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The Kaplan-Meier (KM) estimator of the survival function imputes event times for right-censored and left-
truncated observations, but these imputations are hidden and therefore sometimes unrecognized by applied
health scientists. Using a simple example data set and the redistribution algorithm, we illustrate how imputations
are made by the KM estimator. We also discuss the assumptions necessary for valid analyses of survival data.
Illustrating imputations hidden by the KM estimator helps to clarify these assumptions and therefore may reduce
inappropriate inferences.
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Applied health scientists will sometimes express incon-
sistent views regarding survival analyses, such as “I don’t
want to impute, or make up, any data. Please just show me
the Kaplan-Meier estimator!” However, statisticians have
recognized for decades (1) that the Kaplan-Meier (KM)
estimator (2) implicitly imputes event times for right-
censored observations. Likewise, the KM estimator extended
to account for late entry (3) implicitly imputes event times
for left-truncated observations.

To review briefly, the survival function is the probability
of remaining event-free. Formally, S(t) = P(T > t) for some
follow-up time t, where T is the time from the origin to the
event (4). The KM estimator is the product, taken over the
ordered set of distinct event times, of the complement of the
number of events divided by the number at risk. Formally,

Ŝ(t) =
∏

k∈tk≤t

(1 − dk/nk),

where dk is the number of events and nk is the number at risk,
both at time tk, the kth distinct event time.

In the setting we discuss here, where we have both right-
censored and left-truncated observations, the number at risk
nk excludes persons who have already experienced the event

or been censored before time tk, as well as those who
enter follow-up at or after time tk. The extended (to late
entries) KM (5), or Lynden-Bell (3), estimator of the sur-
vival function is appropriate for data which include right-
censoring and left-truncation. This extension to the original
KM estimator simply defines nk as

n∑
i=1

I(Wi < tk ≤ Ti),

where I(a) is the indicator function (i.e., returns 1 if a is
true, 0 if false) and Wi is the time after the origin at which
participant i entered the study.

The KM estimator of the survival function is widely
used because it is a nonparametric maximum likelihood
estimator (and is therefore asymptotically consistent and
efficient) (6) and because it is algorithmically simple. But
the simplicity of the KM estimator hides the fact that right-
censored and left-truncated events are imputed. Here, we
make 2 things explicit: 1) how right-censored observations
are redistributed via proportions to future event times after
the censoring times (i.e., following Efron’s redistribution
algorithm (1)); and 2) how late entries require imputing
the unseen (due to truncation) individuals via odds of the
probabilities (i.e., jumps in the KM) at events before the
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late entries relative to the event probabilities past the late
entries. We illustrate, using redistribution algorithms, how
hidden imputations are made in the KM estimator, and we
then discuss the critical assumptions necessary for valid
analyses of survival data subject to right-censoring and late
entries.

HIDDEN IMPUTATIONS

Say that we wish to study the time from diagnosis of
acquired immunodeficiency syndrome (AIDS) to death (7),
but a participant’s data can be right-censored at time c years
from the origin of AIDS diagnosis, due to dropout from the
study. Additionally, a participant’s data can be left-truncated
at time w years from the origin, due to entry into the study
at w years from the origin of interest (e.g., AIDS diagnosis),
often referred as “late entries.” In an alternate setting, we
might wish to study the time from initiating attempts at
pregnancy (i.e., the origin) to conception, where women’s
data can be right-censored due to dropout or left-truncated
due to late entry.

Consider the data for 10 individuals shown in Figure 1A,
with the case identifier as the y-axis and time from AIDS
diagnosis to death as the x-axis. The data include the number
of years between the origin (i.e., AIDS diagnosis) and study
entry, denoted as W, and the number of years between
this same origin and study exit, denoted as T∗, where T∗
is the minimum of T (i.e., years between AIDS diagnosis
and death) and C (i.e., years between AIDS diagnosis and
censoring). Solid black lines denote time under follow-up,
from Wi to T∗

i . Death before censoring is denoted by δ = 1,
and in Figure 1A by lines ending with solid dots. Participants
1, 4, 5, and 8 enter the study at AIDS diagnosis (i.e., w = 0),
while participants 2, 3, 6, 7, 9, and 10 enter the study late, at
a known time after AIDS diagnosis (i.e., w > 0).

Turnbull extended Efron’s redistribution algorithm to
allow for left-truncation (8), and this extended redistribution
algorithm is equivalent to the extended KM estimator
detailed above. In Figure 1B, we show the extended KM
estimator for the data in part A. In the example, the extended
KM estimate of the survival function at t = 10 years is

S(10) =
∏

k∈tk≤10

(
1 − dk

nk

)

=
(

1 − 1

6

)(
1 − 1

5

) (
1 − 1

5

)
= 0.533.

In Figure 2 we illustrate the redistribution of all 10 par-
ticipants. The upper portion (i.e., top 5 rows) of Figure 2
details the 6 distinct event times tk, the number of events
dk, the size of the risk sets nk, the extended KM estimator,
and the jumps (i.e., step sizes) in the estimator, say pk. The
kernel of Figure 2 consists of the central shaded 10 × 6
rectangle. Each row in this rectangle represents a participant,
and each column represents an event time. The third and
fourth columns in Figure 2 (labeled S(w) and “No. Trun-
cated,” respectively) provide information on the number of

Figure 1. A) Data from 10 hypothetical study participants who were
diagnosed with acquired immunodeficiency syndrome (AIDS) during
(n = 4) or before (n = 6) study entry and were followed up to 16
years for death. B) Extended Kaplan-Meier estimator of the survivor
function.

Hidden imputations for censoring

What is hidden in the KM algorithm is that right-censored
observations are allocated as (partial) events in proportion
to all events that occur after the observation’s censoring
time. Specifically, if tk(c) is the first event time after an
individual is censored at time c, the KM estimator imputes
pi/

∑
k≥k(c)pk events at the ith event time after c, which

corresponds to the probability that the individual censored
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truncated events. Here we detail only the most illustrative
case, the case of participant 6, who enters the study late
and is censored. In Web Appendix 1 (available at https://
doi.org/10.1093/aje/kwaa086), we provide details for the
remaining 9 participants.
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Figure 2. Redistribution of right-censored and left-truncated observations among 10 hypothetical study participants who were diagnosed with
acquired immunodeficiency syndrome (AIDS) during (n = 4) or before (n = 6) study entry and were followed up to 16 years for death. ID,
identification.

at c will develop the event at the ith event time after c.
For example, participant 6 was censored at 11 years after
AIDS diagnosis and therefore has their unit mass distributed
among the 3 remaining events occurring at 13, 15, and 16
years after AIDS diagnosis. This censored observation is dis-
tributed proportionally given the jumps in the extended KM
estimator, which are 0.133 (i.e., 0.533 – 0.4 = 0.133), 0.2
(i.e., 0.4 – 0.2 = 0.2), and 0.2 (i.e., 0.2 – 0 = 0.2), respec-
tively. Therefore, this censored observation is distributed (or
imputed) as 1/4, 3/8, and 3/8, respectively. For example, the
first allocation is obtained as 1/4 = 0.133/(0.133+0.200+
0.200).

Hidden imputations for left-truncation

Also hidden in the extended KM algorithm is that left-
truncated events are allocated as odds of the event probabil-
ities at events before the late entries relative to the sum of
the probabilities past the late entries. For a late entry at time
w, we first determine the number of unseen truncated events,
which is calculated as [1−S(w)]/S(w) (see Web Appendix 2
for derivation). Then, we allocate these “ghosts” (8) propor-
tional to all events that occurred before time w. This 2-step
algorithm is equivalent to imputing pj/

∑
k≥k(w)pk events at

the jth event time before w (i.e., j < k(w)), where tk(w) is the
first event time after an individual enters the study at time w.
This number of imputed events corresponds to the number of
unseen individuals who are peers of the recruited individuals
but were truncated (not enrolled) because they developed
the event before the recruited individual at w years since

origin. For example, using the 2-step algorithm, participant 6
entered follow-up at 7 years after AIDS diagnosis, when the
survival function is S(7) = 2/3. Consequently, participant
6 contributes [1 − S(7)]/S(7), or 1/2 of a truncated event.
This 1/2 truncated event is distributed to the 2 observed
event times between the origin and 7 years after AIDS
diagnosis, which occur at years 3 and 6 for participants
1 and 3, respectively. In effect, the step sizes in the risk
function at times 3 and 6 will account for the unobserved
risk contributed by the truncated “ghosts” of participant 6
prior to their late entry. This 1/2 truncated event is distributed
proportionally given the jumps in the extended KM curve at
times 3 and 6 years, which are both 0.167. Because the jump
sizes are the same at times 3 years and 6 years, the truncated
event is divided equally as 0.250 and 0.250. In this way, the
extended KM estimator is able to “impute” events due to
truncated observations by redistributing them in proportion
to the size of the jumps in the survival function.

To complete Figure 2, we sum across and down the cen-
tral 10 × 6 rectangle. Taking the column totals (2.0125,
2.0125, 1.610, 1.610, 2.415, and 2.415) and dividing by the
sum of the row totals (12.075) yields the bottom row in
Figure 2, which is identical to the jumps from the extended
KM estimator given in the top portion of Figure 2. The
completed Figure 2 provides an explicit picture of how the
extended KM estimator of the survival function imputes
right-censored and left-truncated events. Discussion of the
standard errors and confidence intervals using the total num-
ber of events after the imputations are completed is provided
in Web Appendix 3.
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ASSUMPTIONS

The extended KM estimator is simple and succinct, but
it does not make apparent that right-censored and left-
truncated events are imputed in the manner illustrated above
by redistribution. The validity of the extended KM esti-
mator rests on the dual conditions that right-censoring and
left-truncation are both random, conditional on any variables
used to stratify the curves. The explicit imputation shown
in Figure 2 helps to make clear the assumptions necessary
for valid estimation of the survival curve. For example,
we allocate a censored observation proportionally to all
events after the censoring time as a direct consequence of
the assumption that the individual was censored at random.
If the individual was instead censored at random conditional
on some set of measured covariates, that person’s unit mass
ought to be redistributed proportionally, but only to those
events with the same covariate set. If the individual was
instead censored conditional on some set of unmeasured
covariates, then we do not know how to redistribute them,
and the survival curve is not identifiable or computable given
the observed data. Likewise, we allocate any unseen events
proportionally to all events before the late entry time as a
direct consequence of the assumption that the individual
entered the study at random. If the individual instead entered
at random conditional on some set of measured covariates,
then their unseen events should be redistributed proportion-
ally, but only to those events with the same covariate set. If
the individual instead entered conditional on some set of un-
measured covariates, then we do not know how to redis-
tribute them, and the survival curve is again not identifiable
given the observed data.

The characterization of the hidden imputation used by
the extended KM estimator presented here for the case of
uninformative censoring and truncation can also be used
to arrive at unbiased estimates of the survival function for
cases of interval-censored data and for data with informative
censoring where the informative mechanism is known. The
key is to redistribute not to all event times after censoring, or
to all event times before late entries, but to only the pertinent
subsets (e.g., if an individual’s event occurs in the interval
c1, c2, it should only be redistributed to event times observed
in that interval).

In summary, methods with which to appropriately account
for right-censoring and left-truncation in epidemiologic
studies impute right-censored and left-truncated events, to
the chagrin of those who wish to avoid imputations. These
or any method used to recover right-censored or left-
truncated events must operate under assumptions. While
epidemiologists are generally aware that assumptions are
required for valid estimation of the survival function, illus-
trating hidden imputations in survival analyses helps to

clarify these assumptions and may reduce unnecessary
violations.
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