation filterbank from the 

under-sampled data is still computationally expensive. The approaches that use calibration 

information [10], [15], [12] estimate the null space filters from a fully sampled calibration 

region, resulting in reduced complexity. Since the annihilation filterbank need not be derived 

from the under-sampled data in an iterative fashion, this approach offers faster 

reconstructions. However, the challenge with these methods is the need for a calibration 

region, which restricts the achievable acceleration.

In this paper, we introduce a general DL strategy to reduce the runtime of the SLR 

algorithms, which is valid for all the signal priors discussed above [15], [16], [12], [11]. 

Unlike the SLR approach that estimates a specific linear annihilation network for each 

dataset from the undersampled measured data, we propose to learn a single non-linear CNN 

from several training datasets. Specifically, the residual convolution-deconvolution linear 

filterbank in the IRLS-SLR algorithm is replaced with a residual multi-channel CNN. We 

hypothesize that the pre-learned non-linear CNN behaves as a different linear annihilation 

filterbank for each specific dataset, annihilating the multi-channel data. The residual CNN 

behaves as a projection for each dataset, facilitating the denoising of the dataset from alias 

artifacts and noise at each iteration. Similar to MoDL [7], the proposed model unrolls the 

resulting algorithm and learns the parameters of the non-linear filterbank in an end-to-end 
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fashion. The proposed work combines this approach with an image domain prior similar to 

MoDL, which is complementary to the Fourier domain multi-channel relations. This hybrid 

approach offers improved performance over SLR, while offering around three orders of 

magnitude reduction in computational complexity. We focus on two representative 

applications—sparse single-channel recovery and parallel MRI—which use two distinct 

lifting structures in the SLR approach [11]. Specifically, we show how different lifting 

structures can be accommodated in the proposed scheme by modifying the data organization 

of the input and output of the CNN module. This enables the extension of the proposed 

framework to a range of SLR applications [11], [12], [18] that use one or a combination of 

the above lifting structures.

This main focus of this work is to introduce a general DL framework for uncalibrated 

parallel MRI and multishot MRI. This work is related to [19] and [20], which are partially 

calibrated strategies. Specifically, the MoDL-MUSSELS [19] framework explicitly 

accounted for the pre-estimated coil sensitivities within the data consistency block, while it 

performed a calibration-free correction of phase errors between shots. A challenge with 

these partially calibrated approaches is the potential mismatch between coil sensitivities and 

the diffusion-weighted acquisition due to motion between the coil sensitivity calibration scan 

and the diffusion scan. By contrast, the annihilation relation between coils is learned by the 

non-linear k-space CNN from exemplar data in this work; the application of this framework 

to the diffusion setting yields a completely uncalibrated algorithm, which jointly accounts 

for coil sensitivities as well as phase errors between shots. As demonstrated in our 

experiments in the supplementary material, this approach eliminates errors resulting from a 

motion-induced mismatch between the calibration scan and the diffusion-weighted one. In 

addition, the main focus of this work is to show that the proposed approach works well for a 

range of SLR priors, of which only one was considered in the earlier work [19]. The 

conference version of this work is presented in the literature [21], [22]. DL methods in k-

space were the focus of recent work [23], [24], [25]. The RAKI framework [25] is a 

calibrated scheme, unlike our calibration-free approach. A direct inversion (model-free) 

approach was pursued in one study [23]; it differs from the proposed model-based 

framework, which also combines image domain priors. The KIKI net approach [24] was 

introduced for a single-channel setting, unlike our uncalibrated multi-channel scheme. The 

proposed reconstructions are compared against model-free image domain DL [26], k-space 

DL [23], image domain MoDL [7], and traditional SLR methods. These comparisons reveal 

the improved performance offered by the Deep-SLR framework.

II. Background

We now briefly describe the background to make the paper self-contained and easily 

accessible.

A. Forward Model

We model the acquisition of image γ(r) as:
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bi = S ℱ(si γ
γi

) + ηi, i = 1…M, (1)

where si;i = 1, ..,M is the coil sensitivity of the ith coil, while bi is the noisy under-sampled 

Fourier measurement, and γi is the image, corresponding to the ith coil. ηi is the noise term. 

Here ℱ is the Fourier transform that maps γi onto its k-space samples and S is the under-

sampling operator. We compactly denote the above operation as

B = A(Γ) + P (2)

where Γ = γ1 .. γM  is the matrix representing multi-channel data in Fourier space, B = 

[b1 .. bM] is the corresponding noisy under-sampled multi-channel Fourier measurement, 

and P = [η1 .. ηM] is the multi-channel noise. Note that we denote the image of the ith 

channel by γi, while Γ denotes the concatenation of the channel data in spatial domain. The 

Fourier domain representation of ith channel image is γ i, while Γ is the concatenation of the 

channel images in Fourier domain.

B. Structured Low-Rank Algorithms

SLR methods rely on different liftings of the Fourier coefficients, designed to exploit 

specific properties of the signal. We now discuss two representative SLR applications, which 

illustrate the different types of lifting used in the SLR setting.

1) Continuous domain sparsity: A continuous domain piecewise constant image γ 
with edges specified by the zero sets of a bandlimited function μ satisfies an image domain 

annihilation relation, ∇γ(r)·μ(r) = 0, ∀r, where r represents spatial coordinates. Here, ∇γ 
denotes the gradient of γ. This relation translates to the following Fourier domain 

annihilation relations ∇γ[k] * n[k] = 0, ∀k, where k denotes k-space coordinates (Fourier 

space). Here ∇γ[k] represents the Fourier coefficients of the gradient of γ and n[k] is the 

Fourier transform of μ(r). We denote the mapping from the Fourier coefficients γ  to ∇γ by 

G:

G(γ) = ∇γ[k] =
j2πkx γ[k]
j2πky γ[k] =

γx
γy

. (3)

Note that G essentially creates two copies of γ , each with a different Fourier weighting.

The convolution relation ∇γ[k] * n[k] = 0 can be represented as Hankel matrix multiplication 

ℋ(∇γ)n = 0. The number of such null space filters, denoted by V, is often large (see [27])

ℋ γx
ℋ γy
T(G(γ))

n1 n2 … nV
N

= 0.
(4)

resulting in a low-rank matrix T(G(γ)).
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Note that the Hankel matrices are vertically stacked to obtain T(G(γ)), which is a common 

approach in SLR [10].

2) Parallel MRI acquisition scheme: Image and Fourier domain multi-channel 

annihilation relations were shown in two studies [10], [11]. Specifically, each pair of multi-

channel images in (1) satisfy a Fourier domain annihilation relation 

γ i[k] * sj[k] − γj[k] * s i[k] = 0, ∀k, where γ i[k] and s i[k] are the Fourier coefficients of γi(k) 

and si(k), respectively. Such annihilation relations exist for every pair of coil images and can 

be compactly written as

ℋ γ1 ℋ γ2 … ℋ γM
T(Γ)

⋅ N = 0.
(5)

The columns of N correspond to the vertical stacking of the filters s i. The large null space N 

implies it is low rank. Note that the Hankel matrices are horizontally stacked to obtain T Γ . 

Here G = ℐ, which is the identity mapping. This is another popular class of lifting used in 

SLR [11], [12], [16].

C. Calibration-free SLR Methods

In general, SLR schemes aim to recover an image or a series of images Γ from its 

measurements A(Γ) by solving the optimization problem:

min
Γ

 rank [T(G(Γ))] such that B = A(Γ) + P . (6)

Here, T( . ) is a lifting operator that lifts the weighted signal G(Γ) into a higher dimensional 

structured matrix. As discussed earlier, the generic weighting matrix G depends on the 

specific annihilation relation. The recovery of Γ is often posed as an unconstrained nuclear 

norm minimization problem

arg min
Γ

A(Γ) − B
2
2 + λ T(G(Γ))

*
(7)

where λ is a regularizer to tune the nuclear norm loss term.

D. Iterative Re-weighted Least-Squares (IRLS) Algorithm

The IRLS scheme majorizes the nuclear norm with a weighted Frobenius norm as 

T(G(Γ)) * ≤ T(G(Γ))Q F
2

 to yield a two-variable optimization problem

arg min
Γ,Q

A(Γ) − B
2
2 + λ T(G(Γ))Q

F
2 , (8)

which alternates between the null space Q and image Γ,
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Γ(n) = arg min
Γ

A(Γ) − B
2

2
+ λ T(G(Γ))Q(n − 1)

F
2

(9)

Q(n) = T G Γ(n) H
T G Γ(n) + ϵ(n)I

−1/4
(10)

respectively. The matrix Q can be viewed as a collection of column vectors spanning the null 

space of T(G(Γ)).

E. Calibration-based SLR Methods

Several calibration-based MRI schemes (e.g., GRAPPA, SPIRiT [8], [9]) are related to the 

SLR schemes [10], [11]. These approaches acquire a fully sampled calibration region in the 

Fourier domain, which corresponds to fully sampled rows of T(G(Γ)) or, equivalently, the 

sub-matrix TR(G(Γ)). These schemes estimate the null space matrix Q (or, equivalently, 

TR(G(Γ))Q = 0 subject to norm constraints on Q; see the literature [11] for details.

Once the Q is pre-estimated from calibration data, the image is recovered from under-

sampled Fourier coefficients by minimizing

arg min
Γ

A(Γ) − B
2
2 + λ T(G(Γ))Q

F
2 . (11)

The above optimization problem simplifies solving the system of equations 

A(Γ) = B; G(Γ))Q = 0 for specific sampling patterns analytically [8], [10]. In other cases 

[15], [12], (11) is solved iteratively. Both strategies are computationally efficient since Q is 

fully known. However, the need for a calibration region restricts the achievable acceleration.

III. Deep Generalization of SLR Methods

The main focus of this work is to introduce a DL solution to improve the computational 

efficiency of SLR algorithms. We note that calibrated SLR methods, which learn the linear 

null space projection operator from calibration data, require few iterations for convergence, 

thus offering fast image recovery. Calibration-free SLR methods by contrast are 

computationally expensive. Specifically, because the null space matrix Q is estimated from 

the data itself, the algorithm requires several iterations to converge.

We propose to pre-learn a CNN-based null space projector from multiple exemplar datasets. 

The proposed non-linear CNN module learns to estimate the annihilation relations from the 

under-sampled data based on its training on exemplar data. We view this approach as 

learning a non-linear filterbank, which behaves like different linear filterbanks for different 

images. Specifically, the non-linear filterbank can be approximated as a linear filterbank, 

which projects the data to the null space, thus annihilating the signal but preserving the noise 

and alias artifacts; the residual block preserves the signal, while suppressing noise.

Pramanik et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. IRLS Algorithm with Variable Splitting

To facilitate the reinterpretation of the reconstruction scheme as an iterative denoising 

strategy, we introduce an auxiliary variable z in (8) to obtain a three-variable constrained 

optimization problem,

arg  min
Γ, Q, Z

A(Γ) − B
2

2 + λ T(Z)Q
F

2  such that Z = G(Γ) . (12)

We impose the constraint by a penalty term as

arg  min
Γ, Q, Z

A(Γ) − B
2

2 + λ T(Z)Q
F

2 + β G(Γ) − Z
2

2 .

This formulation is equivalent to (12) when β → ∞. We propose to solve the above problem 

using the alternating minimization scheme:

Γn + 1 = arg min
Γ

A(Γ) − B
2

+ β G(Γ) − Zn
2

(13)

Zn + 1 = arg min
Z

β G Γn + 1 − Z 2 + λ T(Z)Q
F

2
. (14)

At each step, the Q matrix is updated as in (10).

1) Image Update: The first step specified by (13) is a simple Tikhonov regularized 

optimization problem to recover the multi-channel images γ at the (n + 1)-th iteration. When 

G = ℐ, the prior reduces to Γ − Zn
2
. In the general case, the solution to this optimization 

problem can be determined analytically as

Γn = AHA + βGHG −1 AHB + βGH Zn − 1 , (15)

when A involves a sampling in the Fourier domain. Similar analytical solutions can also be 

used when G involves a Fourier domain weighting as in the literature [28].

2) Projection : The sub-problem (14) is essentially a proximal operation. Specifically, 

the second term of (14) is the energy in projecting T Z  to the subspace Q. If λ → ∞, we 

obtain Z as the projection of Γn + 1 onto the signal subspace, orthogonal to Q.

B. Filterbank Interpretation of the Denoising Subproblem

We will now focus on the denoising sub-problem by showing its linear filterbank structure. 

We will capitalize on this structure to generalize the algorithm. We will focus on the vertical 

and horizontal stacking cases separately.
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1) Vertical stacking considered in Section II-B1: Consider the term T Z qi, where 

qi is one of the columns of the matrix Q. When the lifting operation is described by (4), we 

have

T(Z)qi =
ℋ z1
ℋ z2

qi =
p1
p2

(16)

Because ℋ(z) is a Hankel matrix, ℋ(z)Q corresponds to the linear convolution between z
and Q. Since convolution is commutative, we can rewrite the above expression as

T(Z)qi =
z1
z2
Z

P qi ,
(17)

where, P qi  is a block Hankel matrix constructed from the samples of qi. We thus have 

T(Z)Q 2 = ZJ(Q) 2
, where J(Q) is obtained by horizontally stacking the matrices P qi . 

We note that z1J(Q) corresponds to passing z1 through a single input multiple output 

(SIMO) filterbank, whose filters are specified by qi.

2) Horizontal stacking considered in Section II-B2: Similar to the vertical stacking 

case, we consider

T(Z)qi = ℋ z1 .. ℋ zN

T(Z) qi, 1
⋮

qi, N

qi

(18)

= P qi, 1 .. P qi, N
J(Q)

z1
⋮

zN
Z

(19)

We thus have T(Z)Q 2 = J(Q)Z 2
, where

J(Q) =
P q1, 1 .. P q1N

⋮ .. ⋮
P qN, 1 .. P qN, N

(20)

We note that J(Q)Z corresponds to passing Z through a multiple input multiple output 

(MIMO) filterbank, whose filters are specified by qi.

C. Approximation of Denoising Sub-problem

We thus rewrite (14) for both lifting approaches as,
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Zn + 1 = arg min
Z

β G Γn + 1 − Z 2 + λ J Qn Z F
2 . (21)

which reduces to

Zn + 1 = I+ λ
β J Qn

HJ Qn
−1

G Γn + 1 . (22)

We propose to solve the denoising problem approximately. Assuming λ ≪ β and applying 

first-order Taylor approximation, we obtain an approximate solution for Z as

Zn + 1 ≈ I− λ
β J Qn

HJ Qn

ℛn

ℒn

G Γn + 1 .
(23)

As discussed before, J(Q) denotes a MIMO or SIMO filterbank, depending on the nature of 

lifting. The term J(Q)H denotes convolution with a flipped version of Q, often referred to as 

the deconvolution layer in DL literature. ℛn is a filterbank that projects the signal to the null 

space, thus killing or annihilating the signal and preserving the noise terms. Thus, the linear 

operator ℒn is a residual block, which removes the alias or noise terms from the input 

signal, thus essentially denoising the signal (see Fig. 1).

Note that the filterbank Qn has a subscript n since it is updated at each iteration. The joint 

estimation of Qn and reconstruction Γn results in high computational complexity. On the 

other hand, calibration-based methods pre-estimate Q and hence the residual filterbank ℒ, 

thus resulting in significantly reduced computational complexity.

D. SLR-inspired Model-based k-space DL

The main disadvantage of the IRLS strategy discussed above is the high computational 

complexity. Specifically, this iterative approach requires an singular value decomposition 

(SVD) at each iteration, and thus results in a computationally expensive algorithm. To 

improve the computational efficiency, we propose to pre-learn a non-linear CNN 

annihilation filterbank Nk from exemplar data. The subscript k indicates that the network 

performs convolutions in k-space. We pose a reconstruction similar to (11):

arg min
Γ

A(Γ) − B
2

2 + λ1 ℐ − Dk
Nk

(G(Γ))
2

2 .
(24)

Here, Nk is a CNN that kills or annihilates the signal while preserving the noise or alias 

terms, which is conceptually similar to ℛn in (23). Thus, the operator Dk = ℐ − Nk can be 

viewed as a denoiser similar to ℒn in (23).
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We propose to pre-learn the parameters of the network from exemplar data. Unlike 

calibrated schemes that learn a small linear network from a small subset of Fourier data 

(calibration region), the CNN parameters are learned from several fully sampled exemplar 

datasets. This approach enables us to learn a larger CNN, which can generalize to other 

datasets. We hypothesize that this pre-learned non-linear network can behave like a linear 

projection for each dataset, thereby facilitating their recovery from under-sampled data. 

Since the parameters of the network do not need to be self-learned, this approach is 

significantly faster than uncalibrated SLR approaches.

We use an alternating minimization strategy similar to (13) and (14) to minimize (24). The 

resulting algorithm translates to a recursive network, which alternates between the denoising 

network Dk, which removes the noise and alias terms, and data consistency (DC) blocks:

Zn = Dk G Γn (25)

Γn + 1 = AHA + λ1GHG −1 AHB + λ1GHZn (26)

Similar to [7], we consider K iterations of the above algorithm and unroll the above iterative 

scheme to obtain a deep network. The unrolled network consists of K number of repetitions 

of both Dk and DC blocks with parameters of Dk being shared across iterations. At each 

iteration, the noisy input GΓn is projected to the signal subspace and hence denoised. The 

output of Dk is given by Dk G Γn = G Γn − Nk G Γn . The output is then fed into the DC 

block as shown in Fig 2. As discussed previously, this iterative algorithm is similar to an 

alternating scheme to solve (11), with the distinction that the linear convolution-

deconvolution block is replaced by a non-linear CNN. Unlike the setting in (11), where the 

filter parameters are learned from the calibration data of each dataset, we propose to pre-

learn a CNN from exemplary data.

E. Hybrid Regularized DL

The SLR methods exploit the redundancies in k-space resulting from specific structures in 

the signal. However, the image patches in MR images often exhibit extensive redundancy, 

which is exploited in our MoDL scheme [7] as well as other image domain methods [29], 

[5], [6]. These priors are complementary to the SLR priors discussed in the previous section. 

We propose to modify the cost function in (24) as

arg min
Γ

A(Γ) − B
2

2
+ λ1 Nk(G(Γ)) 2

2 + λ2 NI(Γ) 2
2 . (27)

Here, NI and Nk are two residual CNNs. The alternating minimization of this scheme 

results in the following steps:

Θn = Dk G Γn (28)
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Φn = DI Γn (29)

Γn + 1 = AHA + λ1GHG + λ2ℐ −1 AHB + λ1GHΘn + λ2Φn (30)

as shown in Fig 3. The Dk relies on annihilation relations in k-space, while DI exploits the 

image domain priors. We propose to learn the parameters of the CNNs Dk and DI using 

exemplary data.

F. Special Cases

We show applications of our proposed methods in both single-channel and multi-channel 

settings, and show that the image sub-problem can be solved analytically in both cases. This 

approach will accelerate the training and testing procedures.

1) Piecewise Constant Image Structure: The GIRAF [17] algorithm is an SLR 

scheme that exploits the piecewise constant nature of images, as described in Section II-B1. 

Here, the operator G(γ) = ∇γ as defined in (3). In this case, we have

GH z1
z2

[k] = − j2πkxz1[k] + j2πkyz2[k] (31)

GHG(γ)[k] = 4π2 kx
2 + ky

2 γ[k] (32)

Note that the matrix AHA + λ1GHG + λ2ℐ  in (30) can be viewed as a weighting operator 

in the Fourier domain in the single-channel setting. We can thus solve (30) analytically.

2) Parallel MRI Acquisition: In a parallel MRI setting, G = ℐ and hence the data 

consistency term simplifies to AHA + λ1 + λ2 ℐ −1 AHB + λ1Θn + λ2Φn . The term 

AHA + λ1 + λ2 ℐ  is separable across the channels. Hence, one can independently solve 

for each channel of Γn + 1 in the Fourier domain in an analytical fashion.

IV. Implementation Details

A. Datasets

The datasets used for single channel experiments were multi-coil k-space of knee from 

(www.mridata.org) and multi-coil brain from the Calgary-Campinas Public (CCP) dataset 

[30] in (https://sites.google.com/view/calgary-campinas-dataset). The CCP consists of 12-

channel T1-weighted brain MR datasets acquired on a 3T scanner. It is a 3D acquisition that 

allows undersampling along two directions (phase and slice encoding). We used the single 

channel complex valued images provided by the organizers, which were generated by multi-

channel coil combination. The Fourier Transform (FT) was applied to obtain k-space 

samples from the coil combined images. Since the frequency encoding dimension is fully 
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sampled, we performed an IFFT along this dimension and considered the recovery of each 

2D slice independently. We chose twenty subjects for training, five for validation, and ten for 

testing. The other dataset consisting of multi-channel knee data of twenty subjects was 

acquired with a 3D fast spin echo (FSE) sequence on a 3T scanner. The parameters set for 

the scan were: repetition time TR = 1550 ms, echo time TE = 25 ms, and a flip angle of 90°. 

There are 256 sagittal slices and 320 coronal slices per subject with matrix sizes of 320 × 

320 and 320 × 256, respectively, at a slice thickness of 0.5 mm. A coil combination of the 8-

channel knee k-space data was performed using principal component analysis (PCA). 

Specifically, we performed a PCA along the coil dimension and picked the first component 

along the coil dimension as the single-channel complex image. This coil compression 

preserved on average about 90% of the energy from multi-channel data. Fifteen subjects 

were used for training, two for validation, and the remaining three for testing.

A set of experiments were done to study the workings of the k-space Deep-SLR scheme for 

single-channel MRI recovery. The NIfTI formatted T2-weighted brain datasets from the 

Human Connectome Project (HCP) [31] were used. The T2-weighted brain images were 

acquired by a Siemens 3T MR scanner using a 3D Cartesian spin-echo sequence. The TR 

and TE parameters were 3200 ms and 565 ms, respectively, while the matrix size was 320 × 

256 with a field of view (FOV) of 224 × 224 mm2.

Parallel MRI experiments were performed on multi-channel brain and knee datasets. The 

knee dataset [6] is a multi-slice 2D dataset consisting of 15-channel slices from 20 subjects 

with roughly 40 slices per subject. The slices are of dimension 640 × 368 × 15. Twelve 

subjects were used for training, one for validation, and the remaining seven for testing. The 

data was under-sampled by varying density along the phase encodes. Brain MRI was 

collected from nine subjects at University of Iowa Hospitals and Clinics using a 3D T2 

CUBE sequence with Cartesian readouts using a 12-channel head coil. There are 140 3D 

slices per subject with dimensions 12 × 256 × 232. We used five subjects for training, one 

for validation, and the remaining three for testing.

In both cases, the fully sampled complex k-space data was under-sampled and used for 

training. The complex image obtained by evaluating the IFFT of the individual coil data was 

used as ground truth in training and testing.

B. Quality Evaluation Metric

We quantitatively evaluate the recovered images in terms of signal-to-noise ratio (SNR) and 

structural similarity (SSIM) index. The SNR of an image is computed as 

SNR = 20 ⋅ log10
xrec 2

xorg − xrec 2
, where where xorg and xrec are original ground truth and 

reconstructed images, respectively.

C. Architecture of the CNNs

The modular nature of the proposed scheme allows us to use any residual CNN architecture 

to define the prior. A key difference with the approach in Fig. 1 is that the CNN parameters 

are fixed and do not change with iterations as in Fig. 1.(b). The pre-learning of the CNN 
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parameters using exemplar data allows us to significantly reduce the number of alternating 

steps compared to the self-learning strategy in Fig. 1. Image domain CNN NI is structurally 

identical to the Fourier domain CNN Nk, with an equal number of parameters. The residual 

block DI performs an IFFT that feeds spatial domain input Γ to the CNN NI and transforms 

the residual output back to k-space by a fast Fourier transform (FFT) operation. For 

implementation purposes, we split the real and imaginary parts of the input k-space data into 

real and imaginary components, which are fed as two channels. The two output channels are 

combined to recreate the complex output k-space data. The models were implemented

1) Single-channel Case: We use a residual UNET as Nk in the single-channel setting 

for the proposed k-space Deep-SLR (K-DSLR) scheme. We use its modified version of 

UNET with only 12 layers (two pooling and unpooling operations). The number of filters 

per layer grows from 64 to a maximum of 256. The UNET operates on single-channel 

Fourier data (M = 1). For the proposed hybrid scheme H-DSLR, the number of parameters 

in both the UNETs were halved layer by layer to keep the total similar to the K-DSLR 

network for fair comparisons.

2) Parallel MRI (Multi-channel Case): A residual five-layer MIMO CNN Nk as 

shown in Fig. 2.(b) is used as the k-space network in K-DSLR. The input and output 

channels of the network are adjusted according to the dataset. For example, M = 12 and M = 

15 channels are set for multi-channel brain and knee data, respectively. Each convolution 

layer consists of 64 3 × 3 filters, followed by ReLU non-linearity. The number of filters per 

layer was halved to 32 for both the CNNs in H-DSLR compared to 64 in K-DSLR for fair 

comparison.

We trained the unrolled recursive network for different iterations of K. K = 10 was found to 

be the best-performing model on test data for both cases and the performance saturated 

afterwards. We were constrained by 16 GB GPU memory, which restricted us from going 

beyond 15 iterations. The regularization parameters were fixed at λ1 = λ2 = 1 for all the 

experiments. The weights were Xavier initialized and trained for 500 epochs with an Adam 

optimizer to reduce the mean square error (MSE) at a learning rate of 10−4. All the DL 

models were implemented using Tensorflow version 1.15. The proposed K = 10 iteration 

models for single and multi-channel cases took 5 and 10 hours for training respectively. The 

source code for the proposed H-DSLR scheme on multi-channel MRI datasets can be 

viewed and downloaded from the github link: https://github.com/anikpram/Deep-SLR.

D. State-of-the-art Methods for Comparison

We compare our scheme for single-channel recovery against the SLR algorithm (GIRAF) 

[17], a k-space UNET (K-UNET) [23], and an image domain UNET (I-UNET). The K-

UNET is a direct DL approach with a 20-layer 2D UNET in k-space without a DC step. It 

accepts a real image formed by concatenation of real and imaginary parts of 2D complex k-

space. The I-UNET is the spatial version of K-UNET where learning is performed in spatial 

domain. The I-UNET structure and its number of parameters are exactly the same as in K-
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UNET. These networks were trained and tested on single-channel knee and brain datasets 

described in Section IV-A.

In the parallel MRI setting, we compare the proposed scheme with MoDL [7], K-UNET 

[23], and the calibration-less parallel SLR algorithm, which motivated our proposed scheme. 

K-UNET is also a multi-channel calibration-less direct DL approach in k-space without a 

DC step [23]. Its structure is similar to single-channel K-UNET, with the only difference 

being the multi-channel input and output. MoDL [7] is a pre-calibrated approach that uses 

coil sensitivity information and spatial domain regularization. The coil sensitivities for 

MoDL were estimated using ESPIRiT [10]. All the parallel MRI methods were evaluated on 

the brain and knee datasets mentioned in Section IV-A.

V. Experiments and Results

Experiments were done on multiple datasets for both single-channel sparse MRI and parallel 

MRI recovery. Additional experiments were also done on diffusion MRI recovery and are 

discussed in the supplementary material.

A. Single-channel Signal Recovery

Comparisons of the proposed single-channel schemes against state-of-the-art methods are 

shown in Fig. 4 for the CCP dataset described in Section IV-A. We observe that the k-space 

Deep-SLR (K-DSLR) approach in Fig. 4.(d) provides results that are comparable to the 

model-based GIRAF [17] method in Fig. 4.(b). By contrast, the direct inversion based I-

UNET and K-UNET provides lower performance, even though the number of trainable 

parameters are larger. Of these, the K-UNET provides slighly lower errors. The improved 

performance of K-DSLR over K-UNET may be attributed to the model-based approach, 

which repeatedly enforces DC. Fig. 4.(f) corresponds to H-DSLR, which uses both k-space 

and image domain priors. The H-DSLR scheme significantly reduces errors. The number of 

parameters in this model is similar to the one in Fig. 4.(d) since the number of output 

channels of each intermediate layer is halved. However, the addition of the complementary 

prior significantly reduces the errors. A similar set of experiments were also performed on 

the single-channel coronal and sagittal view of knee images described in Section IV-A. The 

comparisons are shown and discussed in the supplementary paper. The quantitative results of 

all the experiments are recorded in Table S1 in the supplementary section.

B. Annihilation Operators on Piecewise Constant Images

Single-channel Deep-SLR scheme is used to study its inner workings and its similarity to 

classical SLR methods in Fig. 5. Note that k-space SLR methods for single-channel MRI 

schemes [15], [27] learn linear annihilation relations in k-space. As shown in the literature 

[15], [27], the SLR penalty in (11) is a weighted ℓ2 norm of the gradients of the image, where 

the weights correspond to the sum of squares (SOS) of the estimated null space filters. 

Specifically, the linear annihilation operator has several linearly independent null space 

vectors; the sum of squares of the IFFT of the null space vectors yield zeros in the location 

of the gradients in the single-channel setting as shown in the literature [17]. The SLR 

scheme estimates annihilation relations from under-sampled data using an optimization 
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strategy. By contrast, the proposed scheme learns to estimate the annihilation relations from 

under-sampled measurements based on its training on exemplar data.

The solutions provided by the unconstrained setting considered in this paper and [7] are 

similar to constrained setting in [32], where the formulation in (24) is replaced by

γ* = arg min Nk(G(γ)) 2  such that   A(γ) − b 2 ≤ σ2, (33)

where σ is the noise variance; see [32] for detailed performance comparisons of the 

constrained and unconstrained formulations. In this case, the data consistency layer specified 

by (30) gets modified as

γn + 1 = arg min G(γ) − zn
2 such that  A(γ) − b 2 ≤ σ2 . (34)

When A satisfies the restricted isometry conditions [33], then 

ϵ γ − γ* 2 ≤ A γ − γ* ≤ δ γ − γ* 2, where ϵ and δ are the restricted isometry property (RIP) 

constants. Thus,

γn + 1 − γ* 2 ≤ σ2

ϵ , (35)

where γ* is the true solution. This relation implies that at each iteration n, the input to the 

network γn is within a σ2/ϵ ball of the true solution γ*.

We note that an arbitrary non-linear function can be approximated by its first-order Taylor 

series representation in a small neighborhood. Our hypothesis is that the first order Taylor 

series approximation of the non-linear annihilation block Nk(G(γ)) within the σ2/ϵ ball 

around γ* closely matches the linear annihilation relations in SLR schemes. Specifically, the 

annihilation filters would kill the high gradients, while preserving the noise. The use of this 

annihilation filterbank within the residual block, results in preserving the true signal while 

suppressing the noise-like perturbations.

In order to test this hypothesis, small random perturbations of variance σ = 0.01 are added to 

a given image γ* and the corresponding output perturbations are analyzed; the sum of 

squares of the corresponding perturbations is an indicator of the response of the annihilation 

operator. We consider a piecewise constant image in Fig. 5, which was derived from an 

image from the HCP dataset (described in Section IV-A), by thresholding. The CNN 

network with the same architecture as above (12-layer UNET as Nk) are trained using 

piecewise constant brain images from 10 training subjects, also obtained by thresholding the 

HCP data. Following training, random perturbations are added to a new dataset and its k-

space data is passed through the network.

The sum of squares of the IFFT of the outputs for 1000 realizations are evaluated, which are 

shown in Fig. 5.(d). Note that the zeros of the SOS output function closely mimics the SOS 

function in Fig. 5.(c). This behaviour is observed across a wide variety of testing slices 

unseen by the trained network, as shown in Fig. 5 and also in Fig. S1 in the supplemental 
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document, which justifies its generalizability. The experiment strengthens our hypothesis 

that the proposed network behaves as a linear projector similar to classical SLR schemes for 

each image γ*. While similar results are observed for natural images, it is difficult to 

visualize this due to the large dynamic range. We note that without additional constraints on 

the weights, one cannot guarantee that the Lipschitz constants of the network is bounded for 

all inputs, including adversarial perturbations.

C. Parallel MRI Recovery

Proposed multi-channel schemes are compared against state-of-the-art calibration-less and 

calibrated schemes in Figures 6 and 7, and Table I. The methods have been tested on 420 3D 

brain slices collected from three subjects. The same set of methods have also been tested on 

approximately 300 (seven subjects) 3D knee slices. Similar to the single-channel case, the 

performance of the multi-channel K-DSLR is comparable to the parallel SLR (PSLR) 

scheme. The k-space network exhibits some residual aliasing in the knee example in Fig. 6.

(d), which can be attributed to the highly structured/uniform nature of sampling. Note that 

the data was acquired with a calibration region, which the iterative PSLR scheme seems to 

have benefited from, even though we did not explicitly rely on a calibrated approach. The 

table reveals that the proposed H-DSLR outperformed the multi-channel PSLR and K-

UNET [23] and that it is slightly better than the pre-calibrated approach MoDL [7]. Note 

that MoDL is a calibrated scheme, which requires the explicit knowledge of the coil 

sensitivities. The coil sensitivities were estimated from the fully sampled region in the center 

of k-space for both knee (Fig. 6) and brain (Fig. 7) experiments using ESPIRiT [10]. The 

calibration-less methods compared here (PSLR, the proposed method and K-UNET) 

perform an interpolation in k-space without explicit knowledge of the coil sensitivities. The 

addition of the image domain prior (H-DSLR in Fig. 6.(f)) is found to suppress the artifacts 

and provide reconstructions that are comparable to the MoDL scheme. The proposed Deep-

SLR scheme facilitates the recovery of the images without the knowledge of the coil 

sensitivities. This approach thus eliminates the potential mismatch between the calibration 

scans for the estimation of the coil sensitivities and the main scan in approaches that rely on 

an extra calibration scans. By removing the need for an explicit calibration region, this 

approach enables higher acceleration factors. An additional study of the robustness of our 

proposed approach to acceleration factors for both knee and brain datasets is presented in the 

supplementary section of this paper.

D. Benefits over Calibrated Approaches

Pre-calibrated approaches, which estimate coil sensitivities from calibration scans, suffer 

from motion-induced mismatch between the calibration and main scans, resulting in 

artifacts. We study the benefit of the uncalibrated deep SLR methods using a simulation. 

Specifically, we simulate a mismatch by modulating the k-space data of the accelerated scan 

with a linearly varying phase term, which corresponds to a shift in image domain. A phase 

shift of 5 pixels along horizontal as well as vertical direction was applied on the 2D slices, 

assuming a minor physical motion during scan would lead to a similar amount of shift in 

either direction. We compare the pre-trained MoDL and H-DSLR framework on this data, 

whose results are shown in Fig. 8(a)–(d). Due to the mismatch between coil images and the 

corresponding sensitivities, there are visible striped artifacts in the MoDL reconstruction. By 
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contrast, we observe that the the proposed hybrid DSLR framework remains unaffected. This 

simulation study shows the benefit of our proposed method over calibrated setting during 

motion.

Self-calibrated approaches do not require an additional calibration scan and hence are not 

sensitive to the above motion errors. They instead leverage a fully sampled calibration region 

(center of k-space) to estimate the coil sensitivities. However, this approach restricts the 

achievable acceleration rates. While the acceleration rate can be increased by reducing the 

size of the calibration region, the smaller calibration region results in inaccurate sensitivity 

estimates. The sensitivities were estimated from a 24 × 24 region in our MoDL scheme. We 

now estimate the sensitivities using ESPIRiT [10] from a calibration window of 16 × 16. 

The pre-trained MoDL was tested on the dataset using those estimated sensitivities. As seen 

in our experimental results in Fig. 8(e)–(h), the inaccurate sensitivities resulted in several 

visible artifacts in the MoDL reconstructions. The proposed method does not suffer from 

these artifacts since it is an uncalibrated scheme and does not rely on the central k-space 

region to estimate the sensitivities.

E. Comparison of the Computational Complexity

A key benefit of the proposed Deep-SLR scheme over SLR methods is the quite significant 

reduction in runtime, along with the improved performance offered by the combination of 

the image domain prior. The recorded runtimes are shown in Table II. We report runtimes for 

10 iterations (K = 10) of our proposed k-space and hybrid Deep-SLR algorithms, and 

MoDL. We note that the DL approaches are roughly a few thousands-fold faster than the 

IRLS-SLR schemes in both cases. As discussed previously, SLR methods estimate the linear 

projection operator on the fly and require at least 50 iterations to converge. The high 

complexity of the SVD and the evaluation of the Gram matrix, along with the large number 

of iterations, is the main reason for the long runtime of the SLR methods. By contrast, the 

Deep-SLR approaches pre-learn the CNNs from exemplar data, which eliminates the need 

for (10). The hybrid Deep-SLR approach is slightly slower than k-space Deep-SLR in both 

the cases since the former uses two CNNs compared to one by the latter even if the effective 

number of parameters are the same. In a single-channel setting, although K-UNET and I-

UNET have more learnable parameters, these approaches are faster by virtue of a single 

iteration rather than multiple iterations in proposed schemes. Note that the iterative approach 

brings improved performance as discussed in the previous sections. In the parallel MRI 

setting, the Deep-SLR schemes use five-layer CNNs that make them faster than K-UNET 

even after multiple iterations. We note that the MoDL scheme uses a multi-channel forward 

model that requires a conjugate gradient (CG) algorithm to enforce DC, which makes it 

slower than the Deep-SLR schemes. By contrast, the proposed scheme recovers the coil 

images; the forward model only includes Fourier sampling, which makes these schemes 

faster in training and testing.

VI. Discussion and Conclusion

We introduced a general model-based DL framework to significantly accelerate SLR matrix-

completion algorithms. The key distinction with SLR methods is the pre-learning of the 
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CNN parameters from exemplar data. Since the parameters need not be estimated from the 

measured data itself, the proposed algorithm is faster by several orders of magnitude. In 

addition, an additional image domain prior helps to further improve performance. We 

showed the utility of the proposed scheme in two representative applications with drastically 

different lifting structure.

In most cases considered in this work, the performance of the k-space network is 

comparable or better than the corresponding PSLR scheme. The addition of the image 

domain network further improved performance. The hybrid DSLR outperforms the existing 

pre-calibrated MoDL scheme in the parallel MRI setting. However, the performance of the 

k-space DSLR scheme is marginally lower than the corresponding SLR scheme in the 

single-channel brain case. Additional experiments on larger datasets are needed to 

understand whether this is a consistent observation. The proposed framework is applicable in 

theory to a wide range of SLR priors described in earlier work [11]. In this study, we 

restricted our attention to three representative applications. The applicability of the proposed 

framework to other problem settings is beyond the scope of this work and will be considered 

elsewhere. The MSE was used as the loss to train the networks. Since perceptual metrics 

such as SSIM are related to the MSE in a non-linear fashion, the performance of the 

proposed networks with respect to the SSIM may be better or worse with respect to others. 

The training can be changed to use arbitrary loss metrics, including SSIM, which may yield 

more visually pleasing images than the ones trained using MSE loss. Most of the 

experiments in this paper were restricted to scans on the same scanners. More work is 

needed to determine its utility in a multi-scanner and multi-center setting. We have not 

addressed the design of the sampling scheme that is optimal for the problem in this work. 

We refer the readers to our recent work that focuses on this aspect [34].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the network structure of the IRLS algorithm used in structured low-rank 

algorithms: (a) shows the linear residual convolutional-deconvolutional block, which 

projects the signal at the nth iteration to the signal subspace; (b) illustrates the network 

structure of the SLR algorithm, which alternates between the projection and the data 

consistency block.
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Fig. 2. 
Network structure of the proposed recursive CNN in k-space, described in Section III-D. 

The main difference of the proposed scheme with the approach in Fig. 1 is the use of the 

deep residual CNN in (b), instead of the linear convolution-deconvolution block in Fig. 1.(a).
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Fig. 3. 
Hybrid network: It consists of two identically structured residual CNNs Dk, DI for k-space 

and image domain learning, respectively. The DI block learns redundancies in patches, while 

Dk block exploits k-space annihilation relations. The DI block does an inverse fast Fourier 

transform (IFFT) on input k-space Γ and passes it to the residual CNN. The residual image 

output is transformed back to k-space Γ by a fast Fourier transform (FFT). The output of Dk
and DI at the nth iteration are denoted by Θn and Φn according to (28), (29) and (30). The 

parameters are not shared between Dk and DI. Both Dk and DI in hybrid Deep-SLR have 

half the number of feature maps per layer compared to Dk in k-space Deep-SLR to keep 

number of trainable parameters the same in both networks for fair comparison. The network 

parameters are shared across iterations similar tothe MoDL [7] framework.
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Fig. 4. 
Reconstruction results of 4x accelerated single-channel brain data. SNR (dB)/PSNR (dB)/

SSIM values are reported for each case. The data was under-sampled using a cartesian 2D 

non-uniform variable-density mask. The top row shows reconstructions (magnitude images), 

while the bottom row shows corresponding error images. The additional image domain prior 

in H-DSLR ensures significant improvement in performance over other schemes.

Pramanik et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Illustration of the non-linear and linear annihilation operators. Piecewise constant images 

and their gradients are shown in (a) and (b), respectively. The non-linear block Nk behaves 

like a linear projector to the null space for each image. Pseudo-random perturbations of 

small magnitude are added to the gradients of the image and fed to Nk. The SOS of the 

output perturbations are shown in (d). The SOS function on Nk closely mimics the linear 

operator ℛ in (c). Specifically, it annihilates or kills the gradient components close to the 

edge locations while preserving the noise components far from the edges. We show more 

results on different slices in the supplementary material (see Fig. S1).
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Fig. 6. 
Reconstruction results of 4x accelerated 15-channel knee data. A 2D Cartesian structured 

under-sampling along phase encodes was done. The top row displays reconstructions (SOS), 

and the bottom row shows corresponding error images. The yellow arrows in the zoomed 

cartilage region show minute details better preserved by the proposed scheme over other 

state-of-the-art methods. The numbers are SNR reported in dB. The k-space Deep-SLR 

scheme K-DSLR yields comparable results to the parallel SLR scheme. The addition of the 

image domain prior further improves performance. We show H-DSLR reconstructions of 

different slices with different accelerations factors in the supplementary material (see Fig. 

S5).
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Fig. 7. 
Reconstruction results of 10x accelerated 12-channel brain data. SNR (dB)/PSNR (dB)/

SSIM values are reported for each case. The under-sampling pattern was chosen to be a 2D 

Cartesian non-uniform variable density. The top row images are reconstructions (SOS), 

while the bottom row shows corresponding error images. The yellow arrows in the zoomed 

cerebellum region show minute details better preserved by the proposed scheme than by 

other state-of-the-art methods. The K-DSLR scheme has errors of lower magnitude than the 

calibration-less k-space methods PSLR and K-UNET. The proposed hybrid scheme H-
DSLR performs comparably to the pre-calibrated approach MoDL. We show H-DSLR 

reconstructions of different slices with different accelerations factors in the supplementary 

material (see Fig. S4).
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Fig. 8. 
The top row of images (a)-(d) show comparisons of pre-calibrated MoDL with the proposed 

calibration-less approach during mismatches in scans. A cartesian 2D 6-fold under-sampling 

mask in (b) was used for under-sampling the k-space. The acquired k-space measurements 

were translated in spatial domain to emulate motion. The MoDL reconstruction shows 

diagonally striped motion artifacts due to mismatch. Our proposed scheme remains 

unaffected. The bottom row of images (e)-(h) display comparisons of the proposed approach 

with self-calibrated MoDL. The mask in (f) is used for under-sampling the k-space data and 

subsequent reconstruction. It samples 16 fully sampled lines in the center for calibration 

purposes. The coil sensitivities for MoDL are estimated using ESPIRiT [10] from the 

calibration window of 16 × 16 at the center of k-space. The performance of self-calibrated 

MoDL breaks down due to inaccurate sensitivities estimated from a smaller calibration 

region. Thus, the requirement of a larger calibration region limits acceleration. Our proposed 

scheme is robust to acceleration in the calibration region, thus pushing it further.
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TABLE I

Quantitative comparison of PSLR, MoDL, proposed, and UNET reconstructions in terms of SNR (dB), PSNR 

(dB) and SSIM. The bold-faced methods are the proposed ones.

Signal-to-Noise Ratio (SNR)

Brain Knee

Acceleration 6x 10x 4x

Methods SNR SNR SNR

PSLR 21.02 ± 2.33 18.12 ± 2.58 24.26 ± 2.12

K-UNET 19.58 ± 2.01 17.28 ± 1.98 26.81 ± 2.05

K-DSLR 21.58 ± 1.74 18.71 ± 1.83 27.87 ± 1.36

MoDL 23.30 ± 1.53 21.63 ± 1.62 29.77 ± 1.19

MoDL 23.30 ± 1.53 21.63 ± 1.62 29.77 ± 1.19

H-DSLR 24.34 ± 1.15 22.20 ± 1.23 30.57 ± 0.96

Peak Signal-to-Noise Ratio (PSNR)

Brain Knee

Acceleration 6x 10x 4x

Methods PSNR PSNR PSNR

PSLR 31.17 ± 2.30 28.21 ± 2.61 28.19 ± 2.03

K-UNET 29.49 ± 1.96 27.14 ± 1.91 30.94 ± 2.14

K-DSLR 31.66 ± 1.77 28.55 ± 1.84 31.67 ± 1.33

MoDL 33.43 ± 1.51 31.53 ± 1.57 33.77 ± 1.19

H-DSLR 34.46 ± 1.22 32.31 ± 1.23 34.69 ± 0.98

Structural Similarity (SSIM)

Brain Knee

Acceleration 6x 10x 4x

Methods SSIM SSIM SSIM

PSLR 0.942 ± 0.035 0.918 ± 0.041 0.873 ± 0.027

K-UNET 0.920 ± 0.029 0.883 ± 0.030 0.887 ± 0.021

K-DSLR 0.938 ± 0.018 0.913 ± 0.023 0.904 ± 0.011

MoDL 0.951 ± 0.020 0.921 ± 0.026 0.928 ± 0.015

H-DSLR 0.958 ± 0.011 0.935 ± 0.013 0.944 ± 0.008
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TABLE II

Comparison of Single-channel and Parallel MRI reconstruction times. The reported values are average 

reconstruction times per subject in minutes. The bold-faced methods are the proposed ones.

Single-channel recovery (minutes per subject)

Organ GIRAF K-UNET K-DSLR I-UNET H-DSLR

Knee/Brain 197.33 0.07 0.32 0.07 0.37

Parallel MRI recovery (minutes per subject)

Organ PSLR K-UNET K-DSLR MoDL H-DSLR

Brain 1223 0.7 0.17 0.83 0.19

Knee 3106.67 2.83 0.63 4.40 0.75
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