
Multicategory Outcome Weighted Margin-based Learning for 
Estimating Individualized Treatment Rules

Chong Zhang1, Jingxiang Chen1, Haoda Fu2, Xuanyao He2, Ying-Qi Zhao3, Yufeng Liu1

1University of North Carolina at Chapel Hill

2Eli Lilly and Company

3Fred Hutchinson Cancer Research Center

Abstract

Due to heterogeneity for many chronic diseases, precise personalized medicine, also known as 

precision medicine, has drawn increasing attentions in the scientific community. One main goal of 

precision medicine is to develop the most effective tailored therapy for each individual patient. To 

that end, one needs to incorporate individual characteristics to detect a proper individual treatment 

rule (ITR), by which suitable decisions on treatment assignments can be made to optimize 

patients’ clinical outcome. For binary treatment settings, outcome weighted learning (OWL) and 

several of its variations have been proposed recently to estimate the ITR by optimizing the 

conditional expected outcome given patients’ information. However, for multiple treatment 

scenarios, it remains unclear how to use OWL effectively. It can be shown that some direct 

extensions of OWL for multiple treatments, such as one-versus-one and one-versus-rest methods, 

can yield suboptimal performance. In this paper, we propose a new learning method, named 

Multicategory Outcome weighted Margin-based Learning (MOML), for estimating ITR with 

multiple treatments. Our proposed method is very general and covers OWL as a special case. We 

show Fisher consistency for the estimated ITR, and establish convergence rate properties. Variable 

selection using the sparse l1 penalty is also considered. Analysis of simulated examples and a type 

2 diabetes mellitus observational study are used to demonstrate competitive performance of the 

proposed method.
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1. Introduction

One important goal in precision medicine is to develop effective statistical methods for 

evaluating treatments with heterogeneous effects among patients. In particular, a treatment 

that works for patients with certain characteristics may not be effective for others 

(Simoncelli, 2014). To maximize the overall benefits that patients can receive from the 

recommended therapy, one popular direction is to look for proper individual treatment rules 

(ITRs), which are functions that map patient characteristics into the treatment space.

In the recent literature, important developments have been made in building the ITRs for 

binary treatment cases. In particular, some existing work studied the ITR problem and 

subgroup analysis using regression approaches (Tian et al. (2014)). Qian and Murphy (2011) 

formulated the ITR detection into an optimization problem based on a conditional 

expectation that contains an indicator function. Zhao et al. (2012) used a weighted 

classification framework and proposed outcome weighted learning (OWL) that used a 

surrogate loss to replace the indicator function. Zhou et al. (2017) proposed using the 

residuals produced by linear regression between the outcome and the covariates to improve 

the finite sample performance of Zhao et al. (2012). Zhang et al. (2012) proposed a robust 

ITR method to handle potential regression model misspecification in modeling the outcome.

Despite the successful developments in ITR estimation for binary treatments, how the idea 

should be adapted to multicategory treatment scenarios is still not fully explored. Generally 

speaking, some regression based methods can be applied for this purpose under parametric 

assumptions such as certain model mean structures (Robins et al., 2008). However, violation 

of such assumptions can lead to misleading results. In this paper, we develop a statistical 

learning framework that can conduct optimal ITR detection for nominal multicategory 

treatment cases. For simplicity, for the rest of the paper, we use the term multicategory to 

represent “nominal multicategory” when there is no confusion.

In the classification literature, large-margin classifiers have been popular and often used in 

practice. Well known examples include the support vector machine (SVM) and penalized 

logistic regression (PLR) (Hastie et al. (2009)). Among various large-margin classifiers, 

there are two main types, soft and hard classifiers (Liu et al., 2011). The essential difference 

is whether obtaining the classifier requires estimating the conditional probability of each 

class. Soft classifiers such as PLR estimate the class conditional probability, while hard 

classifiers such as the SVM only target on the classification boundary. Liu et al. (2011) 

showed that the performance of soft and hard classifiers can vary for problems with different 

settings. They further proposed the large-margin unified machine (LUM) loss family which 

covers both soft and hard classifiers through a tuning parameter and can work well for 

different problems.

To solve k-class multicategory problems, one direct approach is to use sequential binary 

classifiers. In particular, there are two common approaches in the literature, namely, one-

versus-one and one-versus-rest approaches (Allwein et al., 2001). However, these sequential 

binary classifiers can be suboptimal. One common approach to handle a k-class problem 

simultaneously is to estimate k functions with the sum-to-zero constraint (Lee et al., 2004; 
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Liu and Yuan, 2011; Zhang and Liu, 2013). Recently, Zhang and Liu (2014) pointed out that 

this approach can be inefficient because one needs to add an extra sum-to-zero constraint in 

the optimization problem to guarantee the identifiability and desirable properties of the 

classifiers. In this way, extra computational cost is needed in solving the corresponding 

constrained optimization problem. To overcome this drawback, Zhang and Liu (2014) 

proposed an angle-based large-margin classification technique using k −1 functions without 

the sum-to-zero constraint. This angle-based method was shown to perform well in terms of 

both prediction accuracy and computational efficiency.

With the success of large-margin classifiers in conducting standard classification, it is 

desirable to adapt it into the OWL framework to help find the ITR for multicategory 

treatments. In this paper, we propose a new technique named Multicategory Outcome-

weighted Margin-based Learning (MOML) to solve this problem. We start with the binary 

treatment scenario, and then generalize the methods into the muticategory treatment case. In 

particular, we use the vertices of a k-vertex simplex with the origin as its center in a k−1 

Euclidean space to represent the k treatments. Then we construct k−1 functions to map the 

covariates of each patient into a k−1 dimensional vector, and the prediction rule is defined as 

the treatment that has the smallest angle between this vector and the corresponding vertex of 

the simplex. Motivated by Zhao et al. (2012), we design the objective function in the loss
+penalty form. The loss part is the weighted expectation of a loss function, ℓ(·), of the angle 

between the (k − 1)-dimensional function vector and the vertex of the actual treatment. The 

penalty term is used to control the model complexity. In this paper, we compare two options 

of the penalty terms: l1 and l2 penalties. Note that the former option can lead to sparse 

models and hence can be used for variable selection. According to the loss term introduced, 

how MOML detects ITR can be understood as follows: for the patients who have a good 

clinical outcome, the estimated optimal treatment is supposed to be the one that has a small 

angle to the actual treatment; on the other hand, for the patients who have poor clinical 

results, the estimated optimal treatments should have large angles with the actual treatments.

The main contributions of this paper are summarized as follows: (1) We propose the 

Outcome-weighted Margin-based Learning (OML) to achieve ITR estimation for binary 

treatments. This learning technique produces a flexible class of decision functions that 

covers both soft and hard classifiers to obtain additional information and better prediction 

performance. (2) We propose the weighted angle-based method to adapt OML to 

multicategory treatment scenarios. Under soft classifiers, we discuss how one can obtain the 

estimated ratio of clinical rewards for each treatment pair so that one can determine the 

balance between cost and gain. We show the consistency properties and convergence rates of 

excess risks for MOML. In addition, we compare MOML with the one-versus-one and one-

versus-rest extensions of OWL. (3) For the case of linear decision boundaries, we propose 

using an l1 penalty to achieve variable sparsity. We further show that this technique leads to 

variable selection consistency under certain assumptions.

The remainder of the paper is organized as follows. In Section 3, we first review the OWL 

method and illustrate how OML is introduced for ITR estimation under the binary treatment 

setting. Then we explain how to extend OML to multicategory cases and give insights on 

how to maintain Fisher consistency by choosing the loss function. We also point out how the 
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fitted decision functions can be connected to the ratios of the predicted clinical rewards 

under soft classifiers. In Sections 4 and 5, we provide six simulated examples and an 

application to a type-2 diabetes mellitus observational study to evaluate the finite sample 

performance of MOML. Discussions and conclusions are provided in Section 6. Some 

additional theories, including the excess risk convergence rate and selection consistency, and 

all the technical details and proofs, are left in the supplemental material.

2. Methodology

In this section, we first introduce the concepts and notations of ITRs in Section 3.1, and then 

discuss how to use binary margin-based classifiers to find the optimal ITR for two 

treatments in Section 3.2. In Section 3.3, we demonstrate how to extend the proposed 

method to the case of multiple treatments.

2.1 Individualized Treatment Rules and Outcome Weighted Learning

Suppose we observe the training datadatasetset {(xi, ai, ri); i = 1, …, n} from an underlying 

distribution P(X, A,R), where X ∈ ℝp is a patient’s covariate vector, A ∈ {1, …, k} is the 

treatment, and R is the observed clinical outcome, namely, the reward. In particular, P(x, a, 
r) = f0(x)pr(a|x)f1(r|x; a), where f0 is the unknown density of X, pr(a|x) is the probability of 

receiving treatment a for a patient with covariates x, and f1 is the unknown density of R 
conditional on (X;A). We assume that larger values of R are more desirable. In this paper, we 

focus on k-arm trials. An ITR D is a mapping from the covariate space ℝp to the treatment 

set {1, …, k}.

Before discussing multicategory treatments, we first introduce the binary optimal ITR and 

illustrate how it can be formulated as an outcome-weighted binary classification problem. To 

better understand ITRs, we use E to denote the expectation with respect to P. For any ITR 

D(·), we let PD be the distribution of {X, A,R} under which the treatment A is decided by 

D(X) with PD(x, a, r) = f0(x)I(a = D(x))f1(r|x; a), and let ED be the corresponding 

expectation. Therefore, PD is the distribution with the same X-marginal as P and given X = 

x, the conditional distribution of R is P(r|X = x;A = D(x)). We assume pr(A = a|x) > 0 for 

any a ∈ {1, …, k}. One can verify that PD is absolutely continuous with respect to P, and the 

Radon-Nikodym derivative dPD/dP = I{a = D(x)}/πa(x), where I(·) is the indicator function, 

and πa(x) = pr(A = a|x). Consequently, the expected reward for a given ITR D is:

ED(R) = ∫ RdPD = ∫ RdPD
dP dP = ∫ RI A = D(X)

πA(X) dP .

An optimal ITR D* is defined as D* = argmaxD ED(R) = argmaxD E RI A = D(X)
πA(X) . An 

equivalent expression of D* is that, for any x, D*(x) = argmaxa∈{1,...,k} E(R|X = x;A = a). In 

other words, D* is an optimal ITR if for any x, the expected reward that corresponds to 

D*(x) is larger than that of any treatment in {1, …, k}\D*(x). The optimal rule D*(x) is 

estimated based on the observed training data from the joint distribution of (X, A,R). For a 

future patient with observed covariate x, the optimal treatment is predicted based on the 

estimated D*(x).
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In the literature, a common approach to find D* is to estimate E(R | A = a;X = x) for each 

treatment, using parametric or semiparametric regression models (Robins, 2004; Moodie et 

al., 2009; Qian and Murphy, 2011). For a new patient with covariates x, the treatment 

recommendation is based on which E{R |A = a; X = x} is the maximum.

When there are two treatments, one can relabel them as A ∈ {+1,−1}. Qian and Murphy 

(2011) showed that in this case, finding D* can be formulated as a binary classification 

problem. In particular, one can verify that D* is the minimizer of

∫ R
πA(X)I{A ≠ D(X)}dP . (2.1)

An important observation is that (3.1) can be viewed as a weighted 0–1 loss in a weighted 

binary classification problem. To see this, note that with the training dataset {(xi, ai, ri); i = 

1, …, n}, one aims to minimize the following empirical loss that corresponds to (3.1)

1
n ∑

i = 1

n ri
πai xi

I aiD xi ≠ 1 . (2.2)

However, because the indicator function is discontinuous, solving (3.2) can be NP-hard. To 

overcome this difficulty, one can use a surrogate loss function ℓ(·) for binary margin-based 

classification. Zhao et al. (2012) proposed the OWL, which employed the hinge loss in the 

SVM for the optimization. In particular, they assumed that ri ≥ 0 for all i, and used a single 

function f(x) for classification, as is typical in binary margin-based classifiers. The treatment 

is assigned by D(x) = sign{f(x)}. The corresponding optimization problem in Zhao et al. 

(2012) can be written as

argmin
f

1
n ∑

i = 1

n ri
πai xi

1 − aif xi + + λJ(f), (2.3)

where (1−u)+ = max(0,1−u) is the hinge loss function, J(f) is a penalty on f to prevent 

overfitting, and λ is the tuning parameter.

As a remark, we note that Zhao et al. (2012) only considered nonnegative rewards so that the 

corresponding problem remains to be convex optimization. When there are negative rewards, 

they recommended to shift all rewards by a constant. Chen et al. (2017) showed that the 

performance of OWL varies with the choice of the shifting constant. To address this 

problem, they modified the loss to handle negative rewards directly.

2.2 Outcome Weighted Margin-based Learning for Binary Treatments

As discussed in Section 2, there are many open problems despite the seminal progress in 

Zhao et al. (2012). In particular, many choices of margin-based loss functions have not been 

fully studied in the literature. To investigate this problem, we propose our Outcome 

weighted Margin-based Learning (OML) method. In Section 2.2, we focus on the case 

where k = 2 and A ∈ {+1,−1}, and propose the optimization problem of OML as follows
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argmin
f

1
n ∑

i = 1

n ri
πai xi

ℓ aif xi + λJ(f), (2.4)

where ℓ(·) is a loss function in margin-based classification. Different ℓ(·)’s correspond to 

different classification methods. For example, SVMs use the hinge loss as in (3.3), and 

logistic regression uses the deviance loss ℓ(u) = log{1 + exp(−u)}. See the supplementary 

material for a plot of several commonly used loss functions. We generalize our OML method 

to handle problems with multiple treatments in Section 3.3.

To explore different soft and hard classifiers, we need to define the theoretical minimizer of 

a classifier. To begin with, we first assume that ri ≥ 0. Consequently, (3.4) is convex if ℓ(·) 
and J(f) are convex, and can then be solved by standard optimization methods, such as those 

in Boyd and Vandenberghe (2004). We defer the discussion of negative rewards until after 

Theorem 1. Define the conditional expected loss with respect to (3.4) to be 

S(x) = E R
πA(X)ℓ{Af(X)} |X = x , where the expectation is taken with respect to the marginal 

distribution of (R,A) for a given x. We define the theoretical minimizer of S(x) as

f * (x) = argmin
f

S(x) = argmin
f

E[ R
πA(X)ℓ{Af(X)} |X = x] .

Note that f* depends on the loss function ℓ.

With f* introduced, we can first explore consistency of a classifier. In the standard margin-

based classification literature, Fisher consistency (Lin, 2002; Liu, 2007), also known as 

classification calibration (Bartlett et al., 2006), is a fundamental requirement of classifiers. 

For problems of finding optimal ITRs using classification, the method is said to be Fisher 

consistent if the predicted treatment based on f* leads to the best expectation of the outcome 

rewards (Zhao et al., 2012). In other words, for binary problems, the method is Fisher 

consistent if sign{f*(x)} = argmaxa R(x, a), where R(x, a) = ∫(R | X = x,A = a)dP is the 

expected reward for a given treatment a at a fixed x. Zhao et al. (2012) proved that the OWL 

method using the hinge loss is Fisher consistent for non-negative rewards. In the next 

proposition, we provide a more general result that is applicable for various loss functions.

Proposition 1

For finding optimal ITRs using binary margin-based classifiers, assume that the rewards are 

non-negative. Then the method is Fisher consistent if ℓ(·) is differentiable at 0, and ℓ(u) < ℓ
(−u) for any u > 0.

Proposition 1 shows that in ITR problems, many binary margin-based classifiers are Fisher 

consistent. For instance, both soft and hard classifiers in the LUM loss family (Liu et al., 

2011) are Fisher consistent. Note that the LUM family uses a parameter c to control whether 

the classification is soft (c = 0) or hard (c → ∞). See the appendix for more details of the 

LUM loss functions.
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In standard margin-based classification, besides Fisher consistency, f* can also be used to 

estimate the class conditional probabilities. This approach has been widely used in the 

literature. See, for example, Hastie et al. (2009), Liu et al. (2011), among others. For 

completeness, we include a brief explanation on how to estimate probabilities using f* in the 

appendix. For problems that employ binary classifiers to find optimal ITRs, we show in the 

next theorem that when one uses certain loss functions, f* can be used to find the ratio 

between R(x,+1) and R(x,−1).

Theorem 1

For finding optimal ITRs using binary margin-based classifiers, assume that the rewards are 

non-negative. Furthermore, assume that the loss function ℓ(·) is differentiable with ℓ′(u) < 0 

for all u. Then we have that

R(x, + 1)
R(x, − 1) = ℓ′ −f *

ℓ′ f * . (2.5)

As a result, for any new observation x, once we obtain the fitted classification function f(x), 
we can estimate the ratio of R(x,+1) to R(x,−1) using ℓ′{ − f(x)}/ℓ′{f(x)}, which provides 

more information than the ITR itself.

Remark 1

From Theorem 1, one can see that estimation of the ratio of expected rewards in ITR 

problems is similar to the class conditional probability estimation in standard margin-based 

classification. In particular, let P+1(x) and P−1(x) be the conditional class probabilities for 

classes +1 and −1 respectively in binary classification (see the appendix for more details). 

One can verify that with similar conditions on ℓ, we can use ℓ′( − f)/ℓ′(f) to estimate P

+1(x)/P−1(x). For example, in standard logistic regression, estimating P+1(x)/P−1(x) by 

ℓ′( − f)/ℓ′(f) is equivalent to using the logit link function for probability estimation. Similar 

discussions on class probability estimation for standard multicategory classification 

problems were made in Zou et al. (2008), Zhang and Liu (2014), and Neykov et al. (2016).

With Theorem 1, we can explore the difference between soft and hard classifiers for finding 

optimal ITRs. In particular, we plot log{R(x,+1)/R(x,−1)}, denoted by r+1−1, against f* for 

some loss functions in the LUM family in Figure 1. We can see that with soft classifiers (c = 

0), there is a one-to-one correspondence between r+1−1 and f*. In other words, we can 

estimate the ratio between expected rewards for any new patients, using the estimated f . 

This ratio information can be important in practical problems as discussed in Section 1. As 

we will see in Section 4, if the underlying ratios are smooth functions, soft classifiers tend to 

perform better than hard classifiers, by accurately estimating the ratios.

For c > 0, the flat region of r+1−1 makes estimation of this ratio more difficult. In particular, 

if f ∈ [ − c/(1 + c), c/(1 + c)], then the method cannot provide an estimate of r+1−1. As c 
increases, the flat region enlarges. In the limit (c → ∞), the hard classifier provides little 

information about r+1−1. In other words, hard classifiers bypass the estimation of r+1−1 and 

focus on the boundary (that is, R(x,+1) = R(x,−1) in binary problems) estimation only. We 
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demonstrate in the supplemental material that, when the underlying ratios are close to step 

functions, hard classifiers can perform better than soft ones, because accurate estimation of r

+1−1 can be very difficult.

Next, we discuss how to address negative rewards in our OML method. Recall that when all 

ri ≥ 0, one can use a surrogate loss function ℓ that is a convex upper bound of the 0–1 loss, as 

from (3.2) to (3.4). When ri < 0, the corresponding 0–1 loss is equivalent to −|ri|I{aiD(xi) ≠ 

1}, which can be regarded as a −1–0 loss (Chen et al., 2017). In this case, because the 

reward is negative, it is desirable to consider the other treatment rather than ai. Based on 

these observations, we propose the following optimization of binary problems for both 

positive and negative rewards,

argmin
f

1
n ∑

i = 1

n ri
πai xi

ℓri aif xi + λJ(f), (2.6)

where ℓri(u) = ℓ(u) if ri ≥ 0, and ℓri(u) = ℓ( − u) if ri < 0 (the inverted loss). Note that ℓ(−u)−1 

is the tight convex upper bound of the −1–0 loss as long as ℓ is convex, and minimizing ℓ
{−aif(xi)} − 1 and ℓ{−aif(xi)} with respect to f are equivalent. The treatment recommendation 

rule for negative rewards is still D(x) = sign{f(x)}.

The next theorem shows that our binary OML method with negative rewards can also enjoy 

Fisher consistency with mild conditions on the loss function.

Theorem 2

For finding optimal ITRs using binary OML classifiers (3.6), the method is Fisher consistent 

if ℓ(·) is differentiable at 0, and ℓ(u) < ℓ(−u) for any u > 0.

From Theorem 2 we can see that by including the inverted loss functions for negative 

rewards, our OML method can still be asymptotically consistent. In contrast, estimation of 

the rewards ratio gets more involved if R can be negative. The next theorem shows that our 

OML method is able to provide an upper or lower bound for the corresponding rewards 

ratios, under some mild assumptions.

Theorem 3

For finding optimal ITRs using binary margin-based classifiers, assume that the expected 

rewards satisfy that R(x,a) > 0 for all x and a. Furthermore, assume that the loss function ℓ(·) 
is differentiable with ℓ′(u) < 0 for all u. Then we have that

R(x, + 1)
R(x, − 1) ≥ ℓ′ −f *

ℓ′ f * , if R(x, + 1) > R(x, − 1),

R(x, + 1)
R(x, − 1) ≤ ℓ′ −f *

ℓ′ f * , if R(x, + 1) < R(x, − 1) .
(2.7)

Theorem 3 shows that ℓ′( − f)/ℓ′(f) can be used as a lower bound for the rewards ratio when 

treatment +1 is better, and an upper bound if −1 is better. The condition that R(x, a) > 0 for 
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all x and a can be satisfied, for example, when patients with no treatments have zero 

expected rewards, and all treatments under study have preliminary results to show that they 

are overall effective. Note that when there are negative rewards, our OML method cannot 

provide an accurate estimation of the rewards ratio but a bound (see the proof of Theorem 3 

in the supplemental material for more details), yet the method is still Fisher consistent. 

Hence, we can see that in ITR problems, rewards estimation can be more difficult than 

treatment recommendation. This is analogous to standard classification, in which probability 

estimation can be more difficult than label prediction.

In the next section, we generalize our OML method to handle problems with multiple 

treatments.

2.3 Multicategory Outcome Weighted Margin-based Learning

To find D* in a practical problem with k > 2 treatments, one can employ sequential binary 

classifiers, such as the one-versus-one and one-versus-rest approaches. However, these ideas 

can lead to inconsistent ITR estimators (see the supplemental material for a proof on the 

inconsistency of the one-versus-rest SVM approach). As discussed in Section 2, it can be 

desirable to have a multicategory classifier that considers all k treatments simultaneously in 

one optimization problem.

In the literature, many commonly used simultaneous multicategory margin-based classifiers 

employ k classification functions for the k classes, and impose a sum-to-zero constraint on 

the k functions to reduce the parameter space and to ensure some theoretical properties such 

as Fisher consistency. Recently, Zhang and Liu (2014) showed that this approach can be 

redundant, and suboptimal in terms of computational speed and classification accuracy. To 

overcome these difficulties, Zhang and Liu (2014) proposed the angle-based classification 

method. In this paper, we propose to find the optimal ITRs with multiple treatments in the 

angle-based classification framework.

The standard angle-based classification can be summarized as follows. Let {(xi, yi); i = 1, 
…, n}, be the training dataset, where y represents the class label. Define a simplex W with k 
vertices {W1, …,Wk} in a (k − 1)-dimensional space, such that

W j =
(k − 1)−1/21k − 1, j = 1,

− 1 + k1/2 /{(k − 1)3/2}1k − 1 + {k/(k − 1)}1/2ej − 1, 2 ≤ j ≤ k,

where 1k−1 is a vector of 1’s with length k − 1, and ej ∈ ℝk−1 is a vector with the jth element 

1 and 0 elsewhere. This simplex has symmetry with all vertices being equal distances to 

each other. The anglebased classifier uses a (k − 1)-dimensional classification function 

vector f = (f1, …, fk−1)T, which maps x to f(x) ∈ ℝk−1. Note that f introduces k angles with 

respect to W1, …,Wk, namely, ∠(f,Wj); j = 1, …, k. The prediction rule is based on which 

angle is the smallest. In particular, y(x) = argminj ∈ 1, …, k ∠ f, W j , where y(x) is the 

predicted label for x. Figure 2 illustrates how to make predictions using this angle based 

classification idea when k = 2, 3, and 4. When k = 3, for example, the mapped observation f
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is predicted as the class corresponding to W1 because θ1 is the smallest angle. Based on the 

observation that argminj∈{1,...,k} ∠(f,Wj) = argmaxj∈{1,...,k}〈f,Wj〉, Zhang and Liu (2014) 

proposed the following optimization problem for the angle-based classifier

argmin
f

1
n ∑

i = 1

n
ℓ W yi, f xi + λJ(f), (2.8)

where ℓ(·) is a binary margin-based surrogate loss function which is typically non-negative 

and satisfies ℓ(u) < ℓ(−u) for any u > 0, J(f) is a penalty on f to prevent overfitting, and λ is a 

tuning parameter to balance the goodness of fit and the model complexity. One advantage of 

the angle-based classifier is that it is free of the sum-to-zero constraint, and can be more 

efficient for learning with big datasets.

To generalize our OML method from the binary setting to handle multicategory problems, 

we propose the following optimization

argmin
f

1
n ∑

i = 1

n ri
πai xi

ℓri W ai, f xi + λJ(f), (2.9)

where ℓri is defined as in (3.6). As to the penalty term J(f), we discuss two options in this 

paper: the l2 and l1 penalties. When applying the l1 penalty, one can remove the covariates 

that have zero coefficient estimates in all k − 1 components of the fitted f. We show in 

Section 4 that such a sparse penalty can have selection consistency under linear learning. For 

a new patient with the covariate vector x, once the fitted classification function vector f  is 

obtained, the corresponding treatment recommendation is argmaxa ∈ 1, …, k 〈W a, f(x) . One 

can verify that when k = 2, (3.9) reduces to (3.6). Hence, for the statistical learning theory 

(see the supplemental material), we focus on multicategory classification, and the results can 

be applied to binary cases directly.

Next, we study Fisher consistency of MOML for multicategory treatments. In the literature 

of standard margin-based classification, Fisher consistency is more involved in 

multicategory problems than in binary settings. For example, it is known that the binary 

SVM is Fisher consistent (Lin, 2002). However, its direct generalization to the multicategory 

classifier is inconsistent, both in the framework of using k functions and a sum-to-zero 

constraint (Liu, 2007), and in the framework of angle-based classification (Zhang and Liu, 

2014). To overcome these challenges, many new multicategory SVMs have been proposed. 

See, for example, Lee et al. (2004), Liu and Yuan (2011), among others. For finding optimal 

ITRs, we have the following result for Fisher consistency of our MOML method in 

multicategory treatment problems.

Before presenting our main result, we introduce an important assumption. First, recall that 

the expected reward for a given treatment j at x is R(x, a) = ∫ (R | X = x,A = a)dP. Define the 

positive part of a conditional reward to be Rj
+(x) = ∫ (R |X = x, A = j)I(R > 0)dP , and the 

negative part to be Rj
−(x) = ∫ (R |X = x, A = j)I(R < 0)dP . One can verify that 
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R(x, j) = Rj
+(x) + Rj

−(x). Here Rj
−(x) can be used to measure the possibility and severeness of 

adverse effects for treatment j on patients with the covariate vector x. The next assumption 

requires that R−(x) of the best treatment for a given patient should not be small.

Assumption 1

For a patient with the covariate vector x, denote the best treatment by j (i.e., R(x, j) > R(x, i) 

for any i ≠ j). Then, Rj
−(x) ≥ Ri

−(x) for any i ≠ j.

Assumption 1 is desirable, and often necessary for practical problems. In particular, for any 

patient, we should expect that the best treatment does not have a large probability of adverse 

effects, and its adverse effects are relatively mild. Assumption 1 can be satisfied, for 

example, when the rewards are all positive, or the marginal distributions of rewards for 

different patients and treatments are the same except for a constant shift (e.g., normal 

distributions with a common variance). With Assumption 1, we are ready to present the next 

theorem for Fisher consistency of our MOML method.

Theorem 4

For finding optimal ITRs using MOML classifiers (3.9), suppose Assumption 1 is valid, then 

the method is Fisher consistent if ℓ(·) is convex and strictly decreasing. Moreover, the 

MOML with the hinge loss is not Fisher consistent.

Note that Theorem 4 provides a sufficient condition for the MOML classifier to be Fisher 

consistent. In the literature, there are some classifiers whose loss functions do not satisfy the 

condition in Theorem 4, yet one can still verify that the corresponding MOML method is 

Fisher consistent. For example, one can use a similar approach as in the proof of Theorem 4 

to show that our MOML method using the proximal SVM loss is Fisher consistent. On the 

other hand, our MOML SVM (i.e. using the standard hinge loss) is not Fisher consistent. To 

overcome this challenge, we propose to use the LUM loss function with a large but finite c. 

This loss function is very close to the SVM hinge loss which corresponds to c → ∞, and it 

can preserve Fisher consistency. Note that a similar approach was previously used in Zhang 

and Liu (2014) to obtain a Fisher consistent angle-based classifier.

To estimate the ratio of the expected rewards for different treatments, we have the following 

theorem.

Theorem 5

Suppose the loss function ℓ(u) is convex and differentiable with ℓ′(u) < 0 for all u. If the 

random reward satisfies R ≥ 0, then for any i ≠ j ∈ {1, …, k}, we have

R(x, i)
R(x, j) =

ℓ′ f * , W j
ℓ′ f * , W i

.
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From Theorem 5, once f(x) is obtained for a new patient with x, we can estimate the 

rewards ratio between the ith and jth treatments by ℓ′{〈f(x), W j〉}/ℓ′{〈f(x), W i〉}. Additional 

discussions on soft and hard classifiers are provided in the supplemental material.

We also develop some additional theoretical results of MOML such as the convergence rate 

of excess risks. In addition, we show that MOML enjoys variable selection consistency 

under linear ITRs with J(f) to be the l1 penalty. More details are included in the additional 

statistical learning theory section of the supplemental material.

3. Numerical Studies

In this section, we use six simulation studies with both linear and nonlinear ITR boundaries 

to assess the finite sample performance of the proposed MOML method. For all examples, 

we fit MOML with the l2 penalty and compare it with standard outcome weighted learning 

(OWL, Zhao et al. (2012)) with extensions of one-versus-rest (OWL-1) and one-versus-one 

(OWL-2). Furthermore, to evaluate the performance of variable selection as discussed in 

Section 3.2, we implement MOML with the l1 penalty (MOML-l1) for all linear ITR 

boundary examples. When fitting OWL, we replace the hinge loss with the modified loss in 

(7) to improve its performance for a fair comparison. For the one-versus-rest extension, we 

conduct sequential one-versus-rest binary optimal treatment estimation (i.e. 1 vs others, 2 vs 

others, · · ·, k vs others) and then pick the treatment recommended by the classifier f j with 

the largest magnitude among j = 1, · · · , k. For the one-versus-one extension, we first 

estimate the decision function f l, for l = 1, · · · , k(k − 1)/2, based on each pair of treatments 

(i.e. 1 vs 2, 1 vs 3, · · ·, k − 1 vs k), and then pick the treatment suggested by the f l with the 

largest magnitude. Note that the one-versus-one extension only uses a subset of the data to 

fit each f l. For a meaningful comparison, we restrict f to be linear functions of x for all the 

models in linear ITR boundary examples, and apply Gaussian kernel learning to fit f in non-

linear ITR boundary examples.

When we generate the datasets, we first simulate a training set which is used to fit the 

model. We also generate an independent and equal-size tuning set to find the best 

combination of tuning parameters as well as a much larger testing set to evaluate the model 

performance (10 times as big as the training set). As to the tuning parameter range, we 

choose a from {0.1, 1, 10}, let c vary in {0.1, 10, 100, 1000}, and let λ vary in {0.001, 0.01, 

0.1, 1, 10}. We report the averages and standard deviations of the mis-classification rates 

and empirical value functions of testing sets as the criteria for model assessment. The 

empirical value function is defined as ℙn* I(A = D(X))R/πA(X) /ℙn* I(A = D(X))/πA(X) , 

where ℙn* denotes the empirical average of the testing dataset (Zhao et al., 2012). The value 

function is treated as a more comprehensive measure on how close the estimated ITR is to 

the true optimal ITR. We repeat the simulations for 50 times in each example.

In the first four examples, we generate the datasets in which the optimal treatment 

boundaries are linear functions of the covariates. We add additional covariates as random 

noises in Examples 3 and 4. In the last two examples, we discuss non-linear ITR scenarios 

and perform Gaussian kernel learning classifiers. We let the dimensions of the covariates x 
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vary in p ∈ {10, 50} for all examples. The kernel bandwidth τ is fixed to be 1/ 2σ2  where σ

is the median of the pairwise Euclidean distance of the simulated covariates (Wu and Liu, 

2007). The details of each setting are presented as below:

Example 1

We consider three points (c1, c2 c3) of equal distances from the p-dimensional space to 

represent the cluster centroids of the true optimal treatments. For each cj where j = 1, 2, 3, 

we generate its covariate Xi from a multivariate normal distribution N(cj, Ip), where Ip is a p-

dimensional identity matrix. The actually assigned Ai follows a discrete uniform distribution 

U{1, 2, 3}. The reward Ri follows a Gaussian distribution N(μ(Xi,Ai, di), 1), where 

μ Xi, Ai, di = Xi
Tβ + 5 ⋅ I(Ai = di), βT = (1p/2

T , − 1p/2
T ) and di is the optimal treatment for Xi 

determined by the cluster centroids. The training dataset is of size 300.

Example 2

We define a five-treatment scenario in which the five centroids (c1, · · ·, c5) form a simplex in 

ℝ4. The marginal distribution Xi|cj follows a normal distribution with mean cj and covariate 

matrix as 0.1Ip. The treatment Ai follows a discrete uniform U{1, · · ·, 5}. The reward Ri ~ 

N(μ(Xi,Ai, di), 0.1), where μ Xi, Ai, di = Xi
Tβ + 3 ⋅ I Ai = di + 1 and βT = 0.1 × (1p/2

T , − 1p/2
T ). 

The training dataset is of size 500.

Example 3

This is an example with ten treatments and the optimal ITR boundary depends on the first 

two covariates, i.e. (X1,X2). The ten corresponding centroids (c1, · · · , c10) spread out evenly 

on the unit circle X1
2 + X2

2 = 1 and the marginal distribution of (X1,X2)T is a normal 

distribution with mean cj and covariate matrix 0.03I2. Similar to Example 2, Ai ~ U{1, · · ·, 

10} and Ri ~ N(μ(Xi,Ai, di),1), where μ Xi, Ai, di = Xi
Tβ + 5 ⋅ I Ai = di − 2 and 

βT = 15
T , − 15

T , 0p − 10
T . The training dataset is of size 600.

Example 4

All the settings are the same as Example 2 except that βT = 0.1 × 1, 1, − 1, − 1, 0p − 4
T .

Example 5

This is a three class example with each centroid cj for j = 1, 2, 3 distributed on two mess 

points with equal probabilities. The marginal distribution of (X1,X2)T is a mixture normal 

0:5N[(cos(jπ/3), sin(jπ/3))T, 0:08I2]+0:5N[(cos(π+jπ/3), sin(π+jπ/3))T, 0:08I2]. The 

treatment Ai ~ U{1, 2, 3} and the reward Ri ~ N(μ(Xi,Ai, di), 1), where 

μ Xi, Ai, di = Xi
Tβ + 5 ⋅ I Ai = di − 1 and βT = (1p/2

T , − 1p/2
T ). The training dataset is of size 

300.
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Example 6

In this example, the optimal treatment di for each Xi is determined with probability 95% by 

the signs of two underlying non-linear functions f1(X) = X1
2 + X2

2 + exp 0.5X3  and 

f2(X) = X4
2 − X5

3 − X6 while a random noise is added to di with probability 5% to create a 

positive Bayes error. In particular, we have di defined as

di = d Xi =
1 + sign f1 Xi − m1 + + 2 × sign f2 Xi − m2 + with prob. 0.95

Ui with prob. 0.05,

where m1 and m2 are the medians of f1 and f2 respectively, and Ui follows a discrete U{1, 2, 

3, 4} which is independent of (Ai,Xi). The covariate Xi follows a continuous uniform 

distribution U(0, 1), Ai ~ U{1, · · ·, 4}, and Ri ~ N(μ(Xi,Ai, di), 1), where 

μ Xi, Ai, di = Xi
Tβ + 5 ⋅ I Ai = di − 1 and βT = (1p/2

T , − 1p/2
T ). The training dataset is of size 

500.

Figures 3 and 4 plot the sample means of the misclassification rates and the empirical value 

functions produced by all the models. The numerical results with standard deviations are 

reported in tables in the supplemental material. From the results, MOML with the l2 penalty, 

MOML with the l1 penalty and OWL-1 (with one-versus-rest extension) perform 

equivalently when the underlying ITR is not very complex and the treatment effect is strong 

enough as Example 1 shows when p = 10. Example 2 represents the situations when the 

linear ITR becomes more complex and the treatment effect is intermediate. Under this 

circumstance, MOML can produce much larger empirical value function results than the two 

simple OWL extensions. Example 4 has a similar setting as Example 2 while some noise 

variables are added to the covariate set. Under this scenario, MOML with the l1 penalty can 

outperform MOML with the l2 penalty because it is able to remove many unnecessary noise 

variables. Such an improvement of prediction accuracy becomes more clear under the case 

with higher covariate dimensions, i.e. p = 50. As to the selection result, when p = 10, 

MOML-l1 removes 64.6% noises on average while keeping all the useful variables; when p 
= 50, about 57.6% noises are removed and all the useful ones are kept. Example 3 represents 

a difficult ITR detection scenario with a large number of treatments involved (k = 10). In this 

case, the two MOML methods can have much smaller misclassification rates than the two 

OWL extensions and this implies that MOML can produce stable estimation results. The 

variable selection results show that MOML-l1 succeeded in removing 68.8% and 60.2% 

noises under p = 10 and p = 50 respectively. All the true variables are all kept under both 

cases. Examples 5 and 6 are two representatives of nonlinear ITRs. In Example 5, MOML 

can maintain a low misclassification rate when the covariate dimension is not large (i.e. p = 

10). As more variables are added into the covariate space, all the methods produce 

significantly worse prediction performance even though MOML can still outperform the two 

OWL extensions. In this way, one is recommended to take actions to reduce the covariate 

dimension before applying nonlinear MOML in practice. In Example 6, we intentionally 

include some outliers into the samples to assess models’ robustness. All the methods are 

affected while MOML can still produce better prediction results than other methods.
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Finally, we explore the advantages of soft and hard classifiers using Examples 1 and 6. We 

try different values of c, and show that a properly tuned classifier performs very well. The 

details are left in the supplemental material.

4. Application to a Type 2 Diabetes Mellitus Study

In this section, we apply the proposed method to a type 2 diabetes mellitus (T2DM) 

observational study to assess its performance in real life data applications. This study 

includes people with T2DM during 2012–2013, from clinical practice research datalink 

(CPRD) (Herrett et al. (2015)). Four anti-diabetic therapies have been considered in this 

study: glucagon-like peptide-1 (GLP-1) receptor agonist, long-acting insulin only, 

intermediate-acting insulin only and a regime including short-acting insulin. The primary 

target variable is the change of HbA1c before and after the treatment, and seven clinical 

factors are used including age, gender, ethnicity, body mass index, high-density lipoprotein 

cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and smoking status. In total, 

634 patients satisfy aforementioned requirements and around 5% have complete 

observations. Considering the large missing proportion, we perform the following steps to 

deal with the issue. First, all the factors that have a missing rate larger than 70% are 

removed. Second, a standard t test is implemented for each remained factor to check whether 

its missing indicator affects the response. If the test result is statistically significant, we keep 

the variable in while removing all its missing observations. Otherwise we delete the variable. 

We have 230 observations left after this cleaning process.

We apply the same methods with linear and Gaussian kernels to the cleaned T2DM dataset 

as in the simulation analysis. We use the negative value of HbA1c change as the reward 

because the treatment goal is to decrease HbA1c. The prosperity score πA(X) is calculated 

based on a fitted multinomial logistic regression between the assigned treatment and all the 

covariates. We use the 5-fold cross-validation to choose the best tuning parameter over 50 

replications. In particular, we randomly divide the clean data into five equal-sized subsets 

and train the model based on every four of them (training sets) in turn and make prediction 

using the remaining one (validation sets). The means and standard deviations of the 

empirical value functions for training and validation sets are presented in Table 1.

Table 1 shows that the proposed MOML with the Gaussian kernel gives the best predicted 

value function results with its standard deviation smaller than that of OWL with the 

Gaussian kernel. MOML-l1 suggests keeping all the variables over the 50 replicates, which 

indicates that the covariates remained in the clean data can be all potentially important when 

a linear function is chosen to fit the ITR. In terms of the estimated optimal treatment 

assignment results, the one-versus-rest extension of OWL with

Gaussian kernel (OWL-1-Gaussian) assigns around 32% patients into the short-acting 

insulin and the rest into the other three treatment groups in a relatively even way. MOML 

with the Gaussian kernel recommends approximate 40% patients to take the short-acting 

insulin, around 25% and 23% patients to take intermediate and long-acting insulin 

respectively and less than 12% to take the GLP-1. This conclusion is consistent to some 

literature on short-acting insulins, which shows the benefit of reducing HbA1c (Holman et 
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al., 2007). On the other hand, prandial insulins can also increase the risk of hypo and weight 

gain. In this way, it can be worthwhile to treat some composite metric as the outcome, 

including HbA1c change, hypo events, and weight gain information together, to find the 

corresponding optimal treatment rules.

5. Discussion

In this paper, we propose a margin-based loss function to solve the optimal individual 

treatment estimation problem for binary treatments and then extend it into multicategory 

treatment scenarios. For binary treatments, we develop the loss based on the LUM family so 

that the proposed method can cover a wide range of ITRs varying from soft to hard 

classifiers. The standard OWL is one special case of the proposed margin-based learning 

methods because the LUM family loss becomes the hinge loss when c → ∞ and a = 1. For 

multiple treatments, we formulate the loss as a weighted sum of angles between the 

estimated decision function f and the actual treatment A. We show that MOML enjoys 

desirable theoretical properties and has higher prediction accuracy under both linear and 

nonlinear treatment assignment boundaries. Our method can produce well-understood ITR 

results with clear geometric interpretation. Moreover, the optimization problem of MOML is 

unconstrained and hence can be more efficient to compute when compared to other 

multicategory methods with the sumto-zero constraint. We also showed that the proposed 

MOML can have selection consistency using the l1 penalty for the case with linear decision 

boundaries. This idea can be extended for nonlinear boundaries as well. One possibility is to 

use the idea of weighed kernels and impose a weight vector w in front of the covariate x in 

the standard kernel definition (Chen et al., 2017).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Plot of log{R(x,+1)/R(x,−1)} (r+1−1 on the y axis) against f* for some LUM loss functions. 

Here c = 0 corresponds to the soft LUM loss, and c → ∞ corresponds to the SVM hinge 

loss, which is a hard classifier. Note that a is another parameter in the LUM family (see the 

appendix), and a = 1, c = 1 correspond to the loss function for distance-weighted 

discriminant analysis (Marron et al., 2007).
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Figure 2: 
Illustration for the angle-based classification with k = 2,3, and 4. For example, when k = 3 

(as the plot in the middle shows), the mapped observation f  is predicted as the class 

corresponding to W1 because θ1 < θ3 < θ2.
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Figure 3: 
Plots of misclassification rates of simulation studies. OWL-1 and OWL-2 represent the two 

extensions of outcome weighted learning (one-versus-rest and one-versus-one), MOML and 

MOML-l1 represent outcome weighted margin-based learning with l2 and l1 penalties 

respectively, and Bayes represents the empirical Bayes error.
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Figure 4: 
Plots of value functions of simulation studies. OWL-1 and OWL-2 represent the two 

extensions of outcome weighted learning (one-versus-rest and one-versus-one), MOML and 

MOML-l1 represent outcome weighted margin-based learning with l2 and l1 penalties 

respectively, and Bayes represents the empirical Bayes error.
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Table 1:

Analysis Results for the T2DM Dataset. Estimated averages and standard deviations (in parenthesis) of the 

value function are reported using 5-fold cross-validation with 50 replications. OWL-1 and OWL-2 represent 

two extensions of OWL (one-versus-rest and one-versus-one), MOML and MOML-l1 represent the outcome 

weighted margin-based learning with l2 and l1 penalties respectively. The observed average reward for the 

cleaned dataset is 2.246.

Training Validation

OWL-1-Linear 2.712 (0.329) 2.371 (0.483)

OWL-2-Linear 2.487 (0.233) 2.221 (0.561)

OWL-1-Gaussian 4.118 (0.401) 3.285 (0.490)

OWL-2-Gaussian 4.003 (0.374) 3.221 (0.468)

MOML-Linear 2.610 (0.130) 2.440 (0.320)

MOML-l1-Linear 2.813 (0.138) 2.533 (0.182)

MOML-Gaussian 4.105 (0.221) 3.612 (0.328)
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