
Spatial Factor Models for High-Dimensional and Large Spatial 
Data: An Application in Forest Variable Mapping

Daniel Taylor-Rodriguez1, Andrew O. Finley2,*, Abhirup Datta3, Chad Babcock4, Hans-Erik 
Andersen5, Bruce D. Cook6, Douglas C. Morton6, Sudipto Banerjee7

1Department of Mathematics & Statistics, Portland State University, Portland, OR

2Department of Forestry, Michigan State University, East Lansing, MI

3Department of Biostatistics, Johns Hopkins University, Baltimore, MA

4School of Environmental and Forest Sciences, University of Washington, Seattle, WA

5USDA Forest Service Pacific Northwest Research Station, Seattle, WA

6Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD

7Department of Biostatistics, University of California Los Angeles, Los Angeles, CA

Abstract

Gathering information about forest variables is an expensive and arduous activity. As such, 

directly collecting the data required to produce high-resolution maps over large spatial domains is 

infeasible. Next generation collection initiatives of remotely sensed Light Detection and Ranging 

(LiDAR) data are specifically aimed at producing complete-coverage maps over large spatial 

domains. Given that LiDAR data and forest characteristics are often strongly correlated, it is 

possible to make use of the former to model, predict, and map forest variables over regions of 

interest. This entails dealing with the high-dimensional (~102) spatially dependent LiDAR 

outcomes over a large number of locations (~105–106). With this in mind, we develop the Spatial 

Factor Nearest Neighbor Gaussian Process (SF-NNGP) model, and embed it in a two-stage 

approach that connects the spatial structure found in LiDAR signals with forest variables. We 

provide a simulation experiment that demonstrates inferential and predictive performance of the 

SF-NNGP, and use the two-stage modeling strategy to generate complete-coverage maps of forest 

variables with associated uncertainty over a large region of boreal forests in interior Alaska.
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1. Introduction

Strong relationships between remotely sensed Light Detection and Ranging (LiDAR) data 

and forest variables have been documented in the literature (Asner et al., 2009; Babcock et 

al., 2013; Næsset, 2011). When used in forested settings, LiDAR data provide a high-

dimensional signal that characterizes the vertical structure of the forest canopy at point-

referenced locations. Traditionally LiDAR data acquisition campaigns have sought complete 

coverage at a high spatial resolution over relatively small spatial domains—resulting in a 

fine grid of point-referenced LiDAR signals. In such settings, the link between LiDAR data 

and forest variable measurements on sparsely sampled forest inventory plots has been 

exploited to create high resolution complete-coverage predictive maps of the forest 

variables. Commonly this link is established by first extracting relevant features of the high-

dimensional LiDAR signals through a dimension reduction step (Babcock et al., 2015; 

Junttila and Laine, 2017), then using the LiDAR features as predictors in a regression model 

to explain variability in spatially coinciding forest variable outcomes. The model is then 

applied to predict the forest outcomes at all locations across the domain where LiDAR 

signals have been observed.

Considerably more ambitious next generation LiDAR collection initiatives, such as 

ICESAT-2 (ICESat-2, 2015), Global Ecosystem Dynamics Investigation LiDAR (GEDI) 

(GEDI, 2014), and NASA Goddard’s LiDAR, Hyper-Spectral, and Thermal imager (G-

LiHT) (G-LiHT, 2016), seek to quantify and map forest variables over vast spatial extents. 

To fulfill their goals in a cost effective manner, these data gathering programs do not collect 

LiDAR data over the entire domain, but rather sparsely sample locations across the domain 

extent and over forest inventory plots (i.e., where forest variables have been measured). 

While generating complete-coverage high resolution maps of forest outcomes remains the 

primary intended use for these data, there is also interest in creating maps of LiDAR data 

over non-sampled locations, and assessing spatial dependence within and among LiDAR 

signals.

Our motivating application focuses on forest variable prediction and mapping in the boreal 

forests of interior Alaska using sparsely sampled LiDAR and forest variable measurements. 

Within these regions, acquiring complete coverage LiDAR is cost prohibitive (Andersen et 

al., 2011; Bolton et al., 2013; Nelson et al., 2012). Because complete coverage maps of 

forest variables (and perhaps LiDAR signals) is still the goal, the information in the sparsely 

sampled LiDAR must be leveraged to inform forest variable prediction. One attractive 

solution is to move the LiDAR predictor variables to the left hand side of the regression and 

model them jointly with the forest outcomes. When the number of LiDAR and forest 

variables is small, such joint models are possible via linear models of coregionalization, see, 

e.g., Babcock et al. (2017) and Finley et al. (2014a). Alternatively, if the LiDAR signal is 

high-dimensional but observed at a small number of locations reduced rank models can be 

employed. For example, Banerjee et al. (2008), Ren and Banerjee (2013), and Finley et al. 

(2017a) applied a reduced rank predictive process modeling strategy to analyze similar high-

dimensional data. However, such approaches that employ a reduced rank representation of 

the desired spatial process cannot scale to datasets with tens of thousands of locations and 

can yield poor predictive performance (Stein, 2014).
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Models able to handle high-dimensional signals observed over a large number of locations 

and capable of estimating within and among location dependence structures are needed. 

Recent modeling developments reviewed in Heaton et al. (2017) and Banerjee (2017) 

highlight several options for robust and practical approximation of univariate Gaussian 

Process (GP) models. A subset of these models can be easily extended to accommodate 

relatively small multivariate response vectors (5 or less) see, e.g., (Datta et al., 2016a); 

nevertheless, for our particular application we require an approach that can cope with both 

the high-dimensional LiDAR measurements, ~50 outcomes at a location, while making use 

of the large collection of observed locations.

The Nearest Neighbor Gaussian Process (NNGP) developed in Datta et al. (2016a), Datta et 

al. (2016b), and Datta et al. (2016c) can be used with a massive number of locations as its 

scalability is not mediated by the number of observed locations, but rather by the size of the 

nearest neighbor sets considered—a quality that yields minimal storage and computational 

requirements. These models belong to the class of methods that induce sparsity on the 

spatial precision matrix, and exploits the natural representation of sparsity provided by 

graphical models (Lauritzen, 1996; Murphy, 2012) to build a sparse GP that accurately 

approximates the original dense GP.

To tackle the high-dimensional LiDAR dataset, we develop a Bayesian NNGP spatial factor 

model (SFM), referred to as the SF-NNGP. Following Christensen and Amemiya (2002); 

Hogan and Tchernis (2004); Ren and Banerjee (2013) the SFM structure enables 

approximating the dependence between multivariate (spatially dependent) outcomes through 

a lower-dimensional set of spatial factors, alleviating the difficulty of dealing directly with 

highdimensional outcomes. The SF-NNGP allows us to model and map the LiDAR signals 

on both observed and unobserved locations, and, conditioning on the LiDAR spatial 

signatures, we can likewise map the forest variables over the entire spatial domain of 

interest. Furthermore, using a Bayesian approach for model fitting enables us to equip the 

derived estimates and predictions with associated measures of uncertainty; an essential 

requirement of many high-profile initiatives. Our methods are fully implemented in C++, 

using BLAS (Blackford et al., 2001; Zhang, 2016) to leverage efficient multi-processor 

matrix operations and openMP (Dagum and Menon, 1998) to improve key steps of the 

algorithm through parallelization. Code and reproducible results will be provided via a 
GitHub site prior to publication.

The structure for the remainder of document is as follows. Section 2 introduces the Bonanza 

Creek dataset. In Section 3 we formulate the proposed hierarchical Bayesian modeling 

strategy. Section 4 presents the analysis of a synthetic dataset to validate the performance of 

the SF-NNGP model. Using the available LiDAR and forest inventory data, in Section 5 we 

develop and validate a predictive model for forest variables. We close by providing some 

insights, recommendations and future directions in Section 6.

2. Data Description

The Bonanza Creek Experimental Forest (BCEF) is a Long-Term Ecological Research 

(LTER) site consisting of vegetation and landforms typical of interior Alaska. The BCEF is 
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21,000 ha and includes a section of the Tanana River floodplain along the southeastern 

borders (Bonanza Creek LTER, 2016). Figure 1 shows the location and extent of the BCEF 

data detailed in this section.

Forest variables were collected on 197 plots in 2014 using the USDA Forest Service Forest 

Inventory and Analysis Program protocol (Bechtold and Patterson, 2005). We consider three 

forest variables commonly used by forest professionals to make management decisions: 

above-ground biomass (AGB); tree density (TD); basal area (BA). AGB for individual trees 

was estimated using the Component Ratio Method described in Woodall et al. (2015). TD 

for a plot is expressed in thousands of trees per ha. BA for a plot is the sum of individual 

trees’ cross-sectional areas in m2 at breast height scaled to a per ha basis.

In the summer 2014 LiDAR data were collected using a flight-line strip sampling approach 

with NASA Goddard’s G-LiHT sensor (Cook et al., 2013), which is a portable multi-sensor 

system that accurately characterizes complex terrain and vertical distribution of canopy 

elements (Jakubowski et al., 2013; White et al., 2013). Point cloud information was 

summarized to a 13×13 m grid cell size to approximate field plot areas. Over each grid cell, 

psuedo-waveforms were generated by calculating LiDAR return count densities for .5 m 

height bins between 0 and 28.5 m (i.e., 57 LiDAR outcomes per location). LiDAR return 

count density for height bin l is defined as the number of returns in height bin l divided by 

the total number of LiDAR returns over the grid cell. Identical LiDAR psuedo-waveforms 

were obtained using point clouds extracted over each field plot. G-LiHT data for the study 

area are available online at https://gliht.gsfc.nasa.gov. For this analysis, 50,197 LiDAR 

observations were used for model-fitting.

A Landsat 8 top of atmosphere (TOA) reflectance product was procured for the BCEF area 

for June of 2015. The June 2015 image was preferred to the June 2014 image due to 

excessive cloud cover in the 2014 image. A tasseled cap transformation was applied to the 

raw Landsat 8 TOA reflectance bands to obtain brightness, greenness, and wetness tasseled 

cap indices (Baig et al., 2014). These tasseled cap indices are used as covariates in the 

subsequent analysis.

Further details regarding the dataset and the ensuing analysis are provided in Section 5.

3. Modeling Strategy

As stated before, our goal is to model and generate uncertainty equipped predictions of 

forest variables, making use of information contained in LiDAR signals. Consider a LiDAR 

signal, z(·), observed at a finite collection of locations Tz = s1, …, snz , and a set of forest 

outcomes, y(·), is observed at locations in the set Ty = r1, …, rny ⊂ Tz. Furthermore, let 

T∅ = t1, …, tn∅  denote a set of locations where neither LiDAR signals nor forest outcomes 

are available but where prediction is of interest. Thus, the set of locations where both LiDAR 

and forest outcomes are to be mapped to corresponds to T = Tz ∪ T∅ , with T ⊂ D ⊂ ℝ2, 

where D is the spatial domain of interest. Note that although we mention above that z(·) and 

y(·) are “observed” at locations in Tz and Ty, respectively, we allow for missing values that 
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are to be imputed in these sets. We make this distinction because locations where imputation 

is performed are part of the model fitting, whereas for locations in T∅ predictions are drawn 

ex post facto from the posterior predictive distribution; more detail is provided in Section 

3.4.

The LiDAR signals are high-dimensional vectors of measurements in ℝℎz, whereas the 

forest outcomes are relatively small-dimensional vectors (i.e., hy << hz), assumed to have 

support on ℝℎz. Forest outcomes and LiDAR signals are strongly dependent on each other; 

LiDAR signals vary with the composition of a forest, and, as a plethora of examples in the 

literature have demonstrated (Ene et al., 2018; Finley et al., 2014b; Nelson et al., 2017) 

variability in forest outcome variables can be partially explained by LiDAR characteristics.

3.1 Linking LiDAR and forest inventory data

We seek to connect forest outcomes and LiDAR signals as a two-step process. First, we 

formulate a generative model to extract the spatial signature from the LiDAR data at 

locations in Tz, which can also be used to interpolate LiDAR signals in T∅. Along with 

other spatially referenced predictors, the LiDAR spatial signatures for locations in Ty are 

used as predictors to build the model for forest outcomes. Moreover, a component that 

captures spatial variation exclusive to the forest outcomes can also be specified if required. 

For s ∈ D this two stage model is given by

Stage 1:z(s) = Xz(s)′βz + w⋆(s) + εz(s), (3.1)

Stage 2:y(s) = Xy(s)′βy + ϒw⋆(s) + v⋆(s) + εy(s) (3.2)

Note the influence of z(s) over y(s) in (3.2) is solely exerted through its spatial component 

w*(s). There are several arguments in favor of this approach, as opposed to plugging in z(s) 

or μz(s) = Xz(s)′βz + w*(s) directly as covariates into (3.2). Among them, and most 

importantly for our setting, z(s), μz(s) and w*(s) are all high-dimensional objects, using 

w*(s) facilitates reducing the dimensionality of the problem by casting it under the factor 

model structure, as shown in Section 3.2. Additionally, the elements within z(s) are strongly 

correlated and hence multicollinearity issues would arise if it was included directly in (3.2).

In (3.1) and (3.2) the terms Xz(s)′βz and Xy(s)′βy capture large scale variation. For κ ∈ 
{z,y}, Xκ(s)′ represents a fixed hκ × pκ block-diagonal matrix of spatially referenced 

predictors, where pκ = ∑j = 1
ℎκ pκ, j, having as its jth diagonal block the length pκ,j vector 

xjκ(s)′. The length pκ vector βκ corresponds to the regression coefficients associated to Xκ(s)

′. The vectors w*(s) and v*(s) are hz and hy dimensional zero-centered stochastic processes 

over D, respectively. The process w*(s) captures the spatial variation of z(s), while v*(s) 

synthesizes additional spatial variation in the forest outcomes. The hy × hz matrix ϒ 
connects the spatial information extracted from the LiDAR model into the forest outcomes 

model. The vectors εz(s) Nℎz 0, Ψz  and εy(s) Nℎy 0, Ψy  represent uncorrelated random 

errors (i.e., Ψz and Ψy are diagonal) at finer scales.
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Implementing the modeling strategy above directly is challenging due to the high-

dimensionality of the LiDAR signals (hz ~ 50) and the massive number of spatially 

dependent observations (n ~ 105), impossible to attempt with common computing resources. 

In the following section, we formulate a viable alternative to model (3.1) and (3.2).

3.2 The Spatial Factor NNGP Model

To make models (3.1) and (3.2) tractable with limited computing power, we combine a 

dimension reduction approach and a sparsity inducing technique. In particular, we introduce 

the spatial factor NNGP model (SF-NNGP), which brings together the spatial factor model 

(SFM) structure (Schmidt and Gelfand, 2003; Finley et al., 2008; Zhang, 2007; Ren and 

Banerjee, 2013) with Nearest Neighbor Gaussian processes (NNGPs) (Datta et al., 

2016b,c,a).

While the SFM structure enables the analysis of high-dimensional response vectors by using 

linear combinations of a relatively small number of independent stochastic processes, 

NNGPs make possible fitting spatial process models when the number of spatial 

observations is forbiddingly large. NNGPs approximate the parent (dense) GP by using the 

natural representation of sparsity provided by graphical models (Lauritzen, 1996; Murphy, 

2012), this by assuming conditional independence—where conditioning is on the nearest 

neighbors—with locations outside of the neighbor set. The result is a proper (but sparse) GP 

that accurately approximates the original dense GP. In contrast to other sparsity inducing 

approaches, NNGPs allow for interpolation at unobserved locations, and can be used to 

make full inference on model parameters, including the latent processes. Combining the 

SFM structure with NNGPs provides a methodology capable of coping simultaneously with 

high-dimensional response vectors and a large number of spatially dependent observations.

Under the traditional SFM structure, the spatial dependence is introduced by defining the 

spatial process as w⋆(s) = Λw(s) GP(0, ℋ( ⋅ |ϕ)), where Λ is a factor loadings matrix 

(commonly tall and skinny) and w(s) is a small-dimensional vector of independent spatial 

GPs, providing the non-separable multivariate cross-covariance function given by

ℋ(h ϕ) = cov(Λw(s), Λw(s + h))

= ∑
k = 1

qw
Ck(h ϕk)λkλk′ ,

(3.3)

for locations s, s + h ∈ D. Here, Ck(h |ϕk)’s are univariate parametric correlation functions, 

and λk is the kth column of Λ. This cross-covariance matrix is induced by q-variate (q ≤ l) 
spatial factors w(s) with independent components wk(s) GP 0, Ck( ⋅ |ϕk) .

As such, models (3.1) and (3.2) can be reformulated as SF-NNGPs by characterizing the 

spatial processes w*(s) and v*(s) as

w⋆(s) = Λzw(s) and v⋆(s) = Γv(s), (3.4)
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where the matrices Λz = (λℎk
(z)) ℎz × qw, and Γ = (γlr) ℎy × qv correspond to the factor loadings 

matrices, and the new spatial factors for s ∈ D are given by

w(s) ∏
k = 1

qw
NNGP 0, C( ⋅ ϕk

w) , and

v(s) ∏
r = 1

qv
NNGP 0, C( ⋅ ϕrv) .

The notation NNGP 0, C( ⋅ |ϕk
w)  and NNGP 0, C( ⋅ |ϕr

v)  denotes the Nearest Neighbor 

Gaussian Processes derived from the parent processes GP 0, C( ⋅ |ϕk
w)  and GP 0, C( ⋅ |ϕr

v) , 

respectively. Here, C( ⋅ |ϕ) represents the spatial correlation function with spatial decay 

parameter ϕ. The factor model representation in (3.4) leads to a massive reduction in the 

dimensionality of the problem since the spatial factors w(s) = (wk (s): 1 ≤ k ≤ qw) and v(s) = 

(vr (s): 1 ≤ r ≤ qv), have dimensions qw << hz and qv ≤ hy.

Bringing these elements together, and letting Λy = ϒΛz = λlk
(y)

ℎy × qw, a computationally 

viable version of (3.1) and (3.2) is

Stage 1: z(s) = Xz(s)′βz + Λzw(s) + εz(s) (3.5)

Stage 2:y(s) = Xy(s)′βy + Λyw(s) + Γv(s) + εy(s), (3.6)

In general, additional constraints are required for factor models to be identifiable (Anderson, 

2003). Identifiability for spatial factor models can be achieved either by making the upper 

triangle of the loadings matrix equal to 0 and its diagonal elements all equal to 1 (Geweke 

and Zhou, 1996; Lopes and West, 2004; Aguilar and West, 2010), or as in Ren and Banerjee 

(2013), by fixing the sign of one element in each column of the factor loadings matrix, while 

enforcing an ordering constraint among the spatial decay parameters of the univariate 

correlation functions. We choose to ensure rotation and scale identifiability by using the 

former approach.

With the SFM structure in place, introducing the NNGP reduces the expensive ( nz3qw and 

ny3qv) calculation required to invert the dense covariance matrices from the parent GPs, by 

nzqw and nyqv parallel operations, each of order m3. Here, m is the number of neighbors 

considered for the NNGP with m << ny ≤ nz. In simulations, Datta et al. (2016b) found that 

in most cases 10 ≤ m ≤ 20 provides an excellent approximation to the parent process; thus, 

the number of operations required is nearly linear in n.

For completeness, additional details regarding SFMs and NNGPs, as well as the sampling 

algorithm, are included in the online supplement. For a more thorough treatment of SFM’s 

we refer the reader to Ren and Banerjee (2013); Genton and Kleiber (2015), and for NNGPs 

to Datta et al. (2016c).
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3.3 Prior Specification and Hierarchical Formulation

Importantly, models (3.5) and (3.6) are fitted separately so the w(s)’s exclusively capture the 

spatial signal present in the LiDAR signals. However, using plug-in estimates for w(s) (e.g., 

the posterior means) in (3.6) disregards the uncertainty present in the LiDAR spatial signal. 

Thus, to propagate this uncertainty through the forest outcome predictions, at each iteration 

of the from the Markov Chain Monte Carlo (MCMC) algorithm for y(s), we draw a sample 

for w(s) (s ∈ Ty) MCMC samples obtained when fitting model (3.5).

As mentioned in the previous section, the stochastic processes that capture the spatial 

structure are assumed to follow NNGPs. Given that the NNGP is a proper Gaussian Process, 

at a finite collection of locations the NNGPs considered induce zero-centered multivariate 

normal priors with covariance matrices given by C(w) and C(v), respectively. Additionally, 

we use suitably noninformative priors for all other parameters, which make for a direct 

sampling strategy.

In particular, we assume that β is either flat or conjugate normal. The matrices Γ and Λz are 

constrained as described above, with elements below the diagonal assumed to be standard 

normal. All elements in Λy are also assumed to follow a standard normal distribution. The 

diagonal entries in Ψz and Ψy are assigned half-t priors. Lastly, we assume uniform priors 

for the elements of the spatial decay vectors ϕw = (ϕw,k: 1 ≤ k ≤ qw) and ϕv = (ϕv,r: 1 ≤ r ≤ 

qv), in the interval (−log 0.05/ζmax, −log 0.01/ζmin), where ζmin and ζmin are the minimum 

and maximum distances across all locations. Given that ϕz and ϕy are not conjugate with 

their corresponding likelihood, these are sampled with random walk Metropolis steps.

The joint posterior densities for the first and second stages of the algorithm are proportional 

to

Stage 1:

π ϕw Nnzqw wTz 0, C(w) ∏
k = 1

qw
∏
j > k

ℎz
N λjk

(z) 0, 1

× π βz ∏
j = 1

ℎz
ℐG ψjz ν/2, ν/az, j ℐG az, j 1/2, 1/A2

× ∏
si ∈ Tz

Nℎz z si Xz si ′βz + Λzw si , Ψz ,

(3.7)

Taylor-Rodriguez et al. Page 8

Stat Sin. Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stage 2:

π ϕv Nnyqv vTy 0, C(v) ∏
k = 1

qw
∏
j = 1

ℎy
N λjk

(y) 0, 1 ∏
r = 1

qv
∏
j > r

ℎy
N γjr 0, 1

× π βy ∏
j = 1

ℎy
ℐG ψj

y ν/2, ν/ay, j ℐG ay, j 1/2, 1/A2

× ∏
si ∈ Ty

Nℎy y si Xy si ′βy + Λyw si + Γv si , Ψy ,

(3.8)

where, the vectors wTz = w si ′:si ∈ Tz ′, and vT = v si ′:si ∈ Ty ′, such that

Nnzqw wT 0, C(w) = ∏
si ∈ Tz

Nqw wi si Bi
(w)wN(i), Fi

(w) , and

Nnyqv vT 0, C(v) = ∏
si ∈ Ty

Nqv v si Bi
(v)vN(i), Fi

(v) .
(3.9)

The expressions on the right hand side of (3.9) result from the construction of the NNGP 

(see online supplement). For an m-neighbor NNGP, denote by mi = min {m,i − 1} the 

number of neighbors for location si. The index set N(i) for location si ∈ Tz contains its mi 

nearest neighbors; thus wN(i) corresponds to the vector w sj ′:sj ∈ N(i) ⊂ Tz ′. The 

neighbor sets are defined analogously for the v(si)’s. Letting u ∈ {w,v}, Bi
(u) denotes the qu × 

miqu block matrix, with qu × qu diagonal blocks containing the kriging weights for the qu 

spatial factors for each neighbor. Also, Fi
(u) corresponds to the qu × qu diagonal matrix with 

the variances for the qu spatial factors conditioned on the neighbor set N(i) (see Section A.2 

in the supplement for details regarding Bi
(u) and Fi

(u)). Lastly, the parameters ay, j j = 1
ℎy  and 

az, k k = 1
ℎz  complete the hierarchical representation of the half-t prior distribution assumed 

for ψj
y and ψk

z, respectively, and the hyperparameter A is simply chosen to be some large 

value (say, 100).

Due to prior conjugacy, the full conditional densities for all parameters, except for those of 

ϕw and ϕv, can be sampled using simple Gibbs steps. Further details on the sampling 

algorithm are deferred to the online supplement.

3.4 Imputation and Prediction

As mentioned before, LiDAR signals are collected over the large spatial region Tz, whereas 

forest outcome observations are confined to the smaller subset of locations in Ty. 

Additionally, there are relevant out-of-sample locations where neither LiDAR nor forest 

outcomes are observed, T∅. And finally, there are some locations within the corresponding 

reference sets Tz and Ty that have some or all missing outcomes. It is thus essential for this 

modeling effort to provide the means to accurately impute the missing values in Tz or Ty, 
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and generate LiDAR predictions in T∅ and forest outcome predictions within 

T∅ ∪ Tz\Ty . Given the NNGP formulation, both imputation and out-of-sample prediction 

are remarkably inexpensive.

Imputation is straightforward. Let s• ∈ Tz be a location where z(s•) is missing. Then z(s•) is 

drawn as part of the sampling algorithm from Nℎz Xz s• ′βz + Λzw s• , Ψz , where w(s•) is 

sampled from the full conditional posterior density in Equation (B.13) of the online 

supplement. For a missing value y(s•), where s• ∈ Ty, the procedure is analogous using the 

full conditional posterior for v(s•) and the likelihood for y(s•).

The procedure to predict a new LiDAR observation z(s∘), so ∈ T∅, begins by sampling the 

spatial factor w(s∘) from Nqw B∘
(w)wN s∘ , F∘

(w) , with B∘
(w) and F∘

(w) defined as before. Note 

that the nearest neighbor set N(s∘) is assumed to be in Tz. Then, we draw Z S∘ ZTz from 

Nℎz Xz S∘ ′βz + Λzw s∘ , Ψz). This is done by conditioning on the posterior samples of {βz, 

Λz, Ψz, ϕw} obtained from the fitting algorithm.

To predict the forest outcomes y(s∘) at s° ∈ T∅ ∪ Tz\Ty , first we generate samples of 

v s∘ Nqv B°
(v)vN so , F°

(v) . Given that y(s∘) depends on w(s∘), we combine the posterior draws 

of {βy, Λy, Γ, Ψy, ϕv} with those of w(s∘), obtained when predicting z(s∘), and draw 

predicted values for y s∘ yTy from Nℎy Xy s∘ ′βy + Λyw s∘ + Γv s∘ , Ψy .

4. Simulation: Recovering Low-dimensional Structure

In the following simulation exercise we focus exclusively on the high-dimensional 

component (i.e., the first stage) of the model described above. The simulation below was 

devised to illustrate the ability of our approach to recover true low-dimensional structure 

when data is generated from a low-dimensional SFM with dense spatial factors.

We generate a synthetic dataset for hz = 50 outcomes in nz = 10, 000 locations from the 

spatial factor model z(s) = Xz(s)′βz + Λzw(s) + εz(s). Here, Xz (s)′ is a 50 × 150 block-

diagonal matrix of predictors, and βz is the vector of regression coefficients, both defined as 

before. We consider the same three predictors for all outcomes. The spatial factors 

w(s) ∏k = 1
8 GP(0, C( ⋅ |ϕk

z), where C( ⋅ |ϕk
z) is an exponential correlation function with decay 

parameter ϕk
z. Additionally, for identifiability we assume that the 50 × 8 factor loadings 

matrix Λz has zeros in the upper triangle and ones along the diagonal. Finally, εz Nℎz 0, Ψz , 

with Ψz = diag ψk
z :k = 1, …, 8 .

We assess the ability of model (3.5) to recover model parameters from the true data 

generating process, impute missing outcomes, and predict at out-of-sample locations. The 

SF-NNGP model was fitted for qw ∈ {3, 5, 8, 10} spatial factors and assuming m =10 

neighbors. Out of the 10, 000 locations, we assume all 50 outcomes to be missing in 200 
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locations chosen at random, and impute them. Additionally we hold out n0 = 500 locations 

for out-ofsample prediction and model validation.

The first result worth highlighting is the gains in computational efficiency provided by the 

SF-NNGP. For this particular simulation exercise—a relatively computationally challenging 

problem—fitting the largest model considered (i.e., qw = 10) with 50,000 MCMC iterations, 

on a Linux server with Intel i7 processor (two 8-core) and 16 GB of memory, the runtime 

was 4.88 hours. As shown below, the proposed approach is able to recover the true model 

parameters, accurately impute missing data and generate precise predictions, all of these 

equipped with suitable uncertainty estimates.

For all values of qw the SF-NNGP accurately recovered the regression coefficients βz for all 

predictors and responses (Figure 7 in the online supplement). In contrast, the quality of the 

estimates for the small-scale variance components ψk
z’s was compromised when qw was 

lower than the true number of spatial factors. This behavior is expected, for lower values of 

qw the ψk
z’s attempt to compensate for the additional signal that the spatial component with 

too few spatial factors is unable to capture (Figure 8 in the supplementary material). For qw 

= 8 and qw = 10, the coverage for ψz was 88% and 84%, respectively, with all ψk
z close to ψk

z

with tight 95% credible sets.

When qw ≠ 8, the dimensions of the fitted Λz, ϕw, and w(s) do not match those of their 

analogs in the true model. Therefore, to assess the quality of fit for the spatial signal for all 

values of qw considered, we instead compare the fitted spatial component w*(s) = Λzw(s), 

for s ∈ Tz, to that of the true model, given by w⋆(s) = Λzw(s).

For all locations in Tz we calculate Δ(s) = w⋆(s) − w⋆(s) (fitted minus true spatial signal) for 

each MCMC draw of the parameters. For all s ∈ Tz we obtained the median and 95% 

credible set for Δ(s). To facilitate visualization, in Figure 2 we show the results for only 

three responses selected at random from the 50 considered. The columns of each panel map 

quantiles 2.5, 50 and 97.5 for Δ(s) with 3 locations (13, 23 and 48) plotted by row. The fitted 

spatial signal when qw ∈ {3, 5} recovers only partially the true signal, with coverages of 

26.13% and 42.06%, respectively for qw = 3 and qw = 5. When qw ∈ {8, 10} the recovery of 

the spatial signal is astonishingly accurate, having over all responses 94.78% coverage with 

qw = 8, and 94.18% coverage with qw = 10.

In addition to the previous results, it is also encouraging to find that when the dimension of 

the SF-NNGP model matches that of the true model, both the factor loadings (Λz) and the 

spatial decay parameters (ϕz) from the true spatial process can be recovered accurately 

(Figures 3 and 4).

Model performance in terms of the accuracy of both imputation and prediction improves 

drastically as the number of factors approaches the truth – see Figures 11 and 12 in the 

online supplement.
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Table 1 provides a comparison as qw varies in the SF-NNGP using different measures of out-

of-sample predictive performance. In particular, the continuous rank probability score 

(CRPS) (Equation (21) in Gneiting and Raftery, 2007) and the root mean squared prediction 

error (RMSPE) (Yeniay and Goktas, 2002) favor the model with qw = 8. The coverage of the 

95% credible intervals of the predictions was close to the nominal value for all qw; however, 

the width of the interval rapidly decreases as qw approaches the true number of spatial 

factors.

Both the fitted values for the spatial signals and the out-of-sample predictions with qw = 8 

and qw = 10 are practically indistinguishable from each other. Furthermore, the model with 

qw = 8 accurately recovers all the true factor loadings (Figure 3). Interestingly, with qw = 10, 

visual inspection of the estimates for columns 1 through 6 in Λz indicate that this model 

accurately estimates the corresponding true parameter values (see Figure 10 in the online 

supplement). However, in this same model the estimated parameter values in columns 7 and 

8 of Λz display departures from their true values; and the 95% credible sets for all the 

unconstrained elements in the 9th and 10th columns of Λz contain zero (see Figure 9 in the 

online supplement). These results provide guidance regarding the selection of the number of 

factors qw to use. As there is no gain in using the model with qw = 10 over the one with qw = 

8 in terms of predictive accuracy or parameter fit, the results favor the more parsimonious 

model of the two.

5. Modeling LiDAR Signals and Forest Structure

Our focus in the subsequent analysis is to assess and interpret the utility of SF-NNGP spatial 

factors to explain variability in the three forest outcomes defined in Section 2, measured on 

the BCEF. Following the two stage model developed in Section 3.2, we fit (3.5) using qw ∈ 
{1, 2, 3, 4, 5, 6, 7, 8} spatial factors and m =10 neighbors to the BCEF LiDAR data 

comprising nz=50,197 signals each of length hz=57. The model mean included only an 

intercept. Prior specification followed Section 3.3, with the support for elements in ϕw 

adjusted to match the BCEF spatial extent.

The ny = 197 locations with hy=3 forest outcomes were used in the second stage model 

(3.6). To more clearly interpret the spatial factors’ ability to explain variability in forest 

outcomes, we decided to avoid potential issues with spatial confounding (Hanks et al., 2015) 

and set v(s) to zero. In practice, however, if our main objective is to maximize predictive 

performance then this residual spatial random effect should likely be included in the model. 

In addition to the spatial factors, the second stage model was informed by the three Landsat 

8 tasseled cap predictor variables defined in Section 2 which, along with an intercept, were 

included in Xy(s). Importantly, these predictor variables are available across the entire 

BCEF, hence, given predicted values of the spatial factors at unobserved locations, we can 

create complete-coverage forest outcome maps.

Posterior inference for all candidate models was based on three chains of 50,000 post burn-

in MCMC samples. Chains converged by 20,000 MCMC iterations. Using the same 

computer configuration detailed in Section 4, total runtime for the most demanding model, 

i.e., qw = 8, was ~36 hours.
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The eight candidate models, specified by qw, were assessed based on their ability to inform 

forest outcome prediction. This was done by fitting each of the first stage models, then 

fitting their corresponding second stage models using data from 99 of the197 available 

locations in Tz. The three forest outcomes were then predicted for the remaining 98 out-of-

sample locations. Scoring rules and other summaries of the posterior predictive distributions 

for the 98 out-of-sample locations are presented in Table 2.

Increasing the number of spatial factors improves CRPS and RMSPE for each forest 

outcome Table 2. Exploratory analysis showed gains in predictive performance were 

negligible beyond qw = 4 for AGB and qw = 5 for TD and BA. Given that the qw=5 model 

generally yielded the “best” predictions, it was selected for exposition below.

Table 3 provides estimates for the second stage model’s spatial factor regression coefficients, 

i.e., elements in Λy. These results show that several of the spatial factors explain a 

substantial portion of variability in the forest outcomes. It is, however, difficult to interpret 

the λ(y)’s without a sense of what characteristic of z(s) the spatial factors are capturing. 

When considered with estimates in Table 3, Figure 5 provides some biological interpretation 

of the spatial factors. Specifically, each panel in Figure 5 represents a spatial factor. The 50 

lines in each panel are observed LiDAR signals with color corresponding to the 25 largest 

(blue lines) and 25 smallest (red lines) estimated spatial factor value.

There are some general biological relationships between forest canopy structure and AGB, 

TD, and BA. Very low maximum canopy height is indicative of a young regenerating forest 

(e.g., regrowth after a fire) that would be characterized by low AGB, high TD, low BA. If 

the majority of trees in a forest have a high canopy height then we expect high AGB, low 

TD, and high BA (i.e., few large diameter mature trees dominate the area). When the forest 

is characterized by trees of many different heights (i.e., tree crowns in several vertical strata) 

then we might expect moderate/high AGB, moderate TD, and moderate/high BA. Some of 

these expected relationships are observed when comparing Table 3 and Figure 5. For 

example, the top left panel in Figure 5 differentiates between regenerating forests and all 

other forest structure, i.e., blue lines show a spike of energy returned at or near ground level 

versus red lines which show the majority of the energy is returned at or above several 

meters. Hence negative regression coefficients λAGB, 1
(y)  and λBA, 1

(y)  in Table 3. The LiDAR 

signals shown in the top right panel in Figure 5 differentiates between young and old single 

cohort forests (i.e., all trees were regenerated around the same time and there is little vertical 

variation in canopy height); hence, negative λAGB, 3
(y)  and λBA, 3

(y)  in Table 3. The top middle 

and bottom left panels in Figure 5 generally separate blue signal mature 20+ and ~20 meter 

canopy height, respectively, from lower stature ~10 meter canopy height forest. Consistent 

with the biological expectation, the negative λTD, 2
(y)  and λTD, 4

(y)  suggest forests associated with 

red LiDAR signals have higher tree density relative to the older taller forests.

As detailed in Section 1, complete coverage maps of the forest outcomes with associated 

uncertainty estimates are important data products that can be delivered by the proposed two 

stage model. Following Section 3.4 and using the full data set depicted in Figure 1, we 

predicted the forest outcomes on a 30× 30 m grid over the BCEF. Figure 6 provides median 
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and 95% credible interval width maps for each outcome. Non-forested areas were omitted 

(white regions on the maps). Posterior predictive point estimates match well with the 

distribution of the forest outcomes across the BCEF and are clearly informed by the LiDAR 

factors which are capturing key forest structure characteristics. Most importantly, the 

prediction uncertainty maps, displayed in the right column of Figure 6, accurately reflect our 

lack of information for prediction units that are far from the flight lines were LiDAR data 

are available, i.e., we achieve more precise posterior predictive distributions along and 

adjacent to locations where LiDAR data are available. Far from the LiDAR flight lines 

prediction is only informed by the Landsat 8 tassel cap predictor variables, which in this 

study explained very little variability in the forest outcomes.

6. Concluding Remarks

We formulated an approach to model high-dimensional spatial data over a large set of 

locations, and developed an efficient implementation in C++. The SF-NNGP enables the 

analysis of multivariate spatially referenced datasets that, due to their magnitude, could not 

have been rigorously explored before. It does so by combining the ability of SFMs to 

compress the signal from high-dimensional structures into a few dimensions with the 

computational scalability of NNGPs.

The algorithm was used to exploit the information from the high-dimensional LiDAR 

signals to jointly model and generate LiDAR based maps of multiple forest variables. 

Importantly, the proposed two stage model provides a viable approach to producing spatially 

continuous maps from sparsely sampled LiDAR and forest measurements, and delivers 

spatially explicit uncertainty quantification that captures the irregular distribution of 

information across the domain of interest. Such frameworks will become increasingly 

importantly as sampling LiDAR systems, such as GEDI, come on-line in the near future. 

These approaches can also be extended to help guide LiDAR and field data acquisition to 

minimize prediction uncertainty.

Importantly, when fitting a spatial factor model one must choose the number of factors qw to 

be used in the model; there are different strategies to address this issue. The approach we 

adopt here–looking at the out-ofsample evaluation metrics for different choices of qw and 

selecting the one where the curves flatten out–is a pragmatic solution and is similar in spirit 

to cross-validation approaches commonly used to tune hyper-parameters in richly 

parametrized models. Like any other cross-validation approach, this leads to additional 

computation, but parallel computing opens the possibility of conducting simultaneous 

MCMC runs for different values of qw. As shown, both in the simulation experiment as well 

as in the BCEF data analysis, this heuristic provides sufficiently good results. Other 

automated rank selection schemes are available in the literature, such as those proposed in 

Lopes and West (2004) and in Ren and Banerjee (2013); however, these drastically increase 

the computational burden of an already computationally costly problem.

A research direction we are keen on exploring is an extension for spatio-temporal data. For 

this type of data it is necessary to posit a strategy to select the neighbors in the spatio-

temporal domain, following the discussion presented in Datta et al. (2016a).
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Although our method presents a substantial improvement in terms of scalability over 

existing approaches, further efforts are required to scale multivariate spatial methods to truly 

massive datasets. For instance, the ultimate goal for forest variable mapping assisted by 

sampled LiDAR in interior Alaska is a complete-coverage map of the entire domain (e.g., 46 

million ha), which could easily require models capable of assimilating LiDAR signals in 

more than 108 locations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Bonanza Creek Experimental Forest extent with color enhanced Landsat image and 

locations where the LiDAR signals were measured (LiDAR in the legend) and locations 

where both LiDAR signals and forest variables were measured (LiDAR & inventory in the 

legend).
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Figure 2: 

Fitted minus true spatial signal, Δ(s) = w⋆(s) − w⋆(s), for locations s13, s23, s48. From left to 

right the columns in each panel show percentiles 2.5, 50 and 97.5 for Δ(s), respectively.
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Figure 3: 
Fitted vs true factor loadings matrix parameters (95% credible sets and medians) for qw = 8.
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Figure 4: 
Fitted vs true spatial decay parameters parameters (95% credible sets and medians) for qw = 

8.
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Figure 5: 
Observed LiDAR signals with the 25 largest (High in the legend) and 25 smallest (Low in 

the legend) values of w(s)’s elements from the qw = 5 model.
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Figure 6: 
Model qw = 5 posterior predictive distribution median and 95% CI width for AGB, TD, and 

BA forest variables over Bonanza Creek Experimental Forest.
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Table 1:

Out-of-sample prediction comparison across models with different number of spatial factors.

qw CRSP RMSPE 95% Coverage 95% CI Width

3 0.85 1.61 95.82 6.14

5 0.67 1.28 95.43 4.79

8 0.45 0.83 94.78 3.10

10 0.45 0.83 94.84 3.10
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Table 2:

Cross-validation prediction summary for forest outcomes given increasing number of spatial factors qw. Bold 

values identify lowest CRPS and RMSPE.

qw CRSP RMSPE 95% Coverage 95% CI Width

1 26.21 51.37 91.88 161.24

AGB
2 26.36 52.02 92.39 162.14

3 23.64 46.95 95.94 155.71

4 23.53 46.93 93.91 155.66

5 24 47.54 96.45 157.75

6 24.47 47.8 94.92 172.64

7 24.75 47.84 95.43 174.44

8 24.76 48.02 96.45 182.12

1 1017.7 1980.62 92.39 6010.6

TD
2 1006.02 1957.54 93.4 5944.81

3 1007.72 1954.87 93.4 6068.29

4 997.32 1955.2 93.4 6040.06

5 989.31 1930.76 94.92 6182.2

6 998.3 1944.22 94.42 6223.73

7 1005.26 1965.81 95.43 6450.5

8 1004.36 1955.08 96.95 6503.17

1 5.53 10.29 91.88 36.34

BA
2 5.4 10.01 94.42 36.85

3 5.13 9.54 93.91 35.16

4 5.17 9.62 93.4 36.21

5 5.16 9.58 93.4 36.51

6 5.2 9.59 96.45 38.62

7 5.24 9.73 95.43 38.34

8 5.27 9.72 94.42 37.93
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Table 3:

Elements of Λy median and 95% credible intervals for the qw = 5 model. Bold entries indicate where the 95% 

credible interval excludes zero.

Parameter 50% (2.5%, 97.5%)

λAGB, 1
(y)

−6.65 (−8.89, −4.23)

λAGB, 2
(y)

27.20 (−14.11, 65.14)

λAGB, 3
(y)

−278.29 (−324.52, −232.28)

λAGB, 4
(y)

−46.15 (−162.56, 75.91)

λAGB, 5
(y)

−308.81 (−524.42, −90.45)

λTD, 1
(y)

−1.77 (−21.35, 17.60)

λTD, 2
(y)

−357.49 (−718.82, −7.86)

λTD, 3
(y)

269.03 (−137.51, 667.62)

λTD, 4
(y)

−1777.21 (−2696.67, −708.08)

λTD, 5
(y)

2457.52 (681.18, 4337.97)

λBA, 1
(y)

−2.93 (−3.94, −1.75)

λBA, 2
(y)

−2.07 (−19.02, 15.79)

λBA, 3
(y)

−98.64 (−119.79, −76.24)

λBA, 4
(y)

−72.00 (−120.60, −23.00)

λBA, 5
(y)

−80.55 (−177.44, 20.51)

Stat Sin. Author manuscript; available in PMC 2020 December 11.


	Abstract
	Introduction
	Data Description
	Modeling Strategy
	Linking LiDAR and forest inventory data
	The Spatial Factor NNGP Model
	Prior Specification and Hierarchical Formulation
	Imputation and Prediction

	Simulation: Recovering Low-dimensional Structure
	Modeling LiDAR Signals and Forest Structure
	Concluding Remarks
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:
	Table 3:

