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Abstract

A typical approach to the joint analysis of two high-dimensional datasets is to decompose each 

data matrix into three parts: a low-rank common matrix that captures the shared information across 

datasets, a low-rank distinctive matrix that characterizes the individual information within a single 

dataset, and an additive noise matrix. Existing decomposition methods often focus on the 

orthogonality between the common and distinctive matrices, but inadequately consider the more 

necessary orthogonal relationship between the two distinctive matrices. The latter guarantees that 

no more shared information is extractable from the distinctive matrices. We propose 

decomposition-based canonical correlation analysis (D-CCA), a novel decomposition method that 

defines the common and distinctive matrices from the ℒ2 space of random variables rather than 

the conventionally used Euclidean space, with a careful construction of the orthogonal relationship 

between distinctive matrices. D-CCA represents a natural generalization of the traditional 

canonical correlation analysis. The proposed estimators of common and distinctive matrices are 

shown to be consistent and have reasonably better performance than some state-of-the-art methods 

in both simulated data and the real data analysis of breast cancer data obtained from The Cancer 

Genome Atlas.

Keywords
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1 Introduction

Many large biomedical studies have collected high-dimensional genetic and/or imaging data 

and associated data (e.g., clinical data) from increasingly large cohorts to delineate the 

complex genetic and environmental contributors to many diseases, such as cancer and 

Alzheimer’s disease. For example, The Cancer Genome Atlas (TCGA; Koboldt et al., 2012) 

project collected human tumor specimens and derived different types of large-scale genomic 

data such as mRNA expression and DNA methylation to enhance the understanding of 
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cancer biology and therapy. The Human Connectome Project (Van Essen et al., 2013) 

acquired imaging datasets from multiple modalities (HARDI, R-fMRI, T-fMRI, MEG) 

across a large cohort to build a “network map” (connectome) of the anatomical and 

functional connectivity within the healthy human brain. These cross-platform datasets share 

some common information, but individually contain distinctive patterns. Disentangling the 

underlying common and distinctive patterns is critically important for facilitating the 

integrative and discriminative analysis of these cross-platform datasets (van der Kloet et al., 

2016; Smilde et al., 2017).

Throughout this paper, we focus on disentangling the common and distinctive patterns of 

two high-dimensional datasets written as matrices Yk ∈ ℝpk × n for k = 1, 2 on a common set 

of n objects, where each of the pk rows corresponds to a mean-zero variable. A popular 

approach to such an analysis is to decompose each data matrix into three parts:

Yk = Ck + Dk + Ek for k = 1, 2, (1)

where Ck’s are low-rank “common” matrices that capture the shared structure between 

datasets, Dk’s are low-rank “distinctive” matrices that capture the individual structure within 

each dataset, and Ek’s are additive noise matrices. Model (1) has been widely used in 

genomics (Lock et al., 2013; O’Connell and Lock, 2016), metabolomics (Kuligowski et al., 

2015), and neuroscience (Yu et al., 2017), among other areas of research. Ideally, the 

common and distinctive matrices should provide different “views” for each individual 

dataset, while borrowing information from the other. A fundamental question for model (1) 

is how to decompose Yk’s into the common and distinctive matrices within each dataset and 

across datasets.

Most decomposition methods for model (1) are based on the Euclidean space (ℝn, ·) 

endowed with the dot product. Such methods include JIVE (Lock et al., 2013), angle-based 

JIVE (AJIVE; Feng et al., 2018), OnPLS (Trygg, 2002; Löfstedt and Trygg, 2011), COBE 

(Zhou et al., 2016), and DISCO-SCA (Schouteden et al., 2014). A common characteristic 

among all these methods is to enforce the row-space orthogonality between the common and 

distinctive matrices within each dataset, that is, CkDk
⊺ = 0 for k =1, 2. With the exception of 

OnPLS, these methods impose additional orthogonality across the datasets, that is, CkDℓ
⊺ = 0

for all k and ℓ. A potential issue associated with these methods is that they inadequately 

consider the more desired orthogonality between the distinctive matrices D1 and D2, which 

guarantees that no common structure is retained therein. Specifically, the first four methods 

do not impose any orthogonality constraint between D1 and D2. Although DISCO-SCA and 

a modified JIVE (O’Connell and Lock (2016); denoted as R.JIVE) have considered the row-

space orthogonality between the distinctive matrices, it may be incompatible with their 

orthogonal condition that CkDℓ
⊺ = 0 for all k, ℓ = 1, 2 even as p1 = p2 = 1.

Rather than the conventionally used Euclidean space (ℝn, ·), the aim of this paper is to 

develop a new decomposition method for model (1) based on the inner product space (ℒ0
2, 

cov), which is the vector space composed of all zero-mean and finite-variance real-valued 
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random variables and endowed with the covariance operator as the inner product. 

Specifically, model (1) is a sample-matrix version of the prototype given by

yk = ck + dk + ek ∈ ℝpk for k = 1, 2 . (2)

The Euclidean space (ℝn, ·) is hence not an appropriate space for defining the common 

matrices Ck’s and the distinctive matrices Dk’s, because two uncorrelated non-constant 

random variables will almost never have zero sample correlation, i.e., the orthogonality in 

(ℝn, ·). The matrices {Ck, Dk}k = 1
2  defined by the aforementioned methods based on (ℝn, ·) 

are, in fact, estimators of the counterparts defined through model (2) on (ℒ0
2, cov). Instead, 

for model (2), we introduce a common-space constraint for the common vectors {ck}k = 1
2 , an 

orthogonal-space constraint for the distinctive vectors {dk}k = 1
2 , and a parsimonious-

representation constraint for the signal vectors xk := yk – ek, k = 1, 2 as follows:

span(c1
⊺) = span(c2

⊺), (3)

span(d1
⊺) ⊥ span(d2

⊺), (4)

span((x1
⊺, x2

⊺)) = span((c1
⊺, c2

⊺, d1
⊺, d2

⊺)), (5)

where span(v⊺) = span({vj}j = 1
p ) = ∑j = 1

p ajvj: ∀aj ∈ ℝ  is the vector space spanned by 

entries of any random vector υ = (υ1, …, υp)⊤, and ⊥ denotes the orthogonality between 

two subspaces and/or random variables in (ℒ0
2, cov). The orthogonal relationship between 

distinctive matrices D1 and D2 is now described by (4).

To illustrate the advantage of our proposed constraints over those imposed by the six 

existing methods mentioned above, we consider a toy example based on model (2) with p1 = 

p2 = 1. Suppose z1 and z2 are two standardized signal random variables with the same 

distribution and corr(z1, z2) ϵ (0, 1), i.e., their angle on (ℒ0
2, cov), denoted as θ, in (0, π/2) 

(see Figure 1). We want to decompose them as zk = ck + dk for k = 1, 2. The constraints of 

JIVE, AJIVE, OnPLS, and COBE translated into space (ℒ0
2, cov) do not guarantee d1 ⊥ d2, 

i.e., corr(d1, d2) = 0. DISCO-SCA and R.JIVE impose d1 ⊥ d2 and cj ⊥ dk for all j, k = 1, 2. 

Restrict span({z1, z2}) = span({ck, dk}k = 1
2 ) as in our (5) to avoid the signal space being 

represented by a higher dimensional space. Then their orthogonal constraints result in either 

(i) d1 = d2 = 0 or (ii) that only one of d1 and d2 is a zero constant, since a two-dimensional 

space does not tolerate three nonzero orthogonal elements. Scenario (i) indicates z1 = c1 ≠ z2 

= c2 and fails to reveal the distinctive patterns of z1 and z2. Scenario (ii) implies unequal 

distributions of d1 and d2, which contradicts the symmetry of z1 and z2 about 0.5(z1 + z2). 

However, our proposed constraints and developed method will achieve the desirable 

decomposition shown in Figure 1, where d1 ⊥ d2, c1 = c2 = c ∝ 0.5(z1 + z2), and moreover, 

∥c∥ indicates the extent of 1/θ or corr(z1, z2).
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Motivated by the toy example above, we introduce a novel method, decomposition-based 

canonical correlation analysis (D-CCA), which generalizes the classical canonical 

correlation analysis (CCA; Hotelling, 1936) by further separating common vectors {ck}k = 1
2

and distinctive vectors {dk}k = 1
2  between signal vectors {xk}k = 1

2  subject to constraints 

(3)-(5). In contrast, classical CCA only seeks the association between two random vectors 

by sequentially determining the mutually orthogonal pairs of canonical variables that have 

maximal correlations between the vector spaces respectively spanned by entries of the two 

random vectors. Another related but different method, the sparse CCA (Chen et al., 2013; 

Gao et al., 2015, 2017), focuses on the sparse linear combinations of original variables for 

representing canonical variables with improved interpretability, which is neither required nor 

pursued by our D-CCA.

The “low-rank plus noise” model yk = xk + ek for each single k can be naturally formulated 

by a factor model as yk = Bkfk + ek, where the latent factor fk
⊺ is an orthonormal basis of 

span(xk
⊺) with Bk being the coefficient matrix. In factor model analysis (Bai and Ng, 2008), 

xk = Bkfk is called the “common component”, and ek the “idiosyncratic error”. These two 

terms should not be confused with our considered common vectors {ck}k = 1
2  and distinctive 

vectors {dk}k = 1
2  that are solely based on signals {xk}k = 1

2  excluding noises {ek}k = 1
2 . For 

general dynamic factor models (Forni et al., 2000), Hallin and Liška (2011) proposed a joint 

decomposition method, which divides each dataset into strongly common, weakly common, 

weakly idiosyncratic, and strongly idiosyncratic components (also see Forni et al. (2017) 

and Barigozzi et al. (2018)). Applying their method to our considered scenarios with no 

temporal dependence, and additionally assuming no correlations between signals {xk}k = 1
2 , 

and noises {ek}k = 1
2 , then for each yk, xk is the sum of strongly common and weakly 

common components, ek is the strongly idiosyncratic component, and no weakly 

idiosyncratic component exists. One may treat their strongly common and weakly common 

components as the common vector ck and the distinctive vector dk, respectively, but the 

desired orthogonality (4) is still not imposed. Especially when span(x1
⊺) ∩ span(x2

⊺) = {0}, xk is 

entirely a weakly common component, and thus the orthogonality (4) fails for the toy 

example shown in Figure 1. See Remark S.l in the supplementary material for more detailed 

discussions.

Our major contributions of this paper are as follows. The proposed D-CCA method 

appropriately decomposes each paired canonical variables of signal vectors x1 and x2 into a 

common variable and two orthogonal distinctive variables, and then collects all of them to 

form the common vector ck and the distinctive vector dk for each xk. The common matrix Ck 

and the distinctive matrix Dk are defined with columns as n realizations of ck and dk, 

respectively. Three challenging issues that arise in estimating the low-rank matrices defined 

by D-CCA are high dimensionality, the corruption of signal random vectors by unobserved 

noises, and the unknown signal covariance and cross-covariance matrices that are needed in 

CCA. To address these issues, we study the considered “low-rank plus noise” model under 

the framework of approximate factor models (Wang and Fan, 2017), and develop a novel 
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estimation approach by integrating the S-POET method for spiked covariance matrix 

estimation (Wang and Fan, 2017) and the construction of principal vectors (Björck and 

Golub, 1973). Under some mild conditions, we systematically investigate the consistency 

and convergence rates of the proposed matrix estimators under a high-dimensional setting 

with min(p1, p2) > κ0n for a positive constant κ0.

The rest of this paper is organized as follows. Section 2 introduces the D-CCA method that 

appropriately defines the common and distinctive matrices from the inner product space 

(ℒ0
2, cov). A soft-thresholding approach is then proposed for estimating the matrices defined 

by D-CCA. Section 3 is devoted to the theoretical results of the proposed matrix estimators 

under a high-dimensional setting. The performance of D-CCA and the associated estimation 

approach is compared to that of the aforementioned state-of-the-art methods through 

simulations in Section 4 and through the analysis of TCGA breast cancer data in Section 5. 

Possible future extensions of D-CCA are discussed in Section 6. All technical proofs are 

provided in the supplementary material.

Here, we introduce some notation. For a real matrix M = (Mij)1≤i≤p,1≤j≤n, the ℓ-th largest 

singular value and the ℓ-th largest eigenvalue (if p = n) are respectively denoted by σℓ(M) and 

λℓ(M), the spectral norm ∥M∥2 = σ1(M), the Frobenius norm ‖M‖F = ∑i = 1
p ∑j = 1

n Mij
2 , and 

the matrix ℒ∞ norm ‖M‖∞ = max1 ≤ i ≤ p∑j = 1
n ∣ Mij ∣. We use M[s:t,u:v], M[s:t,:] and M[:,u:v] 

to represent the submatrices (Mij)s≤i≤t,u≤j≤v, (Mij)s≤i≤t,1≤j≤n and (Mij)1≤i≤p,u≤j≤v of the p×n 
matrix M, respectively. Denote the Moore-Penrose pseudoinverse of matrix M by M†. 

Define 0p×n to be the p×n zero matrix and Ip×p to be the p×p identity matrix. Denote 

diag(M1, …, Mm) to be a block diagonal matrix with M1, …, Mm as its main diagonal 

blocks. For signal vectors xk’s, denote Σk = cov(xk), Σ12 = cov(x1, x2), rk = rank(Σk), rmin = 

min(r1, r2), rmax = max(r1, r2) and r12 = rank(Σ12). For a subspace B of a vector space A, 

denote its orthogonal complement in A by A \ B. We write a ∝ b if a is proportional to b, 

i.e., a = κb for some constant κ. Throughout the paper, our asymptotic arguments are by 

default under n → ∞. We reserve {c, cℓ}, {ck} and {Ck} for the common variables, common 

vectors and common matrices, respectively, and use other notation for constants, e.g., κ0.

2 The D-CCA Method

Suppose the columns of matrices Yk, Xk and Ek are, respectively, n independent and 

identically distributed (i.i.d.) copies of mean-zero random vectors yk, xk and ek for k = 1, 2. 

We consider the “low-rank plus noise” model for the observable random vector yk as 

follows:

yk = xk + ek = Bkfk + ek, (6)

where Bk ∈ ℝpk × rk is a real deterministic matrix, fk ∈ ℝrk is a mean-zero random vector of 

rk latent factors such that cov(fk) = Irk×rk and cov(fk, ek) = 0rk×pk, and rk is a fixed number 

independent of {n, p1, p2}. Write the model in a sample-matrix form by
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Yk = Xk + Ek + BkFk + Ek, (7)

where the columns of Fk are assumed to be i.i.d. copies of fk. We assume that the model 

given in (6) and (7) is an approximate factor model (Wang and Fan, 2017) that allows for 

correlations among entries of ek in contrast with the strict factor model (Ross, 1976) and has 

cov(yk) = BkBk
⊺ + cov(ek) be a spiked covariance matrix for which the top rk eigenvalues are 

significantly larger than the rest (i.e., signals are stronger than noises). Detailed conditions 

for consistent estimation will be given later in Assumption 1. Although approximate factor 

models are often used in econometric literature (Chamberlain and Rothschild, 1983; Bai and 

Ng, 2002; Stock and Watson, 2002; Bai, 2003) with temporal dependence on {Fk
[: , t], Ek

[: , t]} 

across t’s, we assume independence across the n samples as in Wang and Fan (2017) since 

no temporal dependence is quite natural in our motivating TCGA datasets and considered in 

the six competing methods mentioned in Section 1.

2.1 Definition of common and distinctive matrices

We define the common and distinctive matrices of two datasets based on the inner product 

space (ℒ0
2, cov). The low-rank structure of xk in (6) indicates that the dimension of span(xk

⊺)

is rk.

One natural way to construct the decomposition of Xk = Ck + Dk for k = 1, 2 is to 

decompose the signal vectors as

xk = ∑
ℓ = 1

rk
βkℓzkℓ = ck + dk ≔ ∑

ℓ = 1

L12
βkℓ

(C)cℓ + ∑
ℓ = 1

Lk
βkℓ

(D)dkℓ, (8)

subject to the constraints (3)-(5) with space dimensions L12 ≤ rmin and Lk ≤ rk, where βkℓ, 

βkℓ
(C) and βkℓ

(D) are real deterministic vectors, and random variables {zkℓ}ℓ = 1
rk , {cℓ}ℓ = 1

L12  and 

{dkℓ}ℓ = 1
Lk  are, respectively, the orthogonal basis of span(xk

⊺), span(c1
⊺) = span(c2

⊺) and span(dk
⊺). 

The desirable contraints (3)-(5) are now equivalent to

span({z1ℓ}ℓ = 1
r1 ∪ {z2ℓ}ℓ = 1

r2 ) = span({cℓ}ℓ = 1
L12 ∪ {d1ℓ}ℓ = 1

L1 ∪ {d2ℓ}ℓ = 1
L2 ),

dsu ⊥ dtv for s ≠ t or u ≠ v .
(9)

We call {cℓ}ℓ = 1
L12  the common variables of x1 and x2, and {dkℓ}ℓ = 1

Lk  the distinctive variables 

of xk. The columns of common matrix Ck are defined as the i.i.d. copies of ck, and those of 

distinctive matrix Dk are the ones of dk. The space span({cℓ}ℓ = 1
L12 ) represents the common 

structure of x1 and x2, or datasets X1 and X2, and the spaces {span({dkℓ}ℓ = 1
Lk )}k = 1

2

correspond to their distinctive structures.
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To achieve a decomposition of form (8), our D-CCA method adopts a two-step optimization 

strategy given in (10) and (11) below. The first step uses the classical CCA to recursively 

find the most correlated variables between signal spaces {span(xk
⊺)}k = 1

2
 as follows: For ℓ = 1, 

…, r12,

{z1ℓ, z2ℓ} ∈ arg max
{zk}k = 1

2
corr(z1, z2) subject to

var(zk) = 1 and zk ∈ span(xk
⊺) ∖ span({zkm}m = 1

ℓ − 1 ),
(10)

where span(xk
⊺) ∖ span({zkm}m = 1

0 ) ≔ span(xk
⊺). Variables {zkℓ}k = 1

2  are called the ℓ-th pair of 

canonical variables, and their correlation is the ℓ-th canonical correlation of x1 and x2. 

Augment {zkℓ}ℓ = 1
r12  with any (rk – r12) standardized variables to be zk = (zk1, …, zkrk)⊤ 

such that zk
⊺ is an orthonormal basis of span(xk

⊺). A detailed procedure to obtain a solution of 

{zk}k = 1
2  will be presented later after Theorem 2. An important property of these augmented 

canonical variables is the bi-orthogonality shown in the following theorem.

Theorem 1 (Bi-orthogonality). The covariance matrix of z1 and z2 is

cov(z1z2) =
Λ12 0r12 × (r2 − r12)

0(r1 − r12) × r12 0(r1 − r12) × (r2 − r12)
,

where Λ12 is a r12×r12 nonsingular diagonal matrix.

Theorem 1 implies that all correlations between span(x1
⊺) and span(x2

⊺) are confined between 

their subspaces span({z1ℓ}ℓ = 1
r12 ) and span({z2ℓ}ℓ = 1

r12 ), and moreover, span({z1ℓ, z2ℓ}) ⊥ 

span({z1m, z2m}) holds for 1 ≤ ℓ ≠ m ≤ r12. We hence only need to investigate the 

correlations within each subspace span({z1ℓ, z2ℓ}) for 1 ≤ ℓ ≤ r12. The second step of our D-

CCA defines the common variables {cℓ}ℓ = 1
r12  by

cℓ ∝ arg max
w ∈ (ℒ0

2, cov)
corr2(z1ℓ, w) + corr2(z2ℓ, w)

(11)

with the constraints

zkℓ = cℓ + dkℓ for k = 1, 2,
corr(d1ℓ, d2ℓ) = 0,
var(cℓ) increases as ρℓ ≔ corr(z1ℓ, z2ℓ) increases on [0, 1] .

(12) (13) (14)

Constraints (12) and (13) are actually the special case of (8) and (9) for two standardized 

random variables. Constraint (14) indicates that cℓ explains more variances of z1ℓ and z2ℓ 
when their correlation pℓ increases. Although ρℓ, here referring to the ℓ-th canonical 

correlation of {xk}k = 1
2 , is always positive for 1 ≤ ℓ ≤ r12, we include ρℓ = 0 to enable (11) as 
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a general optimization problem for any two standardized variables with nonnegative 

correlation. The unique solution of (11) is given by

cℓ = 1 − 1 − ρℓ
1 + ρℓ

z1ℓ + z2ℓ
2 = 1 − tan θℓ

2
z1ℓ + z2ℓ

2 , (15)

where θℓ = arccos(ρℓ) is the angle between z1ℓ and z2ℓ in (ℒ0
2, cov). More desirable than 

constraint (14), it easily follows from (15) that var(cℓ) is a continuous and strictly monotonic 

increasing function for ρℓ ϵ [0, 1]. We defer the detailed derivation of (15) to the 

supplementary material (Proposition S.2 and its proof). This solution is geometrically 

illustrated in Figure 1 with ℓ omitted in the subscriptions. Simply let dkℓ = zkℓ for r12 + 1 ≤ ℓ ≤ 

rk. The two-step optimization strategy arrives at the following decomposition of form (8): 

For k = 1, 2,

xk = ∑
ℓ = 1

rk
βkℓzkℓ = ck + dk ≔ ∑

ℓ = 1

r12
βkℓcℓ + ∑

ℓ = 1

rk
βkℓdkℓ, (16)

with βkℓ = cov(xk, zkℓ) . (17)

Constraints (3)-(5) or equivalently (9) are satisfied due to the bi-orthogonality in Theorem 1 

and the constraints in (12) and (13).

The workflow of D-CCA can be interpreted from the perspective of blind source separation 

(Comon and Jutten, 2010). Jointly for k = 1, 2, D-CCA first uses CCA to recover the input 

sources {zkℓ}ℓ = 1
rk  and the mixing channel {βkℓ}ℓ = 1

rk  that generate the output signal vector 

xk. Then by the constrained (11), D-CCA discovers the common components {cℓ}ℓ = 1
r12  and 

the distinctive components {dkℓ}ℓ = 1
rk , k = 1, 2 of the two sets of input sources {zkℓ}ℓ = 1

rk , k 

= 1, 2. Finally, D-CCA separately passes {cℓ}ℓ = 1
r12  and {dkℓ}ℓ = 1

rk  through the mixing 

channel {βkℓ}ℓ = 1
rk  to form the common vector ck and the distinctive vector dk of each k-th 

output signal vector xk. Figure 2 illustrates such interpretation of the D-CCA decomposition 

structure.

The solution to the CCA problem in (10) may not be unique even when ignoring a 

simultaneous sign change, but all solutions yield the same ck and dk as shown in the 

following theorem.

Theorem 2 (Uniqueness). All solutions to the problem in (10) for canonical variables 

{z1ℓ, z2ℓ}ℓ = 1
r12  give the same ck and dk defined in (16).

We now present a procedure to obtain the augmented canonical variables {z1, z2}. For k = 1, 

2, let a singular value decomposition (SVD) of Σk be Σk = VkΛkVk
⊺, where Λk = diag(σ1 
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(Σk), …, σrk(Σk)) and Vk is a pk×rk matrix with orthonormal columns. Let zk
∗ = Λk

−1/2Vk
⊺xk, 

then we have cov(zk
∗) = Irk × rk. Define

Θ = cov(z1
∗, z2

∗) = Λ1
−1/2V1

⊺Σ12V2Λ2
−1/2 .

The rank of Θ is also r12. Denote a full SVD of Θ by Θ = Uθ1ΛθUθ2
⊺ , where Uθ1 and Uθ2 are 

two orthogonal matrices, and Λθ is a r1 × r2 rectangular diagonal matrix for which the main 

diagonal is (σ1(Θ), …, σr12 (Θ), 01×(rmin–r12)). We then define

zk = Uθk
⊺ zk

∗ = Γk
⊺xk with Γk ≔ VkΛk

−1/2Uθk, (18)

which satisfies cov(zk) = Irk×rk and corr(z1, z2) = Λθ. Note that σℓ(Θ) = ρℓ for ℓ ≤ r12 are the 

canonical correlations between x1 and x2.

Now look back to ck = ∑ℓ = 1
r12 βkℓcℓ that is defined in (16). Plugging (17) and (15) for βkℓ 

and cℓ in the formula together with {zj}j = 1
2 , given in (18), we obtain

ck = cov(xk, zk
[1:r12])AC ∑

j = 1

2
zj

[1:r12], (19)

where AC = diag(a1, …, ar12) and aℓ = 1
2 1 −

1 − σℓ(Θ)
1 + σℓ(Θ)

1/2
 for ℓ ≤ r12. Replacing random 

vector zk = Γk
⊺xk by its sample matrix Zk := Γk

⊺Xk in the rightmost of (19) yields

Ck = cov(xk, zk
[1:r12])AC ∑

j = 1

2
zj

[1:r12, : ] . (20)

This equation is useful to our design of estimators for Ck and Dk=Xk–Ck in the next 

subsection.

2.2 Estimation of D-CCA matrices

In this subsection, we discuss the estimation of the matrices defined by D-CCA under model 

(1) for two high-dimensional datasets. For simplicity, we write the proposed estimators with 

true ranks r1, r2 and r12. In practice, we can replace those unknown true ranks by the 

estimated ranks given in Subsection 2.3 with a theoretical guarantee provided in Section 3.

Recall that Yk = Xk + Ek with k = 1, 2. Our first task is to obtain a good initial estimator, 

denoted by Xk, of Xk. Under the approximate factor model given in (6) and (7), our 

construction of Xk is inspired by the S-POET method (Wang and Fan, 2017) for spiked 

covariance matrix estimation. Let the full SVD of Yk be
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Yk = Uk1ΛykUk2
⊺ , (21)

where Uk1 and Uk2 are two orthogonal matrices and Λyk is a rectangular diagonal matrix 

with the singular values in decreasing order on its main diagonal. The matrix Xk is then 

obtained via soft-thresholding the singular values of Yk by

Xk = Uk1
[: , 1:rk]diag(σ1

S(Yk), …, σrk
S (Yk))(Uk2

[: , 1:rk])
⊺
, (22)

with σℓ
S(Yk) = max{σℓ

2(Yk) − τkpk, 0} and τk = ∑ℓ = rk + 1
pk σℓ

2(Yk)/(npk − nrk − pkrk). Let 

r k = rank(Xk). Under Assumption 1 that will be given later, it can be shown that rk = rk with 

probability tending to 1 (see the proof of Theorem 3).

We next use Xk to develop estimators for Ck in (20) and Dk=Xk–Ck. Define the estimators of 

Σk and Σ12 as Σk = n−1XkXk
⊺
 and Σ12 = n−1X1X2

⊺
, respectively. Then, based on Σk and Σ12, 

we obtain estimators Vk, Λk, Uθk = diag(Uθk
[1:r k, 1:r k]

, I(rk − r k) × (rk − r k)) and Λθ in the same 

way as their true counterparts Vk, Λk, Uθk and Λθ with a r1×r2 matrix 

Θ ≔ (Λ1
†)

1/2
V1

⊺Σ12V2(Λ2
†)

1/2
. Define Zk

∗ = (Λk
†)

1/2
Vk

⊺Xk and Zk = Uθk
⊺ Zk

∗. We have

n−1Zk
∗(Zk

∗)
⊺

= n−1Zk(Zk)⊺ = diag(Ir k × r k, 0(rk − r k) × (rk − r k)),

Θ = Uθ1ΛθUθ2
⊺ = n−1Z1

∗(Z2
∗)

⊺
and n−1Z1(Z2)⊺ = Λθ .

From Theorem 1 in Björck and Golub (1973), it follows that n−1/2Z1
[ℓ, : ]

 and n−1/2Z2
[ℓ, : ]

 for ℓ 

≤ rmin are the principal vectors of the row spaces of X1 and X2, and moreover, σℓ(Θ) ≤ 1. Let 

AC
(r) = diag(a1, …, ar) with aℓ = 1

2 1 − (
1 − σℓ(Θ)
1 + σℓ(Θ)

)
1/2

 for ℓ ≤ r 12 ≔ rank(Θ) and otherwise 

aℓ = 0. Define estimators of Ck, Dk and Xk by

Ck = n−1Xk(Zk
[1:r12, : ]

)
⊺
AC

(r12) ∑
j = 1

2
Zj

[1:r12, : ]
, (23)

Dk = Xk − n−1Xk(Zk
[1:r 12, : ]

)
⊺
AC

(r 12) ∑
j = 1

2
Zj

[1:r 12, : ]
(24)

and

Xk = Ck + Dk . (25)

Here, we substitute Xk for Xk as the estimator of Xk. The latter can be written as
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X = Ck
(r 12)

+ Dk (26)

with

Ck
(r) ≔ n−1Xk(Zk

[1:r, : ])
⊺
AC

(r) ∑
j = 1

2
Zj

[1:r, : ] . (27)

Note that Ck ≔ Ck
(r12)

. When r12 ≥ r 12, we have Ck = Ck
(r 12)

. But when r12 < r 12, Ck
(r 12)

redundantly keeps the nonzero approximated samples of the zero common variable of z1ℓ 
and z2ℓ for r12 < ℓ ≤ r 12.

Similar to the decomposition of {xk}k = 1
2  given in (16) that is built on the inner product 

space (ℒ0
2, cov), the decomposition of {Xk}k = 1

2  in (26) is constructed by an analogy of (12) 

and (15) on the ℝn space with the inner product ⟨u, υ⟩ = u⊤υ/n for any u, v ∈ ℝn. We thus 

have the appealing property D1D2
⊺ = 0p1 × p2, which corresponds to the orthogonal 

relationship between the distinctive structures given in (4).

Throughout our estimation construction, the key idea is to develop a good estimator of 

{Xk, Zk}k = 1
2 . Thus, the S-POET method (Wang and Fan, 2017) may be replaced by any 

other good approach, but with possibly different assumptions. For example, given the 

cleaned signal data Xk’s, Chen et al. (2013) and Gao et al. (2015, 2017) showed that sparse 

CCA algorithms can consistently estimate the canonical coefficient matrix Γk for Zk = Γk
⊺Xk

by imposing certain sparsity on Γk’s and that all eigenvalues of cov(xk) are bounded from 

above and below by positive constants. These two conditions are not assumed for our 

proposed method. In particular, their bounded eigenvalue condition contradicts our low-rank 

structure of signal xk that introduces the spiked covariance matrix cov(yk). The sparse CCA 

algorithms need the cleaned signal data Xk’s available beforehand. Alternatively, they may 

be directly applicable to the observable data Yk’s by assuming zero Ek’s, if the bounded 

eigenvalue condition holds for cov(yk). For the TCGA datasets in our real-data application, 

the scree plots given later in Figure 6 favorably suggest our spiked eigenvalue assumption. 

Moreover, the approximate factor model with spiked covariance structure has been widely 

used in various fields such as signal processing (Nadakuditi and Silverstein, 2010) and 

machine learning (Huang, 2017), and fits the low-rank plus noise structure considered in the 

six competing methods mentioned in Section 1. Our paper hence focuses on this spiked 

covariance model and leaves the extension to sparse CCA models for future research.

2.3 Rank selection

In practice, matrix ranks r1, r2 and r12 are usually unknown and need to be determined. 

There is a rich literature on determining rk, k ϵ {1, 2}, which is the number of latent factors 

for the high-dimensional approximate factor model. Examples of consistent estimators 

include but are not limited to Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein 

(2013). Several heuristic approaches for selecting r12, the number of nonzero canonical 
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correlations for the high-dimensional CCA, have been proposed by Song et al. (2016). In 

this paper, we apply the edge distribution (ED) method of Onatski (2010) to determine rk for 

k = 1, 2 by

rk = max{ℓ ≤ Tk:λkℓ − λk, ℓ + 1 ≥ δ}, (28)

where λkℓ is the ℓ-th eigenvalue of YkYk
⊺ /n. The upper bound is chosen as 

Tk = min(#{i ∣ λki ≥ 1
mk

∑ℓ = 1
mk λkℓ}, mk/10) with mk = min(n, pk) which is recommended by 

Ahn and Horenstein (2013), and parameter δ is calibrated as in Section IV of Onatski 

(2010). It is believed that r12 > 0 if two variables from different cleaned datasets have a 

significant nonzero correlation detected by, e.g., the normal approximation test of DiCiccio 

and Romano (2017). Otherwise, it is unnecessary to conduct the proposed matrix 

decomposition. We select the nonzero r12 by using the minimum description length 

information-theoretic criterion (MDL-IC) proposed by Song et al. (2016):

r12 = arg min
r ∈ [1, min(r1, r2)]

n ∑
l = 1

r
log(1 − sℓ

2) + r(r1 + r2 − r)log(n) , (29)

where sℓ is the ℓ-th singular value of (U12
[: , 1:r1])

⊺
U22

[: , 1:r2]
 with U12 and U22 defined in (21). 

The ranks r1, r2, and r12 determined by (28) and (29) perform well in our numerical studies.

3 Theoretical Properties of D-CCA Estimators

In this section, we establish asymptotic results for the high-dimensional D-CCA matrix 

estimators proposed in Subsection 2.2.

Assumption 1. We assume the following conditions for model given in (6) and (7).

(I) Let λk1 > … > λk,rk > λk,rk+1 ≥ … ≥ λk,pk > 0 be the eigenvalues of cov(yk). 

There exist positive constants κ1, κ2 and δ0 such that κ1 ≤ λkℓ ≤ κ2 for ℓ > rk and 
minℓ≤rk(λkℓ – λk,ℓ+1)/λkℓ ≥ δ0.

(II) Assume pk > κ0n with a constant κ0 > 0. When n → ∞, assume λk,rk → ∞, 

pk/(nλkℓ) is upper bounded for ℓ ≤ rk, λk1/λk,rk is bounded from above and 

below, and pk(log n)1/γk2 = o(λrk) with γk2 given in (V) below.

(III) The columns of Zk
(y) ≔ (Λk

(y))
−1/2

(Vk
(y))

⊺
Yk are i.i.d. copies of 

zk
(y) ≔ (Λk

(y))
−1/2

(Vk
(y))

⊺
yk, where Vk

(y)Λk
(y)(Vk

(y))
⊺
 is the full SVD of cov(yk) with 

Λk
(y) = diag(λk1, …, λk, pk). The entries of zk

(y), zk1
(y), …, zk, pk

(y)  are independent with 

E(zki
(y)) = 0, var(zki

(y)) = 1, and the sub-Gaussian norm 

supq ≥ 1q−1/2(E ∣ zki
(y) ∣ q)

1/q
≤ K with a constant K > 0 for all i ≤ pk.
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(IV) The matrix Bk
⊺Bk is a diagonal matrix, and ∣ Bk

[i, ℓ] ∣ ≤ M λkℓ/pk with a constant 

M > 0 holds for all i ≤ pk and ℓ ≤ rk.

(V) Denote ek = (ek1, …, ek,pk
)⊤ and fk = (fk1, …, fk,rk)⊤. Assume ∥ cov(ek)∥∞ < s0 

with a constant s0 > 0. For all i ≤ pk and ℓ ≤ rk, there exist positive constants γk1, 

γk2, bk1 and bk2 such that for t > 0, ℙ( ∣ eki ∣ > t) ≤ exp( − (t/bk1)γk1) and 

ℙ( ∣ fkℓ ∣ > t) ≤ exp( − (t/bk2)γk2).

Assumption 1 follows assumptions 2.1-2.3 and 4.1-4.2 of Wang and Fan (2017) which 

guarantee desirable performance of the initial signal estimators Xk’s defined in (22). The 

diverging leading eigenvalues of cov(yk) assumed in conditions (I) and (II), together with the 

approximate sparsity constraint ∥ cov(ek)∥∞ < s0 in condition (V), indicate the necessity of 

sufficiently strong signals for soft-thresholding. Although Wang and Fan (2017) considered 

p > n, it is not difficult to relax it to pk > κ0n, as given in our condition (II). A random 

variable is said to be sub-Gaussian if its sub-Gaussian norm is bounded (Vershynin, 2012). 

Condition (III) imposes the sub-Gaussianity on all entries of zk
(y) with a uniform bound. 

Simply letting fk = zk
∗ can lead to a diagonal matrix Bk

⊺Bk that is required by condition (IV). 

In condition (V), the approximately sparse constraint is imposed on cov(ek) rather than Ek. 

See Wang and Fan (2017) and also Fan et al. (2013) for more detailed discussions of the 

above assumption.

We consider the relative errors of the proposed matrix estimators in the spectral norm and 

also in the Frobenius norm. For convenience, we use ∥ · ∥(·) as general notation for one of 

these two matrix norms. Define αCκ,(·) = ∥Ck∥(·)/∥Xk∥(·) and αDκ,(·) = ∥Dk∥(·)/∥Xk∥(·).

Theorem 3. For k = 1, 2, assume Ck, Dk, Xk and Θ defined in Subsection 2.2 are constructed 

with true rk and r12. Suppose that r12 ≥ 1 and Assumption 1 hold. Define Δ = δθ
1/2 and

δθ = min 1
n + ∑

k = 1

2 pk log pk
nλ1(Σk) , 1 .

Then, we have the following relative error bounds of the matrix estimators

‖Ck − Ck‖( ⋅ )
‖Ck‖( ⋅ )

= OP
Δ

αCk, ( ⋅ ) ,
‖Dk − Dk‖( ⋅ )

‖Dk‖( ⋅ )
= OP

Δ
αDk, ( ⋅ ) ,

‖Xk − Xk‖( ⋅ )
‖Xk‖( ⋅ )

= Op(Δ),

and the error bound of canonical correlation estimators

max
1 ≤ ℓ ≤ rmin

∣ σℓ(Θ) − σℓ(Θ) ∣ = OP(δθ) .

Provided that matrix ranks r1, r2 and r12 are correctly selected, Theorem 3 shows the 

consistency of the proposed matrix estimators in the relative errors that are the norms of 
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estimation errors divided by the norms of true matrices, with associated convergence rates. 

The ratios αCκ,(·) and αDκ,(·) in the convergence rates of Ck and Dk can be removed if the 

relative errors are instead scaled by the norms of the signal matrices.

Although the ED estimators of r1 and r2 given in (28) are consistent under some mild 

conditions (Onatski, 2010), the consistency of the MDL-IC estimator in (29) for r12 is still 

unclear. However, the following corollary indicates the robustness of our proposed matrix 

estimators given in (23) and (25) when r12 is misspecified but r1 and r2 are appropriately 

selected.

Corollary 1. For k = 1, 2, assume Ck
(r)

, Dk and Θ defined in Subsection 2.2 are constructed 

with the unknown rk replaced by an estimator rk satisfying rk
P rk. Define Xk

(r) = Xk
(r) + Dk

with min(r12, r 12) ≤ r ≤ rmin, and σℓ(Θ) = 0 for ℓ > min(r1, r2). Suppose that r12 ≥ 1 and 

Assumption 1 hold. Then, with Δ and δθ defined in Theorem 3, we have

‖Ck
(r) − Ck‖( ⋅ )
‖Ck‖( ⋅ )

= OP
Δ

αCk, ( ⋅ ) ,
‖Dk − Dk‖( ⋅ )

‖Dk‖( ⋅ )
= OP

Δ
αDk, ( ⋅ ) ,

‖Xk
(r) − Xk‖( ⋅ )
‖Xk‖( ⋅ )

= OP(Δ), and max
1 ≤ ℓ ≤ rmin

∣ σℓ(Θ) − σℓ(Θ) ∣ = OP(δθ) .

Corollary 1 provides an acceptable range, [min(r12, r 12), rmin], for the choice of r12 when r1 

and r2 are consistently estimated, which can theoretically lead to the same convergence rates 

(up to a constant factor) as those in Theorem 3. Note that the distinctive matrices Dk’s are 

independent of r12.

4 Simulation Studies

We consider the following three simulation setups to evaluate the finite sample performance 

of the proposed D-CCA estimators comparing with the six competing methods mentioned in 

Section 1 and also the decomposition of Hallin and Liška (2011) (denoted as GDFM).

• Setup 1: Let x1 =d x2, with r1 = 3, r12 = 1, and λℓ(Σ1) = 500 – 200(ℓ – 1) for ℓ ≤ 3. 

Set zk1, zk2, zk3 ~
i . i . d .

N(0, 1) for each k = 1, 2. Randomly generate V1 with 

orthonormal columns, which is the same for all replications. Let xk = V1Λ1
1/2zk. 

Generate eki, k ≤ 2, i ≤ pk ~
i . i . d .

N(0, σe2) that are independent of {xk}k = 1
2 . Vary 

dimension p1 from 100 to 1,500, the first canonical angle θ1 = arccos(ρ1) from 

0° to 75° with ρ1 = corr(z11, z21), and the noise variance σe2 from 0.01 to 16.

• Setup 2: Use the same settings for x1 and {ek}k = 1
2  as in Setup 1. For x2, fix p2 = 

300, and set r2 = 5 and λℓ(Σ2) = 500 – 100(ℓ – 1) for ℓ ≤ 5. Simulate x2 = V2Λ2
1/2z2
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with z21, …, z25 ~
i . i . d .

N(0, 1) and a randomly generated V2 that is the same for all 

replications. Let r12 = 1. Vary p1, θ1 and σe2 according to Setup 1.

• Setup 3 is for visual purposes: Fix p1 = 3p2 = 900, θ1 = 45°, and σe2 = 1. Generate 

two independent variables υ1 and υ2 such that v1~Unif({0, ± 1/ 2, ± 2}) and υ2 

~ N(0, 1). Let z11 = [v1 + v2tan(θ1/2)]/ 1 + tan2(θ1/2) and 

z21 = [v1 − v2tan(θ1/2)]/ 1 + tan2(θ1/2). Set Vk
[: , 1] = 1

pk
(1, 1, …, 1)⊺ and randomly 

generate Vk
[: , 2:rk]

 for k = 1, 2. The other settings are the same as those in Setup 

2.

We fixed the sample size n = 300 and conducted 1,000 replications for Setups 1 and 2. Setup 

3 is only used for the purpose of visually comparing D-CCA with the seven other methods. 

Setup 3 is similar to Setup 2, but it has the common variable of the first pair of canonical 

variables following a discrete uniform distribution instead of a Gaussian distribution. We ran 

a single replication of Setup 3 for the visual comparison in Figure 5. To determine the ranks 

r1, r2, and r12, we respectively used the ED method given in (28) and the MDL-IC method in 

(29). Additional simulations with AR(1) matrices for {cov(ek)}k = 1
2  are given in the 

supplementary material (Section S.2).

The results obtained by D-CCA for Setups 1 and 2 are summarized in Figures 3 and 4 and 

Table 1. The first rows of the two figures show the average relative errors (AREs) for θ1 = 

45°, σe2 = 1 and varying p1; the second rows are for p1 = 900, σe2 = 1 and varying θ1; and the 

third rows are for p1 = 900, θ1 = 45° and varying σe2. Both figures reveal that the curves 

based on the estimated ranks almost overlap with those based on the true ranks. The ranks 

are selected with very high accuracy (>99.7%).

Consider Figure 3 of Setup 1 as an example. We have nearly identical plots for the two 

datasets that are generated from the same distribution. From the first row, where all 

considered cases have almost the same set of average ratios {αCk,(·), αDk,(·)}, all the AREs 

become bigger as the dimension p1 increases. For the second row, the increasing canonical 

angle θ1 results in a change in the average ratios αCk,2 from 0.997 down to 0.18 and in αck,F 

from 0.74 down to 0.14; αDk,2 is stable around 0.78 for the first 5 values of θ1 and then 

increases to 0.87 at θ1 = 75°; and αDk,F changes from 0.67 to 0.93. Meanwhile, this leads to 

increasing AREs of Ck and decreasing AREs of Dk, but does not affect the AREs of Xk. The 

third row shows that all the AREs increase as the noise variance σe2 becomes bigger. Note 

that increasing σe2 is equivalent to decreasing the eigenvalues of Σk by scaling σe2 to 1. These 

results agree with the influence of p1, α and λ1(Σk) on the convergence rates given in 

Theorem 3.

For Setup 2, with similar arguments, we find a similar pattern of estimation performance for 

D-CCA, as shown in the second and third rows and the plots of the first dataset in the first 

row of Figure 4. For the first row of Figure 4, the considered cases of the second dataset 

have a fixed dimension p2 and stable ratios {αC2,(·), αD2,(·)}. The corresponding AREs are 
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still acceptable and interestingly are not much impacted by the change in the dimension p1 

of the first dataset. From Table 1, we see that the estimated canonical angles and correlations 

perform well for Setups 1 and 2 even in the presence of strong noise levels.

The comparison of D-CCA and the seven other methods is shown in Tables 2 and 3, and 

Figure 5. First consider these methods other than GDFM (Hallin and Liška, 2011). Table 2 

reports the results for Setups 1 and 2 when we set p1 = 900, θ1 = 45° (i.e., ρ1 = 0.707), and 

σe2 = 1. All methods except OnPLS have comparably good performance for the estimation of 

signal matrices. As expected, D-CCA outperforms all the six competing methods in terms of 

estimating the common and distinctive matrices. In particular, AJIVE and COBE are unable 

to discover the common matrices. Figure 5 visually shows a similar comparison based on a 

single replication of Setup 3. The signal, common, and distinctive matrices are recovered 

well by the D-CCA method. In contrast, the common matrix estimators estimated from the 

six state-of-the-art methods significantly differ from the ground truth. AJIVE and COBE 

still yield zero matrices as the estimators of the common matrices, which appears not 

reasonable when the first canonical correlation ρ1 has a high value of 0.707. Table 3 shows 

the proportion of significant nonzero correlations among the p1×p2 pairs of variables 

between d1 and d2 that were detected by the normal approximation test (DiCiccio and 

Romano, 2017) using each method’s estimates of D1 and D2. The procedure of Benjamini 

and Hochberg (1995) was applied to the multiple tests to control false discovery rate at 0.05. 

Results are omitted for AJIVE and COBE with Ck = 0, and also for D-CCA and R.JIVE due 

to zero correlation estimates by D1D2
⊺ = 0. All the other methods have a large amount of 

significant nonzero correlations retained between their distinctive structures.

Now consider the GDFM method (Hallin and Liška, 2011). We set the sample temporal 

cross-covariances to be zero in GDFM estimation for our simulated data and TCGA datasets 

that have no temporal dependence. GDFM decomposes each data matrix by 

Yk = χk
∗ + ξk

∗ = (ϕk + ψk) + (νk + ξk
∗) = χk + ξk with each component’s name shown in Table 

6. By Remark S.1 (in the supplementary material), theoretically for our simulated i.i.d. data 

with no correlations between signals and noises, the weakly idiosyncratic matrix νk is zero, 

and the joint common matrix χk
∗ and the marginal common matrix χk are both equal to the 

signal matrix Xk. Moreover, the strongly common matrix ϕk is zero, when 

span(x1
⊺) ∩ span(x2

⊺) = {0}, i.e., the first canonical correlation ρ1 between x1 and x2 is smaller 

than 1. The above theoretical results are evidenced by our simulations. In Table 2, the 

relative errors of estimators χk
∗ and χk to signal Xk are as comparably small as those of Xk

by our D-CCA and the other five well performed methods. The similarly small norm ratios 

of νk to χk
∗ numerically support νk = 0. The squares of these quantities are much smaller, 

and especially in the Frobenius norm are equivalent to matrix-variation ratios. The strongly 

common matrix estimate ϕk is zero for the setups, with ρ1 = 0.707 < 1, considered in the 

table. These numerical evidences are more clearly seen in Figure 5(b) under a similar setup.
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5 Analysis of TCGA Breast Cancer Data

In this section, we apply the proposed D-CCA method to analyze genomic datasets produced 

from TCGA breast cancer tumor samples. We investigate the ability to separate tumor 

subtypes for matrices obtained from D-CCA in comparison to those obtained from the six 

competing methods as well as GDFM that are mentioned in Section 1. We consider the 

mRNA expression data and DNA methylation data for a common set of 660 samples. The 

two datasets are publicly available at https://tcga-data.nci.nih.gov/docs/publications and have 

been respectively preprocessed by Ciriello et al. (2015) and Koboldt et al. (2012). The 660 

samples were classified by Ciriello et al. (2015) into 4 subtypes using the PAM50 model 

(Parker et al., 2009) based on mRNA expression data. Specifically, the samples consist of 

112 basal-like, 55 HER2-enriched, 331 luminal A, and 162 luminal B tumors.

To quantify the extent of subtype separation, we adopt the standardized within-class sum of 

squares (SWISS; Cabanski et al., 2010)

SWISS(A) =
∑i = 1

p ∑j = 1
n (Aij − A‒i, s(j))

2

∑i = 1
p ∑j = 1

n (Aij − A‒i . )2

for matrix A = (Aij)p×n, where A‒i, s(j) is the average of the j-th sample’s subtype on the i-th 

row and A‒i. is the average of the i-th row’s elements. The SWISS score represents the 

variation within the subtypes as a proportion of the total variation. A lower score indicates 

better subtype separation. For the mRNA expression data, we filtered out the subset 

consisting of the 1,195 variably expressed genes with marginal SWISS≤0.9 from the original 

20,533 genes, and denote this subset as EXP90. The 2,083 variably methylated probes of the 

DNA methylation data, originally with 21,986 probes, are included in the analysis. We 

denote the 881 probes with marginal SWISS≤0.9 as METH90b and the remaining 1,202 

probes as METH90a. We conducted the analysis for the pair of EXP90 and METH90b as 

well as the pair of EXP90 and METH90a.

The ranks and proportions of explained signal variation for the matrix estimators obtained 

by D-CCA and the six competing methods (except GDFM) are given in Table 4, and their 

SWISS scores are shown in Table 5. We see in Table 4 that D-CCA, AJIVE and COBE give 

much lower ranks for the estimated signal matrices {Xk}k = 1
2  than the other methods. 

Particularly for the EXP90 dataset, the rank of X1 obtained by the remaining four methods is 

inconsistent for the two pairs. As shown in the scree plots of Figure 6, the ranks of signal 

matrices selected by D-CCA and AJIVE look reasonable because the few most leading 

principal components of the observed data are captured for denoising, while the signal 

matrix ranks for the METH90b and METH90a datasets seem to be underestimated by 

COBE. Using D-CCA, the estimated canonical correlations and angles of signal vectors are 

(0.934, 0.431) and (20.9°, 64.4°) between the EXP90 and METH90b datasets, and are 

(0.610, 0.275) and (52.4°, 74.0°) between the EXP90 and METH90a datasets.
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From Table 5, for the pair of EXP90 and METH90b datasets, the matrix Xk obtained by all 

the seven methods gains an improved SWISS score compared to the noisy data matrix Yk. 

Other than AJIVE and COBE with Ck = 0, a clear pattern of increasing SWISS scores, from 

Ck to Xk and then to Dk, can be seen for the remaining methods except JIVE. This indicates 

that an enhanced ability to separate the tumor samples by subtype can be expected when 

integrating two datasets that can exhibit such a distinction to a moderate extent. Also note 

that the estimated common matrices of our D-CCA have the lowest SWISS scores. While 

considering the pair of EXP90 and METH90a datasets, for all the seven methods we find a 

big gap between the SWISS scores of the two estimated signal matrices, and that the 

denoised matrix of the METH90a dataset still has nearly no discriminative power with 

SWISS close to 1. The ability on subtype separation seems more likely to be a distinctive 

feature of EXP90 dataset comparing to METH90a dataset. The estimated distinctive matrix 

of EXP90 is thus expected to have a lower SWISS score than its estimated common matrix. 

However, only D-CCA meets this point, except that AJIVE and COBE yield zero common 

matrices. The failure of the six competing methods may be caused by their inappropriate 

decomposition constructions, which are mentioned in Section 1. In particular, from Table 3, 

we see that a lot of significant nonzero correlations exist among all gene-probe pairs based 

on the estimated distinctive matrices, respectively, obtained by JIVE, OnPLS and DISCO-

SCA.

The GDFM method (Hallin and Liška, 2011) was also applied to the TCGA datasets. Table 

6 summarizes the results of GDFM matrix estimates. As estimators of signal matrix Xk, 

matrix χk has comparable rank and SWISS score as those of our D-CCA estimator Xk given 

in Tables 4 and 5. Besides, χk
∗ = χk, i.e., νk = 0, is numerically suggested by the remarkably 

small variation ratios of νk to χk
∗ that are likely just induced by estimation errors. With very 

large ranks and uninformative SWISS scores, both ξ k
∗ and ξ k appear to be noises. One may 

let Ck = ϕk, Dk = ψk (or Dk = ψk + νk), and Xk = χk (or Xk = χk
∗) for GDFM. Inspecting 

Table 6 reveals that the discussion given in the preceding paragraph also holds even when 

we include GDFM.

6 Discussion

In this paper, we study a typical model for the joint analysis of two high-dimensional 

datasets. We develop a novel and promising decomposition-based CCA method, D-CCA, to 

appropriately define the common and distinctive matrices. In particular, the conventionally 

underemphasized orthogonal relationship between the distinctive matrices is now well 

designed on the ℒ2 space of random variables. A soft-thresholding-based approach is then 

proposed for estimating these D-CCA-defined matrices with a theoretical guarantee and 

satisfactory numerical performance. The proposed D-CCA outperforms some state-of-the-art 

methods in both simulated and real data analyses.

There are many possible further studies beyond the current proposed D-CCA. The first is to 

generalize the D-CCA for three or more datasets. We may assume that at least two datasets 

have mutually orthogonal distinctive structures. An immediate idea starts from substituting 
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the multiset CCA (Kettenring, 1971) for the two-set CCA in D-CCA. However, the 

challenge is that the iteratively obtained sets of canonical variables are not guaranteed to 

have the bi-orthogonality given in Theorem 1. Hence, we cannot follow the proposed D-

CCA to simply break down the decomposition problem to each set of canonical variables, 

and need a more sophisticated design to meet the desirable constraint. Another direction is to 

incorporate the nonlinear relationship between the two datasets. The D-CCA only considers 

the linear relationship by using the traditional CCA based on Pearson’s correlation. It is 

worth trying the kernel CCA (Fukumizu et al., 2007) or the distance correlation (Székely et 

al., 2007) to capture the nonlinear dependence. Inspired by the time series analysis of Hallin 

and Lišska (2011) and Barigozzi et al. (2018), we also expect to generalize D-CCA to 

general dynamic factor models with comparisons to their methods. These interesting and 

challenging studies are under investigation and will be reported in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The geometry of D-CCA for two standardized random variables.
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Figure 2: 
The decomposition structure of D-CCA.
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Figure 3: 
Average relative errors of D-CCA estimates under Setup 1 in spectral norm (○) and 

Frobenius norm (△) using true r1, r2 and r12, and those in spectral norm (●) and Frobenius 

norm (▴) using r1, r2 and r12.
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Figure 4: 
Average relative errors of D-CCA estimates under Setup 2 in spectral norm (○) and 

Frobenius norm (▵) using true r1, r2 and r12, and those in spectral norm (●) and Frobenius 

norm (▴) using r1, r2 and r12.
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Figure 5: 
Color maps for a single replication of Setup 3.
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Figure 6: 

The scree plot of the sample covariance matrix 1
nYkYk

⊺ for each TCGA dataset.
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Table 1:

Averages (standard errors) of D-CCA estimates for the first canonical angle/correlation.

(p1, σe2) θ1 = 0°/ρ1 = 1 θ1 = 45°/ρ1 = 0.707 θ1 = 60°/ρ1 = 0.5 θ1 = 75°/ρ1 = 0.259

Setup 1

(100, 1) 3.59°(0.21°)/0.998(0.000) 44.7°(2.38°)/0.710(0.029) 59.3°(2.88°)/0.509(0.043) 73.5°(3.06°)/0.284(0.051)

(600, 1) 3.61°(0.21°)/0.998(0.000) 44.7°(2.39°)/0.710(0.029) 59.4°(2.89°)/0.509(0.043) 73.5°(3.07°)/0.284(0.051)

(900, 1) 3.61°(0.21°)/0.998(0.000) 44.7°(2.39°)/0.710(0.029) 59.4°(2.90°)/0.509(0.043) 73.5°(3.09°)/0.283(0.052)

(l500, 1) 3.61°(0.21°)/0.998(0.000) 44.7°(2.39°)/0.710(0.029) 59.3°(2.89°)/0.509(0.043) 73.5°(3.08°)/0.284(0.051)

(900, 0.01) 0.36°(0.02°)/1.000(0.000) 44.6°(2.38°)/0.711(0.025) 59.3°(2.89°)/0.508(0.038) 73.5°(3.08°)/0.280(0.046)

(900, 1) 3.61°(0.21°)/0.998(0.000) 44.7°(2.39°)/0.709(0.026) 59.4°(2.90°)/0.507(0.038) 73.5°(3.09°)/0.280(0.046)

(900, 9) 11.0°(0.66°)/0.992(0.001) 45.6°(2.43°)/0.705(0.026) 59.9°(2.92°)/0.504(0.039) 73.7°(3.08°)/0.279(0.046)

(900, 16) 14.9°(0.91°)/0.966(0.004) 46.4°(2.47°)/0.688(0.028) 60.4°(2.93°)/0.492(0.040) 73.9°(3.06°)/0.273(0.047)

Setup 2

(100, 1) 3.58°(0.21°)/0.998(0.000) 44.5°(2.36°)/0.712(0.029) 59.0°(2.83°)/0.514(0.042) 72.7°(2.90°)/0.296(0.048)

(600, 1) 3.59°(0.21°)/0.998(0.000) 44.5°(2.36°)/0.712(0.029) 59.0°(2.83°)/0.514(0.042) 72.7°(2.89°)/0.297(0.048)

(900, 1) 3.60°(0.21°)/0.998(0.000) 44.5°(2.37°)/0.712(0.029) 59.0°(2.84°)/0.514(0.043) 72.7°(2.90°)/0.296(0.048)

(1500, 1) 3.60°(0.21°)/0.998(0.000) 44.5°(2.36°)/0.712(0.029) 59.0°(2.82°)/0.514(0.042) 72.7°(2.89°)/0.296(0.048)

(900, 0.01) 0.36°(0.02°)/1.000(0.000) 44.4°(2.35°)/0.714(0.029) 59.0°(2.82°)/0.515(0.042) 72.7°(2.89°)/0.297(0.048)

(900, 1) 3.60°(0.21°)/0.998(0.000) 44.5°(2.37°)/0.712(0.029) 59.0°(2.84°)/0.514(0.043) 72.7°(2.90°)/0.296(0.048)

(900, 9) 10.9°(0.64°)/0.982(0.002) 45.4°(2.41°)/0.701(0.030) 59.6°(2.87°)/0.506(0.043) 73.0°(2.93°)/0.292(0.049)

(900,16) 14.6°(0.87°)/0.967(0.004) 46.3°(2.45°)/0.691(0.031) 60.0°(2.89°)/0.499(0.044) 73.2°(2.93°)/0.289(0.049)
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Table 2:

Averages (standard errors) of norm ratios when p1 = 900, θ1 = 45° and σe2 = 1.

Ratio Method Spectral norm Frobenius norm Spectral norm Frobenius norm

Setup 1 Setup 2

k = 1 / k = 2 k = 1 / k = 2 k = 1 / k = 2 k = 1 / k = 2

‖Xk − Xk‖( ⋅ )
‖Xk‖( ⋅ )

D-CCA 0.088(0.010)/
0.088(0.010)

0.120(0.006)/
0.120(0.006)

0.097(0.012)/
0.087(0.017)

0.125(0.007)/
0.093(0.006)

JIVE 0.108(0.005)/
0.109(0.005)

0.141(0.004)/
0.141(0.004)

0.116(0.005)/
0.067(0.004)

0.145(0.004)/
0.090(0.002)

R.JIVE 0.109(0.018)/
0.089(0.015)

0.139(0.013)/
0.140(0.009)

0.108(0.018)/
0.102(0.026)

0.139(0.012)/
0.105(0.011)

AJIVE 0.080(0.004)/
0.081(0.004)

0.116(0.003)/
0.116(0.004)

0.081(0.004)/
0.051(0.002)

0.116(0.003)/
0.082(0.002)

OnPLS 0.390(0.111)/
0.399(0.112)

0.315(0.076)/
0.321(0.077)

0.397(0.111)/
0.550(0.116)

0.320(0.077)/
0.331(0.064)

DISCO-SCA 0.083(0.003)/
0.083(0.004)

0.154(0.004)/
0.154(0.005)

0.084(0.004)/
0.053(0.002)

0.174(0.005)/
0.093(0.002)

COBE 0.080(0.004)/
0.081(0.004)

0.116(0.003)/
0.116(0.004)

0.081(0.004)/
0.051(0.002)

0.116(0.003)/
0.082(0.002)

‖Ck − Ck‖( ⋅ )
‖Ck‖( ⋅ )

D-CCA 0.117(0.028)/
0.120(0.027)

0.134(0.028)/
0.136(0.027)

0.123(0.028)/
0.133(0.036)

0.143(0.029)/
0.153(0.038)

JIVE 0.996(0.009)/
0.996(0.008)

1.024(0.014)/
1.024(0.013)

0.998(0.009)/
0.990(0.015)

1.037(0.025)/
1.013(0.019)

R.JIVE 1.000(0.043)/
0.576(0.032)

1.003(0.043)/
0.588(0.031)

1.003(0.049)/
0.576(0.041)

1.006(0.052)/
0.589(0.042)

AJIVE 1(0)/1(0) 1(0)/1(0) 1(0)/1(0) 1(0)/1(0)

OnPLS 0.787(0.112)/
0.777(0.113)

0.817(0.143)/
0.805(0.142)

0.779(0.105)/
0.796(0.071)

0.804(0.117)/
0.815(0.098)

DISCO-SCA 1.023(0.065)/
1.023(0.066)

1.057(0.087)/
1.058(0.089)

0.772(0.183)/
1.052(0.112)

0.826(0.227)/
1.190(0.237)

COBE 1(0)/1(0) 1(0)/1(0) 1(0)/1(0) 1(0)/1(0)

‖Dk − Dk‖( ⋅ )
‖Dk‖( ⋅ )

D-CCA 0.121(0.016)/
0.122(0.016)

0.148(0.010)/
0.149(0.009)

0.133(0.018)/
0.112(0.019)

0.156(0.011)/
0.113(0.009)

JIVE 0.703(0.040)/
0.703(0.040)

0.541(0.023)/
0.541(0.023)

0.704(0.040)/
0.599(0.036)

0.546(0.024)/
0.371(0.016)

R.JIVE 0.689(0.040)/
0.405(0.032)

0.535(0.019)/
0.337(0.020)

0.690(0.041)/
0.350(0.031)

0.536(0.022)/
0.238(0.017)

AJIVE 0.706(0.040)/
0.706(0.040)

0.538(0.022)/
0.539(0.022)

0.705(0.040)/
0.605(0.035)

0.538(0.022)/
0.369(0.015)

OnPLS 0.655(0.093)/
0.654(0.095)

0.574(0.064)/
0.576(0.066)

0.656(0.094)/
0.658(0.113)

0.574(0.063)/
0.476(0.057)

DISCO-SCA 0.704(0.049)/
0.704(0.049)

0.558(0.041)/
0.559(0.041)

0.532(0.114)/
0.628(0.067)

0.462(0.092)/
0.432(0.078)

COBE 0.706(0.040)/
0.706(0.040)

0.538(0.022)/
0.539(0.022)

0.705(0.040)/
0.605(0.035)

0.538(0.022)/
0.369(0.015)

‖χk − Xk‖( ⋅ )
‖Xk‖( ⋅ )

GDFM 0.080(0.004)/
0.081(0.004)

0.116(0.003)/
0.116(0.004)

0.081(0.004)/
0.052(0.002)

0.116(0.003)/
0.082(0.002)

‖χk
∗ − Xk‖( ⋅ )
‖Xk‖( ⋅ )

GDFM 0.083(0.003)/
0.083(0.004)

0.154(0.004)/
0.154(0.005)

0.084(0.004)/
0.053(0.002)

0.174(0.005)/
0.093(0.002)
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Ratio Method Spectral norm Frobenius norm Spectral norm Frobenius norm

‖νk‖( ⋅ )
‖χk

∗‖( ⋅ )
GDFM 0.080(0.003)/

0.080(0.004)
0.099(0.003)/
0.099(0.003)

0.082(0.003)/
0.047(0.002)

0.128(0.004)/
0.044(0.001)
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Table 3:

The proportions of significant nonzero correlations between d1 and d2 for simulation setups (with p1 = 900, 

θ1=45° and σe2 = 1) and TCGA datasets. Averages (standard errors) are shown for Setups 1 and 2. Significant 

correlations are detected by the normal approximation test (DiCiccio and Romano, 2017) using D1 and D2, 

with false discovery rate controlled at 0.05.

Method Setup 1 Setup 2 Setup 3 EXP90/METH90b EXP90/METH90a

D-CCA D1D2
⊺ = 0 D1D2

⊺ = 0 D1D2
⊺ = 0 D1D2

⊺ = 0 D1D2
⊺ = 0

JIVE 69.9%(2.5%) 60.8%(3.0%) 98.7% 85.0% 58.2%

R.JIVE D1D2
⊺ = 0 D1D2

⊺ = 0 D1D2
⊺ = 0 D1D2

⊺ = 0 D1D2
⊺ = 0

AJIVE Ck = 0 Ck = 0 Ck = 0 Ck = 0 Ck = 0
OnPLS 56.6%(11.1%) 32.7%(8.2%) 52.5% 72.9% 68.6%

DISCO-SCA 50.3%(4.6%) 25.2%(6.7%) 25.1% 67.8% 64.2%

COBE Ck = 0 Ck = 0 Ck = 0 Ck = 0 Ck = 0

GDFM (Dk = ψk) 70.3%(2.4%) 61.5%(2.7%) 98.6% 100% 100%

GDFM (Dk = ψk + νk) 73.8%(1.8%) 64.8%(2.3%) 97.0% 85.8% 87.0%
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Table 4:

Ranks (and proportions of explained signal variation, i.e., ‖ ⋅ ‖F
2 /‖Xk‖F

2 ) of matrix estimates for TCGA 

datasets.

Matrix Method EXP90 / METH90b EXP90 / METH90a

Xk

D-CCA 2 / 3 2 / 3

JIVE 35 / 18 41 / 29

R.JIVE 40 / 27 44 / 49

AJIVE 2 / 3 2 / 3

OnPLS 13 / 10 12 / 10

DISCO-SCA 13 / 13 17 / 17

COBE 2 / 1 2 / 2

Ck

D-CCA 2 (0.472) / 2 (0.301) 2 (0.120) / 2 (0.062)

JIVE 1 (0.068) / 1 (0.086) 3 (0.236) / 3 (0.167)

R.JIVE 1 (0.212) / 1 (0.505) 3 (0.274) / 3 (0.602)

AJIVE 0 / 0 0 / 0

OnPLS 3 (0.516) / 3 (0.510) 2 (0.455) / 2 (0.166)

DISCO-SCA 6 (0.732) / 6 (0.571) 8 (0.745) / 8 (0.363)

COBE 0 / 0 0 / 0

Dk

D-CCA 2 (0.223) / 3 (0.506) 2 (0.564) / 3 (0.797)

JIVE 34(0.932) / 17 (0.914) 38 (0.764) / 26 (0.833)

R.JIVE 39 (0.788) / 26 (0.495) 41 (0.726) / 46 (0.398)

AJIVE 2 (1) / 3 (1) 2 (1) / 3 (1)

OnPLS 10 (0.484) / 7 (0.490) 10 (0.545) / 8 (0.834)

DISCO-SCA 7 (0.268) / 7 (0.429) 9 (0.255) / 9 (0.637)

COBE 2 (1) / 1 (1) 2 (1) / 2 (1)
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Table 5:

SWISS scores for TCGA breast cancer subtypes. Lower scores indicate better subtype separation.

Matrix Method EXP90 / METH90b EXP90 / METH90a

Yk For all 0.773 / 0.814 0.773 / 0.952

Xk

D-CCA 0.313 / 0.623 0.313 / 0.925

JIVE 0.632 / 0.698 0.643 / 0.920

R.JIVE 0.642 / 0.689 0.647 / 0.931

AJIVE 0.314 / 0.623 0.314 / 0.925

OnPLS 0.523 / 0.669 0.515 / 0.905

DISCO-SCA 0.526 / 0.663 0.553 / 0.904

COBE 0.314 / 0.545 0.314 / 0.926

Ck

D-CCA 0.240 / 0.269 0.528 / 0.606

JIVE 0.831 / 0.831 0.639 / 0.736

R.JIVE 0.373 / 0.373 0.564 / 0.885

AJIVE NA / NA NA / NA

OnPLS 0.398 / 0.312 0.419 / 0.494

DISCO-SCA 0.447 / 0.400 0.470 / 0.717

COBE NA / NA NA / NA

Dk

D-CCA 0.623 / 0.940 0.320 / 0.979

JIVE 0.691 /0.741 0.830 / 0.963

R.JIVE 0.833 / 0.997 0.874 / 0.998

AJIVE 0.314 / 0.623 0.314 / 0.925

OnPLS 0.878 / 0.978 0.871 / 0.989

DISCO-SCA 0.935 / 0.992 0.944 / 0.995

COBE 0.314 / 0.545 0.314 / 0.926
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Table 6:

Ranks, variation ratios (VR = ‖ ⋅ ‖F
2 /‖χk

∗‖F
2

), and SWISS scores of GFDM matrix estimates for TCGA datasets.

Matrix Estimate EXP90 / METH90b EXP90 / METH90a

Rank (VR) SWISS Rank (VR) SWISS

χk
∗

 (joint common) 4 / 4 0.373 / 0.569 4 / 4 0.378 / 0.850

χk (marginal common) 3 (0.986) / 3 (0.986) 0.364 / 0.566 3 (0.990) / 3 (0.974) 0.372 / 0.851

ϕk (strongly common) 2 (0.755) / 2 (0.626) 0.288 / 0.348 2 (0.770) / 2 (0.372) 0.302 / 0.613

ψk (weakly common) 1 (0.231) / 1 (0.360) 0.764 / 0.991 1 (0.220) / 1 (0.602) 0.811 / 0.996

νk (weakly idiosyncratic) 1 (0.014)/ 1 (0.014) 0.987 / 0.760 1 (0.010) / 1 (0.026) 0.997 / 0.812

ψk + νk 2 (0.245) / 2 (0.374) 0.777 / 0.982 2 (0.230) / 2 (0.628) 0.819 / 0.988

ξ k
∗

 (strongly idiosyncratic) 656 (2.070) / 656 (1.196) 0.985 / 0.987 656 (2.151) / 656 (1.764) 0.977 / 0.989

ξ k (marginal idiosyncratic) 657 (2.084) / 657 (1.211) 0.985 / 0.983 657 (2.160) / 657 (1.790) 0.977 / 0.987
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