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In light of recent findings on the small proportion of variance in body mass index (BMI) explained by shared
environment, and growing interests in the role of genetic susceptibility, we assessed the relative contribution of
socioeconomic status (SES) and genome-wide polygenic score for BMI to explaining variation in BMI. Our final
analytic sample included 4,918 White and 1,546 Black individuals from the US National Longitudinal Study of
Adolescent to Adult Health Wave IV (2007–2008) who had complete measures on BMI, demographics, SES,
genetic data, and health behaviors. We used ordinary least-squares regression to assess variation in log(BMI) as
a function of the aforementioned predictors, independently and mutually adjusted. All analyses were stratified by
race/ethnicity in the main analysis, and further by sex. The age-adjusted variation in log(BMI) was 0.055 among
Whites and 0.066 among Blacks. The contribution of SES and polygenic score ranged from less than1% to 6%
and from 2% to 8%, respectively, and majority of the variation (87%–96%) in log(BMI) remained unexplained.
Differential distribution of socioeconomic resources, stressors, and buffers may interact to produce systematically
larger variation in vulnerable populations. More understanding of the contribution of biological, genetic, and
environmental factors, as well as stochastic elements, in diverse phenotypic variance is needed in population
health sciences.

body mass index; genetic; obesity; polygenic score; socioeconomic status; variation

Abbreviations: Add Health, National Longitudinal Study of Adolescent to Adult Health; BMI, body mass index; SE, standard error;
SES, socioeconomic status; SNP, single nucleotide polymorphism.

Globally, approximately 2 billion people are estimated
to be overweight, with one-third of them being obese (1).
Between 1980 and 2008, the prevalence of obesity increased
from 28.8% to 36.9%, and the mean body mass index (BMI)
increased by 0.4 per decade for men (2). During the same
period, the prevalence of obesity increased from 29.8% to
38.0%, and the mean BMI increased by 0.5 per decade for
women (2). Evidence also suggests increasing variation in
BMI distribution within and across countries (3). Given the
size of the population affected by overweight and obesity,
as well as the well-known health impairments associated
with overweight and obesity (4, 5), researchers have focused
on identifying various modifiable risk factors ranging from
global food supply system (6), societal norms (7), socioe-
conomic and physical environments (8, 9), and individual
health behaviors (10).

In these studies that focus on population-level differences
in BMI and obesity, the importance of risk factors is deter-
mined on the basis of the statistical significance and the
magnitude of average summary measures. However, factors
that explain a large proportion of population-level differ-
ences may not necessarily provide a basis for an effective
prediction rule for individuals if they account for only a
small proportion of individual-level differences (11, 12).
For instance, despite prior findings establishing a strong
association between socioeconomic status (SES; i.e., income
and educational attainment) and mean BMI (13, 14), in a
recent study in which variation in women’s BMI across 58
low- and middle-income countries was assessed, only 2% of
the interindividual variance was explained by basic demo-
graphic and socioeconomic factors, including place of resi-
dence, education, household wealth, and marital status (15).
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At the same time, recent genetic studies have identi-
fied many common genetic variants associated with BMI
(16–18). In a large genome-wide association study for BMI,
researchers identified 97 BMI-associated loci accounting for
approximately 2.7% of BMI variation (18). Similar results
have been found in the Japanese population (19). Although
individual variants do not account for a large proportion of
the phenotype, a polygenic score summarizing genome-wide
genotype data allows quantification of the cumulative effect
of all relevant single nucleotide polymorphisms (SNPs) in
explaining disease or trait liability (20, 21). In a recent
study deriving a new polygenic predictor comprising 2.1
million BMI-associated common variants, 23.4% of the
heritability in BMI was estimated to be explained among
UK Biobank adult participants (20). In other studies, 40% to
70% of interindividual variance in BMI has been attributed
to genetic factors (22, 23).

It is also suggested that the observed effect of the poly-
genic score reflects not only the direct genetic effect but also
indirect effects mediated via household environment (24).
Study findings on gene-environment interactions suggest the
role of genetic susceptibility may be accentuated in “obeso-
genic environments”—defined broadly as social deprivation
(25) and education (26) or more specific behaviors like
physical inactivity (27) and energy-dense food consumption
(28, 29)—although it is unlikely that any one particular
aspect of the environment would have a predominant effect
over other environmental factors (30). Despite continued
interest in the interactive role of socioeconomic factors
and genetic variants in relation to BMI, no study, to our
knowledge, has systematically examined the joint contri-
bution of SES and genetic factors in explaining variation
in BMI.

In this study, data from the National Longitudinal Study
of Adolescent to Adult Health (Add Health) were used to
assess the relative contribution of SES, lifestyle, and genetic
factors to explaining variations in BMI. The consistency
in variance explained by these factors was assessed across
different subgroups defined by race/ethnicity and sex.

METHODS

Data and Sample

Data were taken from the latest wave of Add Health, an
ongoing, nationally representative survey of adolescents in
the United States (31). In 1994, Add Health administered in-
school questionnaires to students selected through a strati-
fied random sample of all US high schools (n = 90,118),
and a subsample (the core sample) participated in home-
based interviews between 1994 and 1995 (n = 20,745).
During the 2007–2008 Wave IV data collection, saliva and
capillary whole blood samples were collected from respon-
dents. Of 15,701 individuals interviewed, 15,159 consented
to genotyping, and 12,254 agreed to genetic data archiv-
ing. DNA extraction and genotyping were conducted on
this sample using 2 genotyping platforms, Illumina Omni1
and Omni2.5 (Illumina, Inc., San Diego, California). Of
the 9,129 cases in the genetic file, 8,592 individuals had
valid information pertaining to the Add Health study design.

We restricted our analysis to participants with relatively
homogenous European American and African American
genetic ancestry (n = 7,097). Imputation was conducted
on SNPs “called” in greater than 98% of the samples with
minor allele frequency greater than 1% using the Michi-
gan Imputation Server (32). For the European-descent sub-
sample, imputation analysis used the Haplotype Reference
Consortium reference panel (33). For the African American
subsample, imputation analysis used the 1,000 Genomes,
version 3, reference panel (34). To eliminate confounding
with pregnancy, we omitted 248 women respondents who
were pregnant at the time of their Wave IV interviews.
After a listwise deletion of individuals with missing data on
covariates (n = 385 cases), we achieved an analytic sample
of 6,464 cases with complete data on polygenic score for
BMI and all covariates (n = 4,918 White and n = 1,546
Black individuals). Data on all variables came from Wave
IV, except for race/ethnicity and sex identifications, which
were drawn from Wave I.

Outcome

BMI was based on measured height and weight and was
calculated by dividing weight in kilograms by height in
meters squared. Given that BMI was not normally dis-
tributed, we used log-transformed BMI for all analyses.

Socioeconomic Status

Individuals’ SES was measured via 3 proxy indicators.
Personal income was self-reported and categorized into
quintiles. Completed education was measured via a binary
variable equal to 1 for respondents who reported completing
a 4-year college degree (0 otherwise). Homeownership sta-
tus was also a binary variable equal to 1 for those who own
their home and 0 otherwise.

Polygenic Score for BMI

The genome-wide polygenic score for BMI was created
from a large-scale genome-wide association study discov-
ery sample that included Europeans only (18). Population
stratification, or the nonrandom patterning of alleles across a
population of different ancestry, is a potential confounder in
genome-wide association studies (35). Therefore, to address
this problem, apart from conducting our analyses separately
within White individuals and Black individuals, we also
included the top 10 principle components of the variance-
covariance matrix of the genetic data (36), because the first
principal components estimated from genome-wide SNP
data are thought to reflect genome-wide patterning of allele
frequencies by shared ancestry (37). Importantly, within
each of our 2 ancestral groups, we used principal compo-
nents that were calculated within both groups as ancestry
specific. The polygenic scores were created on all unrelated
individuals (using only 1 member of a related group) and
then projected onto the small number of remaining related
individuals to preserve power and avoid inflated statistics
(38, 39).
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Other Covariates

We considered several other demographic and health be-
havior covariates. Sex was assessed via respondent self-
reports, as was age, which we categorized into the following:
24–26 years (referent), 27–29 years, and 30–33 years.
Respondents’ partnership status was defined using house-
hold roster data, and we used categories for “married/co-
habiting” and “single.” Last, our analysis included binary
measures of past-week physical activity (equal to 1 for
those engaging in any bouts of physical activity), current
daily smoking (equal to 1 for current smokers), and 2 meas-
ures of past-week fast-food and sugar-sweetened beverage
consumption with categories for 0 times, 1 or 2 times, 3 or
4 times, and 5 or more times.

Statistical Analysis

We used ordinary least-squares regression to assess var-
iation in log(BMI) as a function of the aforementioned
predictors. All analyses were stratified by race/ethnicity
(White vs. Black individuals). Although the use of European-
derived polygenic score prohibits direct comparison of
genetic distributions between different ancestry groups,
within-ancestral groups analyses are feasible (40). The
measurement error resulting from our use of a European-
derived polygenic score to predict BMI in Black individuals
will produce attenuated estimates (41), but we can still test
if this attenuation is modest enough in our Black sample
to demonstrate the same trends we observed in the White
sample. The age-adjusted model (model 1) was used as a
baseline for comparing the changes in log(BMI) variations
in subsequent models, where demographic variables (i.e.,
sex, relationship status), SES (i.e., education, income, home
ownership), polygenic score, and other health behaviors
(i.e., smoking, physical activity, fast-food consumption, and
sugar-sweetened beverage consumption) were included 1
at a time (models 2–5, respectively). We also assessed the
joint contribution of SES and polygenic score in model 6,
and all factors together in model 7. In these models, the
resulting β coefficients can be interpreted as the change
in BMI by 100 × (coefficient) for an increase in 1 unit
in the independent variable. The proportion of variance in
log(BMI) explained by covariate adjustment was computed
by taking the difference in residual variance between the
adjusted model and the base model, and converting to

percentage: [
σ 2

adjusted−σ 2
model 1

σ 2
model 1

]×100. We performed additional

analysis further stratifying the study population by sex.
All analyses were carried out in Stata 14 (StataCorp LLC,
College Station, Texas).

Ethics statement

The study was approved by the Colorado Multiple Insti-
tutional Review Board (COMIRB-16-0361).

RESULTS

Our final analytic sample (n = 6,464) was well balanced
in terms of sex (52% women) and reflective of the US pop-

ulation of young adults in terms of educational attainment
(31% with a 4-year college degree) (Table 1). A majority
of the sample (>80%) was 27–33 years old. In terms of
SES, the average personal annual income in the top quintile
group was approximately $67,000 and in the bottom quintile
group was just under $4,000. Approximately one-fourth of
the sample were self-identified daily smokers, and only 14%
were classified as being physically active. The mean BMI
was 29.11 (standard error (SE), 0.09) for the overall sample
and it varied by race/ethnicity (Blacks: 30.68, SE, 0.22;
Whites: 28.62, SE, 0.11) and by sex (men: 28.9, SE, 0.12;
women: 29.32, SE, 0.14) (Figure 1). Log(BMI) was used for
the remaining analyses and presentations.

Among Black individuals, sex, relationship status, poly-
genic score, and smoking were all statistically significant-
ly associated with log(BMI) in the fully adjusted model
(P < 0.01) (Web Table 2). The age-adjusted variation in
log(BMI) was larger among Blacks than Whites (σ 2

model 1 =
0.066). SES factors and polygenic score each independ-
ently explained 0.38% and 2.14% of the variation in
log(BMI), respectively, and were additive when considered
jointly (2.57% of the variation explained in model 6)
(Figure 2). All the variables taken together explained only
6% of the variance among Black individuals, leaving most
of the variation in log(BMI) unexplained (σ 2

model 7 = 0.062)
(Figure 3).

When stratified by race/ethnicity and sex, we consistently
found a significant association between polygenic score and
log(BMI) but not for SES and log(BMI) (Web Tables 3–
6). Although we did not conduct a formal interaction test
between sex and polygenic score, the largely overlapping
95% confidence interval around the β coefficient for the
polygenic score for women versus men (within the same
racial/ethnic group) indicated no statistically significant
difference in the association between the polygenic score
and log(BMI) by sex. For instance, among Blacks, there
was no apparent sex difference in the association between
polygenic score and log(BMI) (Black women: β = 0.05;
SE, 0.01; 95% confidence interval: 0.03, 0.07; Black men:
β = 0.03; SE, 0.01; 95% confidence interval: 0.01, 0.05).
The total age-adjusted variation in log(BMI) ranged from
0.045 for White men to 0.077 for Black women (Figure 3).
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In the fully adjusted model for Whites, women had, on
average, lower log(BMI) than men (β = −0.03; SE,
0.01), and completion of a 4-year college degree was
associated with statistically significantly lower log(BMI)
(β = −0.07; SE, 0.01) (Web Table 1, available at https://doi.
org/10.1093/aje/kwaa058). The polygenic score was also
statistically significantly associated with mean log(BMI)
(β = 0.06; SE, 0.00). Of the total variation in age-adjusted
log(BMI) among Whites ( 2

model 1 = 0.055), demographic
and SES variables explained 0.21% and 2.51%, respectively
(Figure 2). Polygenic score alone explained 8.39% of the
variation in log(BMI), whereas health behaviors explained
less than 1%. SES and polygenic score jointly explained
almost 10% of the variation in log(BMI), and all the varia-
bles taken together explained up to 11.16% of the varia-
tion in log(BMI) among White individuals. However, the
majority of the variation (88.84%) remained unexplained
(Figure 3).

σ
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Table 1. Descriptive Summary of Sample Characteristics by Selected Covariates (n = 6,464), US National Longitudinal
Study of Adolescent to Adult Health Wave IV, 2007–2008

Characteristic No. Mean (SE) Proportion (SE)

Body mass indexa 6,464 29.11 (0.09)

Black race/ethnicity 1,546 0.24 (0.01)

Women 3,384 0.52 (0.01)

Age category, years

24–26 1,060 0.16 (0.01)

27–29 3,335 0.52 (0.01)

30–33 2,069 0.32 (0.01)

Partnered 3,842 0.59 (0.01)

Personal annual income quintileb, USD

0–10,000 1,320 3,838.07 (100.29)

10,001–24,000 1,328 17,758.85 (107.52)

24,001–34,000 1,233 28,947.22 (80.11)

34,001–48,500 1,291 40,253.85 (110.85)

48,501–100,000 1,292 67,166.29 (450.88)

Four-year college degree 1,989 0.31 (0.01)

Homeowner 2,741 0.42 (0.01)

Daily smoker 1,702 0.26 (0.01)

Physically active 927 0.14 (0.00)

Weekly fast-food consumption

0 1,495 0.23 (0.01)

1–2 2,721 0.42 (0.01)

3–4 1,198 0.19 (0.01)

≥5 1,050 0.16 (0.01)

Weekly sugar-sweetened beverage
consumption

0 865 0.13 (0.00)

1–2 657 0.11 (0.00)

3–4 604 0.09 (0.00)

≥5 4,338 0.67 (0.01)

Abbreviation: SE, standard error.
a Calculated as weight (kg)/height(m)2.
b Means and SEs represent within-quintile estimates.

In terms of the variance explained, the contribution of SES
was largest for White women (5.79%) and smallest for
White men (0.81%), and the contribution of polygenic score
ranged from 2.49% for Black men to 9.04% for White men
(Figure 2). All variables taken together explained 6%–7%
of variation in log(BMI) for Black men and Black women,
and up to 13% for White women.

DISCUSSION

Five salient findings emerged from our analysis. First,
the amount of age-adjusted variation in log(BMI) was not
uniform across different subgroups defined by race/ethnicity
and sex; log(BMI) was approximately 70% larger for Black
women than for White men. Second, the contribution of

SES factors in explaining variation in log(BMI) was the
greatest for White women (5.8%), the least for White men
(<1%), and approximately 2%–3% for Black individuals.
Third, the proportion of variance explained by the polygenic
score was approximately 8% for Whites and 2% for Blacks.
Fourth, the total amount of variance explained by all factors
taken together was not necessarily larger for subgroups with
larger log(BMI) variance. Fifth, the majority of variation in
log(BMI) (87%–96%) remained unexplained by the demo-
graphic characteristics, SES, polygenic score, and health
behaviors considered in our analysis.

The results concerning Black individuals should be inter-
preted with caution because the BMI polygenic score we
used was created from a genome-wide association study
discovery sample that included Europeans only (18). The
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Figure 1. Box plots showing the distribution of (A) body mass index (BMI) by race/ethnicity, (B) BMI by race/ethnicity and sex, (C) log(BMI) by
race/ethnicity, and (D) log(BMI) by race/ethnicity and sex (n = 6,172), US National Longitudinal Study of Adolescent to Adult Health Wave IV,
2007–2008.

European-derived polygenic score is not portable across
different ancestral groups, given that allelic distributions
of SNPs associated with BMI vary by population due to
population drift (41). However, with the caveat that measure-
ment error will attenuate estimates, within-ancestral groups
analyses are still possible (40). As expected, the estimated
association between polygenic score and log(BMI) among
Blacks was approximately two-thirds as large as the esti-
mated association in the White participants. Moreover, poly-
genic score explained 8.39% of variation in log(BMI) among
Whites compared with 2.14% among Blacks. Hence, we can
conclude that although the attenuation is due to noise and
population drift, we still observe the same trends within
ancestries.

In addition to population stratification that can bias esti-
mation of genotype-phenotype associations, dynastic effects
and assortative mating can also induce correlations through
confounding between genotypes and phenotypes. Dynastic
effects refer to bias that arises when inherited SNPs operate
indirectly on offspring phenotype via their effects on the
parents’ phenotype (24), for instance, obesity-inducing envi-

ronments in this study. Lack of data on maternal and paternal
genotype precludes assessment of the presence of dynastic
effects in the current analysis (24, 42). Last, assortative
mating refers to the nonrandom pairing of spouses on the
basis of phenotypic characteristics and social homogamy
(e.g., SES) (43). Assortative mating affects the distribution
of allele frequencies at the population level and may lead to
bias in genotype-phenotype associations (43, 44). These are
potential biases and limitations of the polygenic scores used
in these analyses, which are created from summary statis-
tics of genotype-phenotype associations in large samples of
unrelated individuals.

There are other data-related limitations. First, our sample
was predominantly young adults aged 24–33 years. Prior
studies have reported heterogeneity in some of the SNPs
associated with obesity phenotype by age (45) as well as
heterogeneity in the association between BMI and genetic
risk score depending on the demographic characteristics of
the cohort (46). Second, the majority of covariates were
self-reported measures and their ability to explain varia-
tion in BMI could be biased by measurement error. Third,

Am J Epidemiol. 2020;189(11):1333–1341
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Figure 2. Proportion of variation in log(BMI) explained by demographic, socioeconomic status (SES), polygenic score (PS), and health
behaviors, separately and jointly, stratified by (A) race/ethnicity and (B) race/ethnicity and sex, US National Longitudinal Study of Adolescent to
Adult Health Wave IV, 2007–2008. BMI, body mass index.

given the cross-sectional nature of our analysis, we do not
claim any causality between predictor variables and BMI.
Rather, we focused on quantifying the relative contribution
of SES, polygenic score, and other relevant covariates in

explaining BMI variation. Last, our models assumed linear
relationship between the covariates, but specifying nonlinear
and interactive relationships between social factors may
improve the model fit (47). However, in a recent study

Figure 3. Age-adjusted variance in log(BMI) and the total percentage unexplained by demographic, socioeconomic status, polygenic score,
and health behaviors, stratified by race/ethnicity and by sex, US National Longitudinal Study of Adolescent to Adult Health Wave IV, 2007–2008.
BMI, body mass index.

Am J Epidemiol. 2020;189(11):1333–1341
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comparing machine-learning algorithms of flexible func-
tional forms and nonlinear associations of SES with conven-
tional ordinary least-squares models in predicting women’s
height, only a marginal difference was found (48).

The differential variation in BMI across subgroups
defined by race/ethnicity and sex aligns with recent
studies’ findings of disparate rate of weight gains across
different segments of the population (3, 49, 50), with non-
Hispanic Black women and women with less than a high
school education having the highest mean and greatest
dispersion (as measured by standard deviation) in BMI in the
United States (49). Monitoring the systematic differences
in variability across populations, or changes in within-
population variation over time, in health outcomes is useful
to identify the underlying vulnerabilities and capacities (51,
52). Differential distribution of income and health resources,
as well as stressors and buffers, interact to produce
systematically patterned variation in population health and
well-being (51). In fact, for certain physiological traits like
blood pressure, racial differences in variation is speculated
to emerge earlier than differences in means (53). We found
BMI to be most variable among Black women, arguably the
most vulnerable subgroup in our sample. That variation
in Black women was larger than the variation in either
women or Blacks alone further supports that multiple social
identities at the micro level likely interact with macro-level
structural factors to produce disparate health outcomes (54).

An additional contribution of our study was in quantifying
the extent to which SES, polygenic score, and other factors
with known relevance to body weight explain the variation
in BMI and how these associations vary across different
subgroups. The small proportion in the variance explained
by SES was comparable to that reported in a prior study in
which 0.1%–6.4% of women’s BMI was explained by SES
across different countries (15). A larger fraction of variance
explained by SES among White women in our study can
be partially explained by the relatively stronger average
association observed between education and income with
BMI in this subgroup. Compared with SES, the polygenic
score consistently explained more variation in BMI for both
White individuals and Black individuals. Importantly, when
considered simultaneously, SES and polygenic score had an
additive, not interactive, contribution to explaining variation
in BMI.

The proportion of unexplained variation in BMI was not
driven by the magnitude of variation, meaning that sub-
groups with larger variance did not have more or fewer
systematic components. The small proportion in variance
explained by demographic, SES, polygenic score, and health
behaviors does not mean the role of these predictors on
BMI is not important (55). Yet, quantifying the residual
variance and the proportion explained, in addition to the
commonly reported tests of significance in average associ-
ations, can provide a more comprehensive basis for making
decisions about the practical importance of the determinants
for population health and health disparities by examining the
agreement between the magnitude of their theoretical and
empirical importance (56, 57). There are other measures,
such as population attributable fraction, that can also aid
quantification of genetic and environmental contribution

to disease. Factors that explain more variation in health
outcomes for specific groups would inform targeted poli-
cies and interventions. To this point, deepening our under-
standing of the contributions of biological, genetic, and
environmental factors, as well as stochastic elements, in
diverse phenotypic variance is needed in population health
sciences.
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