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ABSTRACT
Objective: Artificial intelligence (AI) is used in various urological conditions such as urolithiasis, pediatric 
urology, urogynecology, benign prostate hyperplasia (BPH), renal transplant, and uro-oncology. The various 
models of AI and its application in urology subspecialties are reviewed and discussed.

Material and methods: Search strategy was adapted to identify and review the literature pertaining to the 
application of AI in urology using the keywords “urology,” “artificial intelligence,” “machine learning,” 
“deep learning,” “artificial neural networks,” “computer vision,” and “natural language processing” were 
included and categorized. Review articles, editorial comments, and non-urologic studies were excluded.

Results: The article reviewed 47 articles that reported characteristics and implementation of AI in urologi-
cal cancer. In all cases with benign conditions, artificial intelligence was used to predict outcomes of the 
surgical procedure. In urolithiasis, it was used to predict stone composition, whereas in pediatric urology 
and BPH, it was applied to predict the severity of condition. In cases with malignant conditions, it was ap-
plied to predict the treatment response, survival, prognosis, and recurrence on the basis of the genomic and 
biomarker studies. These results were also found to be statistically better than routine approaches. Appli-
cation of radiomics in classification and nuclear grading of renal masses, cystoscopic diagnosis of bladder 
cancers, predicting Gleason score, and magnetic resonance imaging with  computer-assisted diagnosis for 
prostate cancers are  few applications of AI that have been studied extensively.

Conclusions: In the near future, we will see a shift in the clinical paradigm as AI applications will find their 
place in the guidelines and revolutionize the decision-making process.

Keywords: Artificial intelligence; deep learning; machine learning; prostate cancer; urolithiasis; urology.

Introduction

Artificial intelligence (AI) refers to the compu-
tational capability of the machine to mimic and 
perform human cognitive tasks. It is causing 
a paradigm shift in terms of providing health 
care and decision-making for the clinicians. 
The advances in the medical technologies 
used in health care, such as electronic medical 
records (EMRs), are providing humongous 
amounts of data.[1] This large amount of data 
allows computer-based predictions and deci-
sions to be made to aid in better patient care 
(Figure 1). By 2025, the growth rate of AI 
applications in health care is expected to be 
29.3%, and the global revenue is estimated to 
increase by 40%.[2] With the available patient 

data, the future health care system is likely to 
move toward AI outpatient clinics and preven-
tive medicine. AI provides more accuracy and 
reliable clinical decisions; hence, it is possibly 
going to be an integral part of the health care 
system.

The four subfields of AI in health care are as 
follows:

1. Machine learning (ML): ML is statisti-
cal technique-based programming that allows 
a computer system to learn and recognize 
patterns to model without explicit instruc-
tions. ML uses procedural computer programs 
wherein machines are trained to learn, detect 
data patterns, compute, and infer from the 
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datasets provided. It is observed that the machines are able 
to generate results similar to those generated by human intel-
ligence.

2. Natural language processing (NLP): It illustrates the ability 
of a computer to comprehend the written and spoken language. 
Some applications that are possible through NLP include lan-
guage translation, text processing, and speech recognition. In 
order to extract useful information and reliable details from 
patient services and provide “virtual assistance” for physi-
cians, a comprehensive data research such as electronic medical 
record (EMR), doctor’s notes, pharmaceutical products, and 
medical imaging can also be analyzed.

3. Deep learning (DL) and artificial neural networks (ANNs): 
In the network architectural layers, the ANN comprises of indi-
vidual units that function like artificial neurons programmed 
to accomplish computer tasks and recognize complex patterns. 
DL requires training massive datasets of multilayered neural 
networks. Deep neural convolution network (DCNN) is a com-
monly used ANN, which is effective when used in digitized 
image pattern identification or recognition.

4. Computer vision: Computer vision technology is used for 
visual search, trend forecasting, augmented reality, and virtual 
reality. The radiological and pathological images and simple 
and complex endoscopic videos can be used by machines to 
understand the details and patterns in the images in order to 
identify the tumors or malignancy present in the diagnostic 
images. The latest experience at human level in diagnostic 
imaging has already shown that AI has extensive “knowledge” 
to identify tumors. Computer vision can also be used for analy-
sis and grading of pathological tissue slides.

AI is increasingly applied not only to the diagnosis of urologi-
cal conditions but also its management and predictive analysis.
[3] This article focuses on addressing the application of AI and 
AI algorithms in urological subspecialties. This article reviews 
the use of AI in various benign and malignant conditions such as 
urolithiasis, pediatric urology, urogynecology, benign enlarge-
ment of the prostate, renal transplant, and uro-oncology pertain-
ing to the kidneys, bladder, prostate, and testes.

Clinical and Research Consequences

Application of AI in Benign Urological Conditions

Urolithiasis
In the past few decades, there has been a rapid transition in the 
analysis, treatment and monitoring of cases with urolithiasis, the 
recent entry being applications of AI to identify the stone from 
computed tomography (CT) and ultrasound (US) images[4,5], 
detecting stone composition[6,7], predicting spontaneous stone 
passage[8,9] and even the outcomes of endourological procedures 
(Table 1).[10-13]
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• AI is widely used in the diagnosis, treatment, and outcome pre-
diction in various urological conditions.

• In urolithiasis, AI is used to detect stone composition and to 
predict spontaneous passage of stone.

• AI applications in prostate carcinoma are used for the diag-
nosis-Gleason scoring, treatment decisions-making, and even 
predicting the disease-free survival.

Main Points:

Figure 1. A schematic process chart for building an artificial intelligence model
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Table 1. Studies looking at applications of AI in benign urological conditions (Continue)
Study Objective Study Design Algorithm/Model Accuracy Sensitivity Specificity

A. Urolithiasis

Parakh et al.[4] Urinary stone 
detection on unen-
hanced CT images

• 535 patients 
(279 stones pre-
sent; 256 stones 
absent) 

• 100 scans (test 
data)

Convolutional 
neural network 
(CNN)

>90% NA NA

Chiang et al.[5] To identify asso-
ciation between 
stone disease and 
genetic polymorp-
hisms, patient 
habits

• 151 (calcium 
oxalate stone) 
patients 

• 105 healthy 
controls

• Discriminant 
analysis 

• Artificial Neural 
network (ANN)

• Genetic factors 
DA: 64% ANN: 
65 % 

• Genetic and 
Env. Factors 
DA: 75% ANN: 
89%

NA NA

Kazemi et al.[6] For early detecti-
on of the type of 
kidney stone and 
the most influenti-
al parameters

• 936 patients 
dataset 

• 42 features

• -Bayesian 
model-Decision 
Trees 

• ANN 
• Rule-based 

classifiers

97.1% (ensemble 
model)

NA NA

Kriegshauser  
et al.[7]

To investigate use 
of single-source 
dual-energy com-
puted tomography 
(ssDECT) for the 
characterization of 
renal stones.

• 32 stone dataset -Multiparametric 
algorithms

• 97% to distingu-
ish uric acid and 
non-uric acid 
stones

• 72 % to distin-
guish non-uric 
acid stone 
subtypes

NA NA

Eken et al.[8] To compare AI 
models with LR 
by applying on 
medical dataset

• 227 patients 
• 176 urinary 

stones 
• 51 no stones

• ANN 
• Genetic algo-

rithm (GA) 
• Logistic regres-

sion analysis 
(LR)

NA ANN: 94.9%  
GA: 67.6%  
LR: 95.5%

ANN: 78%  
GA: 76%  
LR: 48%

Dal Moro et al.[9] To predict the 
spontaneous 
passage of ureteral 
stones in patients 
with renal colic

• 1163 patients 
(402 found 
valuable) 

• nine clinical 
factors

Linear program-
ming support 
vector machine 
(LPSVM)

NA 84.5% 86.9%

Shabaniyan  
et al.[10]

To predict posto-
perative outcome 
of PCNL

• 254 patients 
• 26 variables

• Machine 
learning (ML) 
techniques such 
as sequential 
forward selecti-
on and Fisher’s 
discriminant 
analysis

94.8% Requirement of 
Stent placement: 
85.2% Require-
ment of blood 
transfusion: 95%

NA
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Table 1. Studies looking at applications of AI in benign urological conditions (Continue)
Study Objective Study Design Algorithm/Model Accuracy Sensitivity Specificity

Aminsharifi  
et al.[11]

To predict mul-
tiple outcomes 
after percutaneous 
nephrolithotomy 
(PCNL) and 
compare with 
GSS and CROES 
nomogram

• 146 adult pati-
ents

• ML-based SVM 
model

80%-95.1% Stone free status: 
92% Need for 
repeat PCNL: 97% 
Need for ESWL: 
82% Need for 
URS: 91%

NA

Kadlec et al.[12] For outcome 
prediction after 
various forms of 
endourological 
intervention

• 382 renal units • nonlinear LR 
model

Classification ac-
curacy of 69.6%

Stone free status: 
75.3% Need for 
sec. procedure: 
30%

Stone free status: 
60.4% Need for 
sec. procedure: 
98.3%

Seckiner et al.[13] To predict stone 
free status after 
ESWL

• 139 patients 
(training set) 

• 32 patients 
(validation set) 

• 32 patients (test 
set)

ANN 88.7% in the test 
group

NA NA 

B. Benign Prostatic Hyperplasia

Torshizi et al.[14] To diagnose the 
severity of BPH 
and suggest app-
ropriate treatment

• 44 patients Fuzzy system 
expert

~90% NA NA

Sonke et al.[15] To diagnose BPH 
and compare with 
regression analysis

• 1903 patients ANN NA 71% 69% 

C. Pediatric Urology

Bagli et al.[16] To predict sonog-
raphic outcome 
after pyeloplasty 
in children with 
ureteropelvic junc-
tion obstruction

• 84 children 
training set 

• 16 children test 
set

ANN 100% 100% 100%

Logvinenko  
et al.[17]

To predict patients 
at high risk of 
VCUG abnorma-
lities, based on 
RBUS findings

• 2259 patients ANN Multivariate 
LR analysis 

NA For any grade 
VUR
• ANN: 64% 
• MLR: 84%

For any grade 
VUR 
• ANN: 60% 
• MLR: 25%

Blum et al.[18] To predict the 
need for surgery in 
UPJO cases based 
on dynamics of 
renogram 

• 55 patients 
• 45 features

• Linear support 
vector machine 
(SVM)

93% 91% 96%

D. Urogynecology

Sabadell et al.[20] To predict occur-
rence of SUI after 
prolapse surgery 
and as a diagnostic 
tool

• 169 patients ML algorithm NA NA NA



Parakh et al.[4] studied the diagnostic performance of the convo-
lution neural network (CNN) on CT images for detection of uri-
nary stones in 535 adult patients assumed to have renal calculi 
using two scanners. The first scanner identified the urinary tract, 
and the next one detected the stone. Using nine different varia-
tion models, it achieved an accuracy of more than 90%. The 
study concluded that the efficiency of CNNs can be improved 
by the use of transfer learning with datasets augmented with 
labeled images. Shabaniyan et al.[10] developed a decision sup-
port system using ML techniques to predict the outcomes of 
surgical treatment for renal calculus. The algorithm was trained 
with a dataset of 254 patients and 26 parameters, which com-
prised variables from patients’ history, renal calculus composi-
tion, and laboratory investigations. This model achieved an 
accuracy of 94.8%, 85.2%, and 95% in predicting outcomes 
of a procedure, predicting whether patient will require a stent 
after the procedure, and predicting the need for blood transfu-
sion, respectively. Aminsharifi et al.[11] studied data of 146 adult 
patients in whom percutaneous nephrolithotomy (PCNL) was 
done to validate efficiency of a machine-based learning algo-
rithm for predicting the outcomes after PCNL and to compare 
the results with Clinical Research Office of Endourological 

Society nomogram and Guy’s Stone Score (GSS). This program 
predicted the PCNL results with an accuracy of up to 95%.

Benign Enlargement of the Prostate
Many questionnaires are available for the clinical prediction of 
benign prostatic hyperplasia (BPH), yet the results are unreli-
able and inaccurate. Various AI techniques and ANN models 
such as multilayered back propagation method to predict the 
severity of obstruction on the basis of noninvasive tests have 
been used (Table 1).[14,15] Torshizi et al.[14] applied fuzzy intel-
ligent systems in predicting the severity of BPH and also rec-
ommended the treatment required for it. The study consisted of 
two models. The first model predicted the severity, whereas the 
second model helped to make a treatment decision. The results 
were then compared for accuracy and validation with an expert 
panel. The accuracy achieved was nearly 90%.

Pediatric Urology
AI has been used in the field of pediatric urology for predicting 
the outcome of surgical procedures[16], severity of the condi-
tion on the basis of imaging as well as detecting abnormalities 
in imaging (Table 1).[17,18] Bagri et al.[16] applied computerized 
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Table 1. Studies looking at applications of AI in benign urological conditions (Continue)
Study Objective Study Design Algorithm/Model Accuracy Sensitivity Specificity

Jelovsek et al.[21] To predict recur-
rence, complica-
tions, and health 
status improve-
ment after prolapse 
surgery

• 1301 patients LR models NA NA NA

E. Renal Transplant

Atallah et al.[22] To predict 5-year 
graft survival

• 2728 patients 
(70% training 
and 30% testing)

• Naïve Bayes Ba-
sed Feature Se-
lector (NBBFS) 
Algorithm 

• K-nearest neigh-
bor Algorithm 
(KNN)

80.77% 81.2% NA

Greco et al.[23] To predict graft fa-
ilure and associa-
tion with BMI and 
other risk factors

• 194 patients • ML algorithms 
• Decisional Trees

NA 88.2% 73.8%

Goldfarb et al.[24] To predict cadave-
ric graft survival 
over three years 
based on pretrans-
plant variables

37,407 patients 
dataset

Logistic regression 
based model Tree-
based model 

65% NA NA

CT: Computed Tomography; CNN: Convolutional Neural Network; ANN: Artificial Neural Network; DA: Discriminant Analysis; ssDECT: Single-Source Dual-Energy 
Computed Tomography; LR: Logistic regression; GA: Genetic Algorithm; LP SVM: Linear Programming Support Vector Machine; PCNL: Percutaneous Nephrolithotomy; 
ML: Machine Learning; GSS: Guys Stone Score; CROES: Clinical Research Office of the Endourological Society; SVM: Support Vector Machine; ESWL: Extracorporeal 
Shock Wave Lithotripsy; URS: Ureterorenoscopy; BPH: Benign Prostatic Hyperplasia; VCUG: Voiding Cystourethrogram; RBUS: Renal Bladder Ultrasound; NBBFS: 
Naïve Bayes Based Feature Selector; KNN: K-Nearest Neighbor; BMI: Body Mass Index; UPJO: Uretero-Pelvic Junction Obstruction 
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ANN to predict the outcomes after pyeloplasty on the basis of 
US findings in children with uretero-pelvic junction obstruc-
tion. The prediction was based on whether postoperatively the 
results were “significantly improved,” “improved,” “same,” or 
“worse.” The results showed 100% sensitivity and specificity 
for all four-outcome measures. Both multivariate analysis and 
ML algorithms were used by Logvinenko et al.[17] to evaluate 
whether the renal and bladder ultrasound (RBUS) could predict 
the abnormalities on voiding cystourethrogram (VCUG) for 
conditions such as vesico-ureteric reflux and congenital ure-
thral abnormalities. The results showed that RBUS was a poor 
predictor of the abnormalities of VCUG and both could only 
complement each other but cannot replace them.

Urogynecology 
On the basis of urinary incontinence data obtained from the 
wearable devices, AI techniques were applied to predict the 
time and number of incontinence episodes and the outcome of 
conservative or medical management for stress urinary inconti-
nence (SUI).[19] Models to predict the occurrence of complica-
tions such as SUI after prolapse surgery, recurrence, and overall 
outcomes of surgery were also studied on the basis of the data 
available from various randomized controlled trials (Table 
1).[20,21] In the near future, AI applications can be used to provide 
personalized care based on the patient demographics and clini-
cal characteristics of every individual.

Renal Transplant
The outcome of kidney transplant prediction is very important. 
Various studies have been conducted to predict the outcomes 
of kidney transplantation using ANN and ML algorithms, as 
described (Table 1).[22-24] Atallah et al.[22] proposed a predic-
tion method by combining two methods-Bayes and k-nearest 
neighbor-which achieved more accuracy by choosing minimum 
number of features. It was based on data mining techniques to 
predict five-year graft survival after transplantation. This new 
proposed prediction method comprises three stages: data prepa-
ration stage, feature selection stage, and prediction stage. This 
prediction method can be used in other transplant datasets to 
measure the graft survival.

Application of AI in Uro-Oncology

Testicular Malignancy
Not much has been studied about the applications of AI in 
testicular malignancy. Baessler et al.[25] applied ML-based CT 
radiomics to determine whether the lymph nodes dissected in 
patients with metastatic or advanced nonseminomatous testicu-
lar germ cell tumor were malignant or benign. The model cor-
rectly classified with an accuracy of 0.81 (area under the curve 
[AUC]), 88% sensitivity, and 72% specificity.

Renal Cell Carcinoma
ML and DL algorithms based on CT-texture analysis were 
applied for differentiating renal masses such as angiomyoli-
poma, clear cell renal cell carcinoma (ccRCC), papillary renal 
cell carcinoma, and oncocytoma[26-28] to predict the nuclear 
grade and to identify certain genetic mutations to predict the 
prognosis, recurrence, and survival outcomes (Table 2). Kocak 
et al.[26] used CT-texture analysis, applied ML techniques to 
predict and identify the nuclear grade (Furhman) of ccRCC, 
and compared the results with those obtained with percutane-
ous biopsy. The results were comparable, and the maximum 
predictive value was achieved with the use of the support vec-
tor machine (SVM). The algorithm could differentiate nuclear 
grades in 85.1% of ccRCC cases. Ding et al.[29] also conducted 
a similar study showing increased precision in classifying the 
grade of ccRCC.

Biomarkers and signatures based on more than one gene expres-
sion have been developed in recent years for predicting the 
ccRCC overall survival (OS) and prognosis of the disease. Li et 
al.[30] developed a model based on 15 genes, which could help 
predict the prognosis and survival. They found that the group 
with a higher risk had substantially poorer prognosis and sur-
vival than the group with patients having lower risk. The risk 
groups were not associated with patient characteristics such as 
sex or age but were related to hemoglobin levels. They were 
also associated with tumor features such as size and grade.

PBRM1 mutations are the second most common mutations 
found in ccRCC. Kocak et al.[31] applied ANN- and ML-based 
algorithms to identify PBRM1 mutations based on CT scan 
texture analysis. Overall, 88% of ccRCC with PBRM1 mutation 
status was correctly identified by ANN. On the basis of these 
results, future studies can be conducted to develop noninvasive 
biomarkers for identifying histopathological subtypes to predict 
the prognosis and response to treatment.

Bladder Cancer
ML algorithms, DCNN models, genetic algorithms, and SVMs 
have been applied in bladder cancer for improving cystoscopic 
diagnosis and prediction of prognosis and survival (Table 2).[32-

35] Ikeda et al.[32] made a competent CNN by training it with 
2102 cystoscopic pictures with an aim to increase the efficiency 
in diagnosis of bladder cancer using AI. It achieved sensitivity 
and specificity of 89.7% and 94.0%, respectively. Lorencin et 
al.[33] used the data of 1997 and 986 images with and without 
bladder cancer, respectively, to train multilayer perceptron 
along with DCNN for the diagnosis of bladder malignancy. It 
showed promising results, with AUC value reaching up to 0.99. 
Wang et al.[36] achieved more than 75% accuracy by using least 
squares SVM in predicting the five-year overall and cancer-
specific mortality of patients post radical cystectomy.
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Table 2. Studies looking at application of AI in urological malignancies (Continue)

Study Objective Study Design Algorithm/Model Accuracy Sensitivity Specificity

A. Renal Cell Carcinoma(RCC)

Kocak et al.[26] To distinguish 
the major subt-
ypes of RCC

• 68 RCC pati-
ents for inter-
nal validation 

• 26 RCC pati-
ents for exter-
nal validation 

• 275 CT images 
for texture 
features

Artificial Neural 
Network (ANN) 
Support vector 
machine (SVM)

ANN: 84.60% 
SVM: 69%

ANN: 69% 
SVM: 71%

ANN: 100% 
SVM: 100%

Feng et al.[27] To differentiate 
angiomyolipoma 
(AML) and RCC 
based on texture 
analysis of CT 
images

• 58 patients 
• 42 features

• Machine 
Learning (ML) 
based quanti-
tative texture 
analysis 

• SVM with re-
cursive feature 
elimination 

• Synthetic 
minority 
oversampling 
technique 
(SMOTE) 

93.9% 87.8% 100%

Coy et al.[28]  To distinguish 
ccRCC and on-
cocytoma from 
MDCT images

• 4000 iterations 
(90% training 
and 10% vali-
dation) 

• 179 patients

Deep Learning 
(DL) based Go-
ogle TensorFlow 
software

74.4% 85.8% NA

Ding et al.[29] To preoperatively 
distinguish high 
nuclear grade 
from low nuclear 
grade in ccRCC

• 92 cases  
(for validation)

• Logistic Reg-
ression (LR) 
model 

• Least absolute 
shrinkage and 
selection ope-
rator (LASSO) 
for texture 
score

NA NA NA

Li et al.[30] To predict sur-
vival in patients 
with ccRCC 
based on gene 
expression

N=533 (training 
dataset) Risk 
score model 
based on 15 ge-
nes N=101 (test 
dataset)

• ML-based ran-
dom forest va-
riable hunting 
Cox regression 
analysis

NA NA NA

Kocak et al.[31] To identify the 
mutation status 
of PBRM1 gene 
in ccRCC pati-
ents

• 45 patients 
(29 without 
mutation; 16 
with mutation) 

• 161 labeled 
segmentations 
(87 without 
mutation; 74 
with mutation)

• ML-based 
quantitative 
CT-texture 
analysis such 
as 

• Random Forest 
(RF) algorithm 

• ANN

ANN: 88.22% 
RF: 95%

NA NA
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Table 2. Studies looking at application of AI in urological malignancies (Continue)

Study Objective Study Design Algorithm/Model Accuracy Sensitivity Specificity

B. Bladder Carcinoma

Ikeda et al.[32] To improve 
cystoscopic diag-
nosis of bladder 
cancer using AI

• 2102 images 
(1671 normal 
tissue; 431 
tumor lesions) 

• 8:2 (training: 
test set)

Convolutional 
Neural Network 
(CNN)

NA 89.7% 94%

Lorencin et al.[33] To use multilayer 
perceptron met-
hod for diagnosis 
of bladder cancer 
from cystoscopic 
images

• 1997 bladder 
cancer images 

• 986 non-
cancer tissues 
images

• Multilayer Per-
ceptron (MLP) 

• Laplacian edge 
detector

NA NA NA

Hashemi et al.[34] To classify 
cystoscopic 
bladder images 
using AI

• 540 cystos-
copic bladder 
images

• Multilayer ne-
ural networks 

• Genetic algo-
rithm (GA)

7% decrease 
in error on 
classification as 
compared with 
other methods

NA NA

Eminaga et al.[35] To perform 
diagnostic clas-
sification based 
on cystoscopic 
images using 
DL-CNN

• 479 patients 
• 18,681 images 

(generated 
with 10 degree 
grades) 

• 60% training 
set-10% vali-
dation set 

• 30% test set

• Deep Learning 
CNN (DL-
CNN) 

• Xception 
model 

• ResNet50 
model 

• InceptionV3 
• VGG-19 
• VGG-16

F1 scores Xcep-
tion: 99.52% 
ResNet: 99.48%

NA NA

Wang et al.[36] To predict blad-
der cancer prog-
nosis in terms of 
five-year overall 
and cancer-speci-
fic mortality 

• 117 bladder 
cancer patients

• Output-based 
transfer lear-
ning approach 
with least 
square support 
vector machine 
(LS-SVM)

• 5 years overall 
mortality 
Proposed 
classifier(v1): 
76.97% 
Proposed 
classifier(v2): 
76.18% • 
5-year cancer-
specific morta-
lity Proposed 
classifier(v1): 
74.85% 
Proposed 
classifier(v2): 
75.15%

• 5 years overall 
mortality 
Proposed 
classifier(v1): 
78.48% 
Proposed 
classifier(v2): 
78.29% 

• 5-year cancer-
specific morta-
lity Proposed 
classifier(v1): 
90.26% 
Proposed 
classifier(v2): 
92.38%

• 5 years overall 
mortality 
Proposed 
classifier(v1): 
75.79% 
Proposed 
classifier(v2): 
74.33% • 
5-year cancer-
specific morta-
lity Proposed 
classifier(v1): 
38% Proposed 
classifier(v2): 
31%

Gavriel et al.[37] To predict five-
year prognosis of 
bladder cancer

• 78 patients 
diagnosed with 
MIBC

• ML-based en-
semble model

94.8% 89.5% 97.4%
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Table 2. Studies looking at application of AI in urological malignancies (Continue)

Study Objective Study Design Algorithm/Model Accuracy Sensitivity Specificity

Hasnain et al.[38] To predict 
postcystectomy 
recurrence and 
survival

• Dataset of 
3503 patients

Ensemble ML-
based models 
• Support vector 

machine 
(SVM) 

• K-nearest 
neighbor Algo-
rithm (KNN)  

• Random Forest 
• Gradient-bo-

osted trees 
(GBT)

NA >70% >70%

Bartsch et al.[39] To predict recur-
rence of NMIBC 
based on genome 
profile

• 112 frozen 
NMIBC speci-
mens 

• 21 gene classi-
fier set

• ML cased 
genetic 
programming 
algorithm

NA Test Set Five 
gene combined 
rule: 69% 
Three gene com-
bined rule: 71%

Test Set Five 
gene combined 
rule: 62% 
Three gene com-
bined rule: 67%

Wu et al.[40] To compare 
different DL-
CNN models to 
predict response 
to treatment in 
bladder cancer 
(T0 prediction)

• 123 CT scans 
(pre and post-
treatment)

Multiple DL-
CNN models 
with structure 
modification and 
layer freezing

Base DL-CNN 
70% 

Base DL-CNN 
60%

Base DL-CNN 
80%

C. Prostate Carcinoma

Ström et al.[41] To diagnose and 
grade prostate 
cancer in biop-
sies

Training set-976 
patients (6682 
slides) Test 
set-246 patients 
(1631 slides)

ANN NA 99% 94.9%

Bulten et al.[42] To assign Gle-
ason grade to 
prostate biopsies 
using AI

1243 patients 
(5759 biopsies)

DL system Benign versus 
malignant: 96%-
97% 
Grade group 2 or 
more: 79%-83% 
Grade group 3 or 
more: 76%-82%

Benign versus 
malignant: 
97.4% 
Grade group 2 or 
more: 86%-95% 
Grade group 3 or 
more: 76%-92%

Benign versus 
malignant: 83%-
100% 
Grade group 2 or 
more: 52%-70% 
Grade group 3 or 
more: 72%-782%

Viswanath et 
al.[44]

To compare va-
rious classifier in 
detecting CaP on 
t2W MRI images 
using radiomic 
texture features

• 85 T2W MRI 
datasets

• Quadratic 
Discriminant 
Analysis 
(QDA) -Sup-
port Vector 
Machines 
(SVMs) 

• Naïve Bayes 
Decision Trees 
(NBDT)

NA NA NA



Gavriel et al.[37] proposed an ensemble system comprising 
ML-based algorithms to predict five-year prognosis with dif-
ferent combinations of image, clinical, and spatial features and 
quantify potential prognostic markers related to lymphocytes, 
macrophages, tumor buds, and PD-L1. The method success-
fully classified 71.4% of the patients who succumbed to muscle 
invasive bladder cancer (MIBC) within five years, significantly 
higher than the 28.6% of the current clinical gold standard, the 
tumour, node, metastasis (TNM) staging system.

Several studies have applied ML-based algorithms and models 
to identify genes that could predict the recurrence of disease or 
the future progression. Slides of patients diagnosed with MIBC 
were labeled with immunofluorescence (IF) and used for mea-
suring the tumor buds, to determine the effectiveness of neo-
adjuvant chemotherapy, and to identify patients who were not 
responding to the treatment. This was done to stop the treatment 
prematurely to avoid the adverse effects of chemotherapy.[38-40]
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Table 2. Studies looking at application of AI in urological malignancies (Continue)

Study Objective Study Design Algorithm/Model Accuracy Sensitivity Specificity

Wildeboer et 
al.[45]

For automated 
localization of 
CaP based on 
radiomics of 
TRUS

• 50 men with 
biopsy confir-
med CaP 

ML techniques 
using B-mode, 
shear-wave elas-
tography (SWE), 
and dynamic 
contrast-enhan-
ced ultrasound 
(DCE-US) 
radiomics

NA NA NA

Deng et al.[46] For treatment 
stratification of 
patients with me-
tastatic castrate 
resistant CaP

• 78 features 
associated with 
the patient cli-
nical and me-
dical history, 
lab reports and 
metastases 

ML-based model NA NA NA 

de la Calle et 
al.[47]

To predict 
recurrence and 
progression of 
CaP based on bi-
omarker analysis

• 648 samples 
(424 tumors, 
224 normal 
tissue)  

• Tissue micro 
assays anti 
Ki-67, ERG 
antibodies

AI algorithm 100% in identifi-
cation of ERG+ 
tumor

NA NA

Bibault et al.[48] To predict sur-
vival in patients 
with CaP

• Dataset from 
PLCO trial 

• 8776 patients 
(diagnosed 
with CaP on 
follow-up) 

• n=7021 
(training set) 
N=1755 (test 
set)

AI algorithm 10-year OS: 87% 
10-year cancer-
specific survival: 
98%

10-year OS: 60% 
10-year cancer-
specific survival: 
55%

NA

RCC: Renal Cell Carcinoma; CT: Computed Tomography; ANN: Artificial Neural Network; SVM: Support Vector Machine; AML: Angiomyolipoma; ML: Machine Le-
arning; SMOTE: Synthetic Minority Oversampling Technique; ccRCC: Clear Cell Renal Cell Carcinoma; MDCT: Multiple Detector Computed Tomography; DL: Deep 
Learning; LR: Logistic Regression; LASSO: Least Absolute Shrinkage and Selection Operator; PBRM1: Polybromo1; RF: Random Forest; CNN: Convolutional Neural 
Network; MLP: Multi Layer Perceptron; AI: Artificial Intelligence; GA: Genetic Algorithm; DL-CNN: Deep Learning Convolutional Neural Network; LS-SVM: Least Squ-
are Support Vector Machine; MIBC: Muscle Invasive Bladder Cancer; KNN: K-Nearest Neighbor; GBT: Gradient-Boosted Trees; NMIBC: Non-Muscle Invasive Bladder 
Cancer; CaP: Carcinoma Prostate; T2W MRI: T2 Weighted Magnetic Resonance Imaging; QDA: Quadratic Discriminant Analysis; NBDT: Naïve Bayes Decision Trees; 
TRUS: Trans Rectal Ultrasonogram; SWE: Shear-Wave Elastography; DCE-US: Dynamic Contrast-Enhanced Ultrasound; PLCO: Prostate Lung Colorectal Ovarian; OS: 
Overall Survival



Prostate Carcinoma 
AI applications are on the verge of revolutionizing the current 
practice in carcinoma prostate (CaP) in terms of diagnosis, treat-
ment decisions, and even predicting the disease-free survival. 
There is high observer-dependent variability in Gleason grading 
because of the subjective nature of the analysis of biopsy speci-
mens. Considering this, Ström et al.[41] developed an AI model 
for identification, Gleason grading, and localization of prostate 
cancer. The model was trained with 6682 digitized slides of 976 
men and tested on 1631 biopsy specimens from 246 men. It 
achieved an accuracy of 0.997 (AUC) to differentiate between a 
malignant and a benign tumor. The results in terms of Gleason 
grading were also comparable to those achieved by the expert 
pathologists. In various studies, DL methods to calculate the 
Gleason Grading have been applied (Table 2).[42]

Multiparametric imaging uses multiple modalities or tech-
niques before making the ultimate diagnosis, and this adds 
to the burden of the radiologist. However, in the current era, 
computer-aided diagnosis is possible because of progress in 
AI, which eventually helps in making the diagnosis by image 
interpretation. This is particularly useful in situations where 
multiple modalities, parameters, or techniques are involved in 
diagnosing a condition.[43]

Application of a Quadrant Discriminant Classifier to the 
radiomic features derived from T2-weighted MRI images 
for detection of CaP[44] and application of ML-based random 
Forrest classification algorithm to localize CaP on transrectal 
ultrasonogram[45] have been studied (Table 2).

In view of the toxic effects of docetaxel chemotherapy, 20% of 
the patients undergo therapeutic failure in metastatic castrate 
resistant CaP. Deng et al.[46] developed an AI-based computa-
tional model that could differentiate patients in two groups, 
docetaxel-tolerable and docetaxel-intolerable, for better and 
individualized treatment for the patients in this category. 
Identification of the presence of biomarkers on tissue microar-
rays can predict the risk of recurrence and metastasis. Biomarker 
identification under IF microscope by the human eye is subjec-
tive as well as time-consuming. Hence, an automated method 
using DL algorithms was developed for analysis of biomarkers 
using 648 samples and IF staining with anti-Ki-67, ERG anti-
bodies. The results were promising, with only 5% difference 
between manual and algorithm-based biomarker detection and 
100% accuracy in identification of tumors positive for ERG.[47]

Bibault et al.[48] used data from the prospective clinical trial Prostate 
Lung Colorectal and Ovarian cancer screening, selected patients 
who were diagnosed with CaP during follow-up, and trained two 
models to predict ten-year cancer-specific survival (CSS) and OS. 
Of the 8776 patients diagnosed with PCa on follow-up, training of 

the models was done with 7021 and tested on dataset of 1755. It 
achieved an accuracy of 0.87 and 0.98 for OS and CSS, respec-
tively. These models can be used online to provide predictions and 
support informed decision-making in CaP treatment.

Limitations
AI applications are gaining significant interest in urology, but 
their real-world implementation still faces an uphill task. There 
are limitations to some studies that use AI algorithms and its 
subsets in urological diseases. The key challenges that can be 
addressed before being integrated into the clinical setting are the 
incorporation of standardized criteria, the correction for system 
variation, and the data collection from multiple institutions in 
various geographical locations, so that the results can be gener-
alized and applied to the real-world scenario.[49]

Future Considerations
The President of the World Economic Forum, Klaus Schwabe, 
made the following announcements at the Davos Summit just a 
few years ago: “We stand on the brink of a technological revo-
lution that will fundamentally alter the way we live, work, and 
relate to one another. In its scale, scope, and complexity, the 
transformation will be unlike anything human kind has experi-
enced before”.[50]

Future work will concentrate on creating larger medical data-
bases and expanding AI techniques further. The use of enhanced 
algorithms will take place on smartphones or can be accessed 
through the cloud. Applications for clinical decision-making 
and its use in the real world require appropriate permissions 
from the regulatory bodies. Issues exist concerning the reliabil-
ity of a machine diagnosis and that prejudices of programming 
do not create hindrances in the diagnosis. 

Conclusion

In the near future, we will see a shift in the clinical paradigm 
as AI applications will find their place in the guidelines and 
revolutionize the decision-making process. Having said that, 
human qualities of intelligence, adaptation, and sense of duty 
will prove to be important factors in further development of AI.
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