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Abstract

Human-computer interaction (HCI) technology, and the automatic classification of a person’s 

mental state, are of interest to multiple industries. In this work, the fusion of sensing modalities 

that monitor the oxygenation of the human prefrontal cortex (PFC) and cardiovascular physiology 

was evaluated to differentiate between rest, mental arithmetic and N-back memory tasks. A 

flexible headband to measure near-infrared spectroscopy (NIRS) for quantifying PFC oxygenation, 

and forehead photoplethysmography (PPG) for assessing peripheral cardiovascular activity was 

designed. Physiological signals such as the electrocardiogram (ECG) and seismocardiogram 

(SCG) were collected, along with the measurements obtained using the headband. The setup was 

tested and validated with a total of 16 human subjects performing a series of arithmetic and N-

back memory tasks. Features extracted were related to cardiac and peripheral sympathetic activity, 

vasomotor tone, pulse wave propagation, and oxygenation. Machine learning techniques were 

utilized to classify rest, arithmetic, and N-back tasks, using leave-one-subject-out cross validation. 

Macro-averaged accuracy of 85%, precision of 84%, recall rate of 83%, and F1 score of 80% were 

obtained from the classification of the three states. Statistical analyses on the subject-based results 

demonstrate that the fusion of NIRS and peripheral cardiovascular sensing significantly improves 

the accuracy, precision, recall, and F1 scores, compared to using NIRS sensing alone. Moreover, 

the fusion significantly improves the precision compared to peripheral cardiovascular sensing 

alone. The results of this work can be used in the future to design a multi-modal wearable sensing 

system for classifying mental state for applications such as acute stress detection.
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I. Introduction

HUMAN-COMPUTER interaction (HCI) is a growing field dedicated to the improvement of 

human performance. Recently, non-medical applications of HCI have gained considerable 

interest with a specific focus on improving the user’s performance while executing a 
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mentally stressful task [1]. The design of proactive systems that measure a user’s 

physiological parameters to decode mental state could provide feedback for HCI 

technologies to close the loop for performance improvement.

Current approaches to mental stress assessment are mainly based on brain computer 

interfaces (BCIs), and primarily focused on electroencephalogram (EEG) signals [2, 3]. 

Despite wide usage, EEG signals are known to have a highly noisy and variable nature with 

poor spatial resolution, making robust information extraction a very challenging task [4]. 

Near-infrared spectroscopy (NIRS) is an optical and non-invasive method for monitoring the 

changes in tissue oxygen dynamics, with high spatial resolution, as a complement or 

alternative to EEG [5]. NIRS provides information regarding blood flow to the pre-frontal 

cortex (PFC), and it was shown to be useful for assessing the effects of some mental 

stressors [6-10]. Nevertheless, while the performance of NIRS for mental stress assessment 

holds promise, improvements are still needed in its accuracy and sensitivity for the method 

to be viable for closed-loop HCI systems.

Complementing NIRS with other physiological signals may allow for such improvement to 

be achieved. Specifically, peripherally-measured non-invasive cardiovascular signals provide 

useful information related to mental stress that is complementary to NIRS. While the 

combined use of such cardiovascular signals and NIRS has not been explored for mental 

state monitoring, it has been investigated for improving the monitoring of exercise 

performance and oxygen transport [11-13]. Moreover, cardiovascular signals themselves 

have been studied in the context of mental stress, with some features changing in repeatable 

and predictable ways with stress [14]. The use of cardiovascular signals alone for mental 

stress assessment would likely result in a lack of specificity due to the fact that physiological 

perturbations can affect the signals in a similar manner to mental stress, thus confounding 

the results [15, 16]. Thus, we hypothesize that the combination of NIRS and peripherally-

measured cardiovascular signals could potentially advance the state of the art for non-

invasive mental stress assessment.

We anticipate that the fusion of these sensing modalities can be effective in decoding two 

types of mental stressors: first, mental arithmetic tasks, which are known to induce the 

strongest cardiovascular responses [14]; second, N-back memory tasks, which have been 

shown to cause activations in the PFC, as measured by NIRS [9, 17, 18]. In this work, we 

focus on the classification of rest state, mental arithmetic, and N-back memory tasks by 

fusing NIRS and peripherally-measured cardiovascular signals. We designed a setup 

containing NIRS, head photo-plethysmography (PPG), chest electrocardiogram (ECG), and 

seismocardiogram (SCG) signals. Furthermore, algorithms were designed to extract features 

and classify mental stress using these physiological signals. Specifically, algorithms using 

only NIRS signals, only peripherally-measured cardiovascular signals (ECG, PPG, SCG), 

and the fusion of both sensing modalities were implemented. We tested our system and 

algorithms on a total of 16 human subjects performing a series of arithmetic and N-back 

tasks. Our findings suggest that the fusion of NIRS and peripherally-measured 

cardiovascular signals significantly improves the classification performance of rest, 

arithmetic, and N-back tasks, as opposed to using each sensing modality alone. The 

outcomes could improve real-time decoding of mental state for HCI.
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II. Methods

A. Experimental Protocol

The human subject study was performed under a protocol reviewed and approved by the 

Georgia Institute of Technology Institutional Review Board (IRB). All subjects read and 

signed a consent form before the data collection. Data were collected from 16 healthy 

subjects without cardiovascular disorders (six females, ten males, ages 26.7 ± 3.2 mean ± 

std).

Each participant was seated on a comfortable chair, located 70cm away from a 21cm by 

31cm monitor. Fig. 1 illustrates the experimental protocol and Fig. 2a shows the test setup 

for each subject. The experiment was divided into six parts that include mental tasks (mental 

arithmetic and N-back), with three-minute eyes closed rest breaks in between each task. The 

arithmetic task was chosen due to the high cardiovascular response observed in many 

clinical studies relative to other mental stress tests [14]. The N-back task was chosen 

because of its relevance with PFC activity that could be captured with NIRS [9, 17, 18]. All 

tasks were carried out on a laptop and the subjects used a keyboard to interact with custom 

graphical user interfaces (GUIs). The subjects were asked to remain silent, and to minimize 

posture changes during the protocol. Before the start of the experiment, the protocol was 

explained in detail to each subject, and the subjects practiced sample questions from each 

task. At the beginning of the experiment, each subject was instructed to sit comfortably with 

eyes closed for three minutes to obtain baseline rest signals. Then, the subjects underwent a 

series of arithmetic and N-back tasks, with difficulty levels ordered randomly. The questions 

in these tasks were different from the ones in the practice session. The three arithmetic tasks 

included 1-digit, 2-digit, or 3-digit algebraic calculations from a custom GUI. A series of 

arithmetic questions appeared on the screen for each difficulty level, for one-minute each, as 

illustrated in Fig. 1. The subjects entered the answers using the keyboard and pressed a key 

to progress onto the next question. The subjects were not allowed to progress to the next 

question if they did not enter the right answer. After completing the first three tasks that 

include arithmetic questions, subjects progressed to the N-back task.

The N-back task is a continuous performance task to measure working memory and working 

memory capacity. In this task, a three-by-three grid was presented to the subject on the 

computer screen via a GUI [19]. A sequence of squares at different spatial locations were 

highlighted consecutively, and the subject pressed a key when the location of the current 

highlighted square matched the one from N-steps earlier in the sequence (Fig. 1). For 

example, for N = 2, the subjects were required to remember the position of the square that 

was highlighted two turns ago. Our protocol included N = 1, 2, 3-back tasks shuffled 

randomly, each lasting for a minute. Each trial (square appearance) was adjusted to last for a 

maximum of three seconds, therefore each N-back task includes approximately 20 trials 

within a minute.

To assign the subjective difficulty levels for the classification of each task, the subjects filled 

out the NASA Task Load Index (NASA-TLX) questionnaire at the end of the protocol [20]. 

NASA-TLX is a multidimensional assessment tool that rates the perceived workload for a 

task. For each of the six tasks (three arithmetic and three N-back), the total workload was 
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divided into six subcategories: mental demand, physical demand, temporal demand, 

performance, effort, frustration. The subjects rated each subscale with a score between 

0-100, for each task. The ratings from the six subcategories were averaged for each task, 

referred to as RTLX scores. The average score indicates an estimate of overall workload for 

the corresponding task [20]. Using the RTLX scores, each task was assigned to a difficulty 

level as follows: Within each task type (arithmetic or N-back), the lowest RTLX score 

corresponded to easy, the medium score corresponded to medium, and the highest score to 

hard as difficulty level. The use of RTLX objectifies the difficulty assignment for each task 

type. For instance, after a subject completed the overall protocol that includes six mental 

stress tasks (three arithmetic and three N-back), she was asked to fill out the NASA-TLX 

questionnaire for each of the six tasks. Within each task type (i.e. arithmetic or N-back), 

RTLX scores (0-100) were calculated and ranked from minimum to maximum. The 

minimum RTLX score for a type of task resulted in a ‘easy’ label for that task (i.e. minimum 

RTLX among RTLX scores for arithmetic was labeled as ‘easy’). Similarly, the medium 

RTLX score was labeled as ‘medium’ and the maximum RTLX score was labeled as hard. 

The labeled scores were used in statistical analyses to understand which difficulty level 

created the most drastic differences in mental workload, compared to the rest state. The 

highest difficulty levels for each task type from the statistical analyses were used for the 

classification.

B. Instrumentation

Fig. 2a and b show the parts of headband and instrumentation blocks, namely NIRS and 

cardiovascular-peripheral blocks. The NIRS circuit consisted of a multi-chip near-infrared 

(NIR) light emitting diode (LED) (MTMD7885T38, Marktech Optoelectronics, Latham, 

NY), 10 photodiode-transimpedance amplifier (PD-TIA) chips (OPT101, Texas Instruments, 

Dallas, TX), 16-channel LED driver (TLC5940, Texas Instruments, Dallas, TX), 16-channel 

multiplexer (MUX, CD74HC4067, Texas Instruments, Dallas, TX), and a microcontroller 

(μC, ATmega 2560, Arduino, NY) as shown in Fig. 2b. The multi-chip LED included six 

LEDs, with peak emission wavelengths (λ) of 770nm (×2), 810nm (×2), and 850nm (×2). 

The package had a diameter of 9mm, and all LEDs were separated by 45°. To maximize the 

level of reflections received by the detector, the LED driver was programmed such that the 

LEDs would operate with the maximum forward currents recommended by the 

manufacturer: 50mA for 770nm and 100mA for 810nm and 850nm. The MUX output was 

programmed to sequentially select which detector output would be read by the built-in 

analog-to-digital converter (ADC, 10-bit) of the microcontroller (time division 

multiplexing). A flexible headband was designed in SolidWorks (2016, Waltham, MA), as 

shown in Fig. 2a, with dimensions 140.5mm by 58.5mm by 4.5mm, using thermoplastic 

polyurethane (TPU) filament (NinjaFlex, Manheim, PA). The NIRS LED was placed to the 

center of the headband, and 10 of PD-TIA chips were distributed spatially around the NIRS 

LED. The distances between each source (LED)-detector (PD-TIA) combination were set at 

1.5cm or 3cm. The distances were chosen due to the known optimal sensitivity of NIRS to 

intracranial brain tissues at these distances, and the NIRS implementations in literature [21].

In terms of firmware, upon the detection of a trigger signal from a data acquisition system 

(DAQ, MP150, Biopac Systems, Goleta, CA), the NIRS LEDs were programmed to turn on 
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sequentially. Once an LED was turned on, the MUX sequentially selected detectors to read 

their output signals. The NIRS signals were transmitted with 2Hz sampling rate.

For the peripherally-measured cardiovascular signals, both custom-built circuits and 

commercially available components were used to acquire a set of signals that would capture 

at least the following physiological features of relevance for mental stress assessment: heart 

rate (HR), the pre-ejection period (PEP), pulse transit time (PTT), pulse arrival time (PAT), 

blood volume (PPG amplitude). Moreover, the goal was to use sensors and electronics for 

measuring these signals that could ultimately be encapsulated in a wearable device, possibly 

even a headband with combined NIRS and cardiovascular signal sensing capability.

The headband used here contains the head PPG sensors, which include a multi-chip LED 

and PD combination (SFH 7070, OSRAM Opto semiconductors, Regensburg, Germany). 

The package includes two green emitters (λ = 530nm) and a matched PD, with an overall 

dimension of 7.5mm by 4mm by 0.9mm. The forward current through the LEDs were set to 

20mA, per the datasheet suggestion, using a voltage divider and buffer combination. A TIA 

was designed to read the PD output using an operational amplifier (LT1885, Linear 

Technology, Milpitas, CA) with feedback components (RF = 350kΩ, CF = 10nF), followed 

by a first-order passive low-pass filter (fc = 16Hz). The head PPG signal was acquired using 

the DAQ. To measure SCG signals, a very low-noise 3-axis accelerometer evaluation board 

was used (ADXL354CZ, Analog Devices, Norwood, MA). The accelerometer was placed in 

a 2.8cm by 3cm by 1cm custom-printed rigid acrylonitrile butadiene styrene (ABS) plastic 

case. It was placed on the mid-sternum of each subject, but in future work could potentially 

obtain aortic valve opening information from the head as implemented previously by other 

groups [22]. For ECG data collection, a commercially available wireless 3-lead ECG 

amplifier was used (RSPEC-R, Biopac Systems, Goleta, CA). All peripherally-measured 

cardiovascular signals were transmitted through the DAQ with 2kHz sampling rate.

All custom circuits were powered using a benchtop power supply with ±9V rails. For the 

components that require specific power levels (i.e. 3.3V for accelerometer and 5V for LED 

driver and PD-TIA), low drop-out regulators were used (LT1763, Linear Technology, 

Milpitas, CA).

C. Signal Processing and Feature Extraction

Pre-Processing and Feature Extraction: Data were processed in MATLAB (R2017b, 

MathWorks, Natick, MA). Fig. 2c gives an overview of the signal processing and feature 

extraction pipeline. The peripherally-measured cardiovascular parameters extracted are 

cardiac timing intervals and a signal amplitude, namely: the HR, R-Ao time interval (i.e., 

PEP), PAT, PTT, and head PPG amplitude. NIRS parameters are changes in concentrations 

of oxy-hemoglobin (ΔHbO), deoxy-hemoglobin (ΔHbR), and total hemoglobin (ΔTotal Hb).

Fig. 2d shows the parameters computed from the peripherally-measured cardiovascular 

signals. ECG, SCG and head PPG signals were filtered with finite impulse response (FIR) 

band-pass filters with cutoff frequencies 0.6-40 Hz, 0.8-20 Hz, and 0.8-10 Hz, respectively, 

to preserve the waveform shape and cancel the noise outside their bandwidths [23, 24]. The 

R-peaks of the ECG signals were detected using thresholding, and were used to calculate 
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HR. SCG and head PPG signals were ensemble averaged according to the R-peaks, using 

beat lengths of 300ms for SCG and 550ms for the head PPG. These lengths were sufficient 

to detect the fiducial points of each SCG and PPG beats. To reduce the effects of motion 

artifacts on the individually segmented beats, exponentially weighted moving ensemble 

averaging of successive beats was implemented [23]. Exponentially decreasing weighting 

gives more emphasis to the more recent beats, while still providing noise reduction based on 

the averaging. We determined 3-beat and 10-beat time constants for SCG and head PPG 

were sufficiently long to reduce the artifacts while short enough to still preserve the transient 

changes in the signals. Note that for all the parameters described below, the approximate 

first order derivatives (differences between the adjacent elements) were also computed to 

generate additional parameters.

Pre-Ejection Period: The PEP, measured by the time delay between the onset of electrical 

depolarization of the heart to the opening of the aortic valve, is a non-invasive measure of 

cardiac contractility and sympathetic activity. A decrease in PEP indicates increased 

contractility and cardiac sympathetic activity [25]. The gold-standard to measure PEP is the 

impedance cardiogram (ICG), which requires 4-8 electrodes on body. Instead of the ICG 

signal, the time interval between the R-peak of the ECG to the second peak of the SCG 

(known as aortic opening point, AO) is known to be highly correlated with PEP [26]. 

Therefore, we used R-Ao as a measure of sympathetic activity.

Pulse Arrival and Transit Times: PAT was measured as the time delay between the 

ECG R-peak to the foot of the head PPG signal. It represents the time delay from the 

electrical depolarization of the ventricles to the arrival of the pulse to forehead region, where 

the PPG signal is collected [27]. We also calculated PTT, which is the time taken for the 

pressure wave to travel between two arterial sites, measured by two blood pressure 

waveforms [27]. We calculated PTT as the time interval between the AO point of the SCG 

signal to the foot of the head PPG signal [27]. As a measure of peripheral sympathetic and 

vasomotor activity, the amplitude of PPG signal was extracted [24].

PFC Oxygenation Markers: The changes in oxyhemoglobin, deoxyhemoglobin, and 

total hemoglobin concentrations (ΔHbO, ΔHbR, ΔTotal Hb) were calculated from NIRS 

signals according to modified Beer-Lambert law (MBLL) [28]. The NIRS channel to process 

with MBLL was chosen manually due to interference from hair on forehead and incomplete 

contact of a few detectors for some subjects.

Normalization and Dataset for Classification: After the difficulty level assignment 

for each task using RTLX, the tasks that resulted in the maximum perceived workload were 

selected to be used in the classification. Specifically, the parameters used for classification 

were extracted from rest (one minute), hard arithmetic (one minute), and hard N-back (one 

minute). Then, peripherally-measured cardiovascular parameters were normalized using a 

baseline reference interval. The one-minute reference interval for peripherally-measured 

cardiovascular parameters was collected before the protocol started. This interval is different 

than the rest class interval. NIRS parameters were used as is. To equalize the length of each 

parameter within an interval, extracted parameters were resampled to the length of the 
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parameter that has the maximum length. Then instances were created by using 10-sample 

sliding windows with 50% overlap. The features used in the classification consisted of the 

mean, standard deviation (std), maximum (max), minimum (min), area under curve (auc) 

and slope of the extracted parameters in each window. There was a total of 88 features (33 

NIRS features, 55 peripherally-measured cardiovascular features), and the total number of 

instances were 842 (333 rest instances, 228 arithmetic instances, 281 N-back instances).

D. Feature Selection and Classification

For the classification of mental tasks and rest state, a feature matrix was constructed from all 

extracted features and the corresponding labels as classes (rest, arithmetic, N-back classes). 

This matrix included instances as rows and features as columns, and it was used to build the 

classification model. To eliminate irrelevant features that could decrease the accuracy of the 

classification model, we performed feature selection. Univariate feature selection was 

performed by calculating p-values for each feature using analysis of variance (ANOVA), and 

applying the Benjamini-Hochberg procedure (alpha = 0.005) for multiple comparisons [29]. 

A univariate statistics-based feature selection method rather than manual selection automates 

the feature selection process, making it possible to treat the data blindly without 

assumptions. To visualize the dataset, we performed the aforementioned feature selection on 

the whole dataset and applied t-distributed stochastic neighbor embedding (t-SNE), reducing 

the dimensionality of the dataset to two [30].

To classify each instance to one of three mental tasks using the selected features, a random 

forest classifier was used. A random forest classifier is an ensemble learning method that 

trains multiple decision trees and determines the classification result through a majority vote 

amongst all individual trees. Each tree is trained on a bootstrap sample drawn from the 

dataset, and at each node of the tree, a random subset of the features is considered for a split 

[31]. In our algorithm, we trained 50 trees as a part of the random forest classifier. A single 

hyperparameter of the trees, maximum depth, was tuned using a leave-one-subject-out cross 

validation (LOSO-CV) grid-search scheme. In this scheme, we first defined the parameter 

grid values between three to ten. For each value on the grid, we performed LOSO-CV and 

found the parameter that maximizes the LOSO-CV accuracy, to use that parameter in the 

final model. The maximum depth parameter controls the complexity of each tree in the 

forest where increased depth corresponds to more complicated models.

Random forests are ensemble learning models that are often hard to interpret, especially 

when they consist of many trees. To get more insight on what the model learned, we 

performed feature importance ranking using a random forest classifier that was trained on 

the whole dataset. This was done by evaluating the improvement in the gini-index metric at 

each node of each tree within the forest. These improvements were accumulated across all 

nodes of all trees within the forest to rank the feature importance, with the most important 

features resulting in the largest improvements in the gini-index [31]. Feature selection, 

classification and t-SNE dimensionality reduction were all implemented using the scikit-

learn library for Python [32].
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E. Model Evaluation

We evaluated our algorithm using LOSO-CV, where one subject is left out of the training 

then used for testing. Without this subject’s data, we first performed feature selection 

followed by hyperparameter tuning via grid-search within an inner LOSO-CV loop. With the 

optimal hyperparameters and the selected features, we trained our random forest classifier 

which was then used to calculate the performance metrics: accuracy, precision, recall and F1 

score for each subject. The final scores were calculated by averaging the scores from each 

CV fold.

It should be noted that each CV fold implements an inner CV loop on the subjects that are 

not left out, which results in a nested CV protocol [33]. This procedure was performed by 

using only NIRS features, only peripherally-measured cardiovascular features and the fusion 

of both sensing modalities. The results were compared using statistical analyses to identify 

which sensing modalities perform better in differentiating among the rest, arithmetic, N-

back tasks.

F. Statistical Analysis

We performed statistical analyses on the classification results to compare each sensing 

modality alone and their fusion. Specifically, each LOSO-CV fold results in one data point 

(accuracy, precision, recall, or F1 score metrics) per subject. We obtained 16 data points for 

16 subjects per metric. This scheme was repeated for NIRS alone, cardiovascular (cardio) 

alone, and the fusion of both. These samples were used for statistical testing to assess the 

performance of the sensing modalities. Friedman Test was chosen to detect if any difference 

exists between the performance of the sensing modalities from the outcomes for each 

subject, using the same classifier model and validation method [34]. A follow-up multiple 

comparison based on the Nemenyi Test was performed using the ranks generated by the 

Friedman Test [34]. A similar statistical analysis was performed on the RTLX scores as well 

to understand if the mental tasks induce significantly different workloads between the 

difficulty levels. For all analyses, p-values lower than 0.05 were considered statistically 

significant.

III. Results

Fig. 3 shows the extracted parameters for a subject transitioning from baseline rest to task. 

As the task starts, HR increases, R-Ao and PPG amplitude decrease, indicating increased 

cardiac and peripheral sympathetic activity. HbO, HbR, and Total Hb also show change 

during this transition, due to the change in oxygenation levels in the PFC. It should be noted 

that the directions in PTT, PAT, or concentration changes were not necessarily identical for 

each subject.

A. NASA-TLX Scores

Fig. 4 shows the RTLX scores for each task. There are significant differences between the 

following intervals: easy-medium arithmetic (p < 0.05), easy-hard arithmetic (p < 0.001), 

easy-medium N-back (p < 0.05), medium-hard N-back (p < 0.05), easy-hard N-back (p < 

0.001), according to Friedman followed by Nemenyi test. There is no statistically significant 
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difference for task-wise comparisons of the same difficulty level (i.e. hard arithmetic versus 

hard N-back).

B. Dimensionality Reduction From Selected Features

Fig. 5 shows the t-SNE plots for NIRS features alone, cardiovascular features alone, and the 

fusion features to gain intuitive understanding for each sensing modality’s ability to separate 

between classes (clusters). The plots were constructed from the features selected by applying 

the univariate feature selection method described in section II.D to the whole dataset. The 

total number of selected features was 53, which was used to construct the t-SNE plot 

corresponding to the fusion features (Fig. 5c). There were 23 NIRS features and 30 

cardiovascular features, each were used to construct the corresponding t-SNE plots in Fig. 

5a and 5b, respectively. When only NIRS features are used (Fig. 5a), there is overlap 

between the “rest” and “MAT” clusters, unlike the cardiovascular (Fig. 5b) or the fusion 

(Fig. 5c) results; accordingly, using NIRS only might result in misclassification. For only 

cardiovascular features, there is separation between the “MAT” and “rest” clusters, 

compared to NIRS features alone. As both fusion and cardiovascular sensing have clear 

separation between the tasks and rest, the statistical comparison of the performance of 

machine learning algorithms to classify the data will reveal whether the fusion will 

outperform the cardiovascular sensing [35].

C. Classification Results

Macro-averaged accuracy, precision, recall, and F1 scores for each class and sensing 

modality are shown in Fig. 6. The fusion results in accuracy scores of 85%±9%, recall rate 

of 84%±14%, precision of 83%±10%, and F1 score of 80%±13% (mean ± std). According 

to the Friedman and follow-up Nemenyi tests, accuracy (p < 0.0001), precision (p < 0.001), 

recall rate (p < 0.001), and F1 score (p < 0.001) significantly improve when fusion is used, 

as opposed to only NIRS. Moreover, there is significant improvement in precision from 

using only cardiovascular sensing to the fusion (p < 0.05).

D. Feature Importance Ranking

Fig. 7a shows the importance ranking for the top 10 features. There are four cardiovascular-

related features (R-Ao, PAT, HR, PTT), and five NIRS-related features (HbO and Total Hb). 

Fig. 7b shows the boxplots of these features. The medians of the three cardiovascular 

features show notable difference between rest and other tasks (AUC R-Ao, AUC PAT, AUC 

HR). The medians of these features for arithmetic and N-back are close to each other. For 

other cardiovascular features (AUC PTT, Min PTT), medians of the rest class are not as 

separable, unlike the case with R-Ao, PAT, HR. Notably, medians for MAT and N-back lie in 

opposite directions. For NIRS-related features (Mean, Max, Min, AUC HbO and Min Total 

Hb), medians of two mental stressors (MAT and N-back) look more differentiable. They do 

not show as good separation for rest class, however.

IV. Discussion and Conclusion

In this work, enhancement in separating rest, arithmetic, and N-back tasks through the 

fusion of NIRS and peripherally-measured cardiovascular sensing was investigated. Our 
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hypothesis was supported through a custom designed NIRS-PPG headband along with 

cardiovascular measurements. Our results indicate that the fusion of sensors results in 

significant improvements in the classification of rest, arithmetic, and N-back tasks. The 

fusion of these sensing modalities seem compatible to merge the advantages of both worlds. 

Peripherally-measured cardiovascular sensing represents a more central mechanism (due to 

the inclusion of the electrical activity and the mechanical motion of the heart), while NIRS 

sensing mainly target the PFC, which has an important role in working memory [36]. The 

improvements for accuracy, precision, recall rate, and F1 score from either of the sensing 

modalities to the fusion result from the ability to capture the PFC activity together with the 

central changes.

The significant enhancement for all performance metrics achieved via sensor fusion was 

particularly notable. Although the NIRS performance might arguably be improved by using 

multiple channels, using a single channel NIRS has its advantages for user convenience: 

multi-channel NIRS devices are often uncomfortable due to the size and high power 

requirements to feed multiple sources. A setup consisting of an accelerometer attached on 

the chest and a 3-lead ECG provide a simpler and practical means of data collection that 

would not block the forehead of the user.

Another remarkable result was the higher classification performance in all metrics between 

only cardiovascular and only NIRS sensing. Cardiovascular sensing outperformed NIRS in 

the macro-averaged scores, although not statistically significant. This difference suggests 

that peripherally-measured cardiovascular physiology might provide more consistent 

biomarkers of mental stress, compared to PFC activity biomarkers. A downside for using 

only cardiovascular sensing is that other types of stressors (i.e. temperature change or 

physical exercise) elicit cardiovascular responses similar to mental stress, thus, 

cardiovascular reactivity is not reliable across different stressors [15, 16, 37]. For instance, 

physical exercise is shown to increase HR and decrease PEP (R-Ao) by multiple studies, 

resulting in the same directional changes as mental stress [15, 38]. The addition of NIRS 

sensing by the fusion might rule out changes due to factors other than mental stress. 

Additionally, our results indicated improved precision from using fusion as compared to 

only cardiovascular sensing, highlighting that the fusion significantly improves the 

classification performance compared to using either of the sensing modalities alone. It 

should be noted that the other performance metrics, accuracy, recall rate, and F1 scores, 

were higher with the fusion, compared to using only cardiovascular sensing, although not 

statistically significant.

The interpretation of the t-SNE plots and boxplots of top 10 features seem consistent with 

clinical research on cardiovascular mental stress testing and the neuroscience literature: 

arithmetic tasks induce high cardiovascular reactivity [14], therefore cardiovascular sensing 

differentiates this type of stressor well, which appears as a separate cluster than the rest 

interval for cardiovascular t-SNE (Fig. 5b) and different median (Fig. 7b), compared to 

NIRS t-SNE or median of rest class for NIRS (Fig. 5a and Fig. 7b). Similarly, there is better 

separation between the clusters or medians of arithmetic and N-back NIRS features, when 

compared to cardiovascular features. This might be due to the high oxygenation activity in 

the PFC during N-back, as verified with comparison of multiple stressors in prior work [39]. 
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The difference between the sensitivity of the sensing modalities to each task class might be 

due to the different regions activated in brain during these tasks. Moreover, it could be 

anticipated that the fusion would enhance the classification of each mental task from the rest 

state (i.e. task versus rest classification). Due to the clear separation in t-SNE plots, our 

model showed high classification scores for rest class. Specifically, we obtained macro-

averaged scores of 98%, 99%, 98.5% for precision, recall, and f1 respectively. This indicates 

that our model could achieve highly accurate detection of mental stress (arithmetic or N-

back) from the resting state.

According to the feature importance rankings, peripherally-measured cardiovascular features 

have the highest importance for the classification (R-Ao, PAT, HR). These are followed with 

NIRS features and PTT. R-Ao (i.e., PEP) ranks the highest, consistent with its definition to 

quantify cardiac sympathetic activity. PEP is a non-invasive measure of cardiac contractility, 

which reflects cardiac sympathetic activity. Particularly, decreased PEP reflects sympathetic 

(beta-adrenergic) receptor stimulation to the left ventricle of the heart, hence increased 

cardiac sympathetic activity [25]. On the other hand, HR, a parameter always assumed to be 

vital in mental stress studies, does not have the highest ranking. This result is also consistent 

with the literature, as HR is controlled by both branches of the autonomic nervous system: 

sympathetic (fight-or-flight) and parasympathetic (rest-and-digest) nervous system activity. 

The effect of the autonomic nervous system on the heart rate is the net balance between 

these two opposing branches [40]. The interplay between the two might mask the true 

sympathetic activation during mental stress, compared to the effects seen in PEP [41].

PAT and PTT were also selected in the top features, both of which were obtained by the 

SCG and head PPG signals. PTT is widely studied in the literature: it is inversely related to 

blood pressure, such that a decrease in PTT reflects increase in blood pressure [27]. Blood 

pressure is also known to be modulated by mental stress, largely due to the changes in 

vasomotor tone [42]. PAT, on the other hand, contains influences from both PEP and PTT. 

Accordingly, it does not have a precise relationship with blood pressure, unlike PTT. Since it 

contains both vasomotor-related (elevated blood pressure, decreased PTT) and contractility-

related (elevated sympathetic activity, decreased PEP) influences, the contribution from both 

in the same direction might be the reason for the higher feature importance for PAT, 

compared to HR or PTT. Additionally, feature importance scores drop to below half for the 

NIRS features and PTT, highlighting the relative importance of the top three features. It 

should be noted that features related to PPG amplitude and ΔHbR were also among the 

selected features in each LOSO-CV loop, although they are not among the ten most 

important features. PPG amplitude reflects the variations in blood volume at the region of 

measurement (head). Decrease in the head PPG amplitude indicates local vasoconstriction at 

the vicinity of the sensor, and an increase in PPG amplitude reflects vasodilation [24]. In 

addition to vasomotor function, multiple studies noted that PPG amplitude variations are 

linked to sympathetic activity due to mental stress [43]. Mental stress affects the cardiac, 

vascular, and autonomic nervous system activity, hence the PPG signal stands as a rich 

source of physiological information as it is influenced by all these activities. Lastly, the 

appearance of NIRS features (ΔHbO, ΔHbR, ΔTotal Hb) in selected features is not 

surprising, as multiple studies pointed out significant changes in the PFC oxygenation levels 

for different types of mental stressors [44].
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An important strength of our methodology is the use of a statistical feature selection method 

(based on Benjamini-Hochberg p-value correction), for each LOSO-CV loop. Unlike manual 

(ad hoc) feature selection, this method automatically selects the most useful features in each 

iteration. Another strength is in our validation scheme based on LOSO-CV, which is ideal 

for assessing future performance with naive users. There is no need to collect calibration 

signals for a new user based on the methods described here.

One limitation of our current study is the size and homogeneity in demographics of the study 

population. In future studies, our methods will be validated with larger populations of 

subjects, and also will include persons with cardiovascular and neurological disorders. 

Additionally, we intend to classify minimal mental stress changes in future work, perhaps 

the perceived workload levels that may not be apparent from RTLX scores. Another 

limitation is that the instrumentation requires placement of the sensors on multiple areas of 

the body, which is not convenient for the users. Future work will investigate the integration 

of the different sensing modalities – including both NIRS and cardiovascular signal 

acquisition – onto a single, head-worn device such as a headband.

Ease-of-use, accuracy, and length of training period are key criteria for HCI research and 

development. The fusion of NIRS and peripherally-measured cardiovascular sensing 

significantly increases the classification performance of rest, arithmetic, and N-back tasks. 

The parameter that reflects cardiac sympathetic activity has the highest feature importance, 

followed by the parameters that are influenced by sympathetic and vasomotor tone, and PFC 

activity. NIRS and cardiovascular sensing complement each other strongly for this purpose. 

The addition of wearable hemodynamic measurements to NIRS sensing provides easy-to-

use, higher performance HCIs that require no training for these types of mental stressors. 

HCIs could translate these physiological signals into a control signal for an external aid 

during the presence of such mental stressors, thus resulting in improved performance and 

successful augmentation of the human for challenging tasks.
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Fig. 1. 
Protocol description: Each subject completed a series of arithmetic and N-back tasks with 

difficulty levels shuffled, each lasting a minute. Before the start of the tasks and between 

each task, subjects rested for three minutes with their eyes-closed. MAT: Mental arithmetic, 

NB: N-back task.
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Fig. 2. 
a) Illustration of the sensing modalities attached to each subject: headband PPG, NIRS, 

ECG, SCG signals were collected throughout the mental stress protocol. b) Block-diagrams 

of each sensing modality. The headband includes PPG and NIRS parts. c) Block diagram of 

signal processing and feature extraction. d) Summary of peripherally-measured 

cardiovascular parameters. HR, R-Ao (PEP), PTT, PAT, PPG amplitude were extracted from 

the peripherally-measured cardiovascular sensing part.
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Fig. 3. 
Extracted parameters for a subject transitioning from rest to mental stress. Changes in HR, 

R-Ao, PTT, PAT, PPG amplitude (PPGa), oxyhemoglobin (ΔHbO), deoxyhemoglobin 

(ΔHbR), total hemoglobin (ΔTotal Hb) were observed during stress. Data in figure were 

smoothed with moving average filter for better visualization. ΔC: Change in concentration, 

[M]: Molar.
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Fig. 4. 
RTLX scores for arithmetic and N-back tasks, for difficulty levels easy, medium, hard for 

each task. * indicates statistical significance, * p < 0.05, **p < 0.001. Error bars: std.
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Fig. 5. 
t-SNE plots for features related to a) NIRS sensing, b) peripherally-measured cardiovascular 

sensing, and c) the fusion of both sensing modalities for rest, MAT, and N-back classes.
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Fig. 6. 
Summary of the performance metrics for classifier outputs for each sensing modality. * 

indicates statistical significance, *p < 0.05, **p < 0.001, ***p < 0.0001. Error bars: std.
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Fig. 7. 
a) Feature importance ranking for the top 10 features. Top 10 include both cardiovascular-

peripheral and NIRS features, with cardiovascular-peripheral features having the highest 

importance. b) Boxplots of top 10 features. Error bars: std
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