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Abstract
Previous research has observed that the speed of alpha band oscillations (8–12 Hz range) recorded during resting
electroencephalography is slowed in chronic pain patients. While this slowing may reflect pathological changes that occur
during the chronification of pain, an alternative explanation is that healthy individuals with slower alpha oscillations are
more sensitive to prolonged pain, and by extension, more susceptible to developing chronic pain. To test this hypothesis, we
examined the relationship between the pain-free, resting alpha oscillation speed of healthy individuals and their sensitivity
to two models of prolonged pain, Phasic Heat Pain and Capsaicin Heat Pain, at two visits separated by 8 weeks on average
(n = 61 Visit 1, n = 46 Visit 2). We observed that the speed of an individual’s pain-free alpha oscillations was negatively
correlated with sensitivity to both models and that this relationship was reliable across short (minutes) and long (weeks)
timescales. Furthermore, the speed of pain-free alpha oscillations can successfully identify the most pain sensitive
individuals, which we validated on data from a separate, independent study. These results suggest that alpha oscillation
speed is a reliable biomarker of prolonged pain sensitivity with potential for prospectively identifying pain sensitivity in the
clinic.
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Introduction
Chronic pain is a debilitating condition with cognitive, affec-
tive, and sensory symptoms that afflicts nearly one-fifth of the
American population (Kennedy et al. 2014), leading to treatment
and work loss costs totaling nearly 600 billion dollars annually
(Gaskin and Richard 2012). Identifying individuals at high risk
for developing chronic pain is a crucial, but underexplored,
avenue for combatting chronic pain and its related economic

burdens. At present, prediction of chronic pain development
is poor: for example, one of the best predictors of persistent
postsurgical pain is the intensity of pain reported directly after
surgery (e.g., Katz et al. 1996). While useful for postoperative case
management, these measures cannot be used to identify, and
target prophylactic treatments to, individuals at risk for devel-
oping chronic pain. What is urgently needed is a measure of an
individual’s sensitivity to prolonged pain that can be obtained
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prior to medical intervention. To that end, the objective of the
current study is to systematically investigate the hypothesis
that an individual’s peak alpha frequency (PAF), measured with
resting state electroencephalography (EEG), is a traitlike marker
of their sensitivity to prolonged pain.

The alpha rhythm (8–12 Hz) is the predominant oscillatory
activity observed in the scalp-recorded EEG of the primary sen-
sory cortices (e.g., occipital and somatosensory), while an indi-
vidual is quietly resting. Across individuals, there is considerable
variability in the alpha band frequency from which the greatest
power is recorded (Bazanova and Vernon 2014; Haegens et al.
2014). This frequency, often labeled the PAF or Individual Alpha
Frequency, has been suggested to contribute to individual dif-
ferences in multiple psychological and physiological processes
(e.g., Klimesch 2012; Samaha and Postle 2015; Gulbinaite et al.
2017; Mierau et al. 2017; Van Diepen et al. 2019).

Previous research has consistently observed abnormally slow
PAF in chronic pain patients (Sarnthein et al., 2006; Walton et al.
2010; Lim et al. 2016), with increasingly slower PAF associated
with increasingly longer durations of chronic pain (de Vries et al.
2013). This apparent slowing of PAF in chronic pain has been
interpreted to reflect pathological changes within the brain that
occur during the chronification of pain (Llinás et al. 1999). Work
from our lab has, however, shown that slow PAF, recorded in
the absence of pain (i.e., pain-free PAF), also reflects heightened
sensitivity to prolonged pain in healthy individuals (Furman
et al. 2018, 2019). Given that heightened pain sensitivity is a risk
factor for developing chronic pain (Diatchenko et al. 2005), an
alternative interpretation of the aforementioned chronic pain
findings is that slow PAF reflects an increased sensitivity to
prolonged pain that predates disease onset. Put another way,
slow PAF may reflect a predisposition for developing chronic
pain rather than a result of its development.

In the current study, we sought to further characterize the
relationship of pain-free PAF to prolonged pain sensitivity by
exposing participants to two experimental models of prolonged
pain, Phasic Heat Pain (PHP) and Capsaicin Heat Pain (CHP), at
two testing visits separated by multiple weeks. This study design
allowed us to test two key predictions of the hypothesis that
pain-free PAF is a traitlike marker of an individual’s sensitivity
to prolonged pain: 1) that pain-free PAF reflects pain sensitivity
to multiple prolonged pain tests and 2) that an individual’s pain-
free PAF can predict their sensitivity to prolonged pain at more
than one point in time. In addition to these main aims, and
with an eye toward its potential clinical application, we also
examined whether pain-free PAF can be used to successfully
identify high and low pain sensitive individuals.

Materials and Methods
Participants

Sixty-one pain-free, adult participants (31 males, mean age = 27.82,
age range = 21–42) without history of neurological or psychiatric
disorder took part in the experiment between 6 July 2016 and
20 October 2017. This study was approved by the University of
Maryland, Baltimore Institutional Review Board, and informed
written consent was obtained from each participant prior to any
study procedures. The study was preregistered on ClinicalTrials.
gov (NCT02796625).

Table 1 provides information regarding how many partici-
pants contributed data to each analysis.

Electroencephalography

Scalp EEG was collected from an EEG cap housing a 63 chan-
nel BrainVision actiCAP system (Brain Products GmbH, Munich,
Germany) labeled according to an extended international 10–
20 system (Oostenveld and Praamstra 2001). All electrodes were
referenced online to the average across all recording channels
and a common ground set at the AFz site. Electrode impen-
dences were maintained below 5 kΩ throughout the experiment.
Brain activity was continuously recorded within a 0.01–100 Hz
bandpass filter, and with a digital sampling rate of 500 Hz. The
EEG signal was amplified and digitized using an actiCHamp
DC amplifier (Brain Products GmbH, Munich, Germany) linked
to BrainVision Recorder software (version 2.1, Brain Products
GmbH, Munich, Germany).

Thermal Stimulator and Pain Scale

Thermal stimuli were delivered to the volar surface of the par-
ticipant’s left forearm using a thermal contact heat stimulator
(27-mm diameter Medoc Pathway CHEPS Peltier device; Medoc
Advanced Medical Systems Ltd).

Unless otherwise stated, pain ratings were collected continu-
ously with a manual analog scale consisting of a physical sliding
tab (Medoc Advanced Medical Systems Ltd). Prior to testing,
participants were instructed that the lower and upper bounds
of the scale represented no pain and the most pain imagin-
able, respectively, and that they should continuously update
the position slider to indicate the amount of pain currently
being experienced. Care was taken by experimenters to avoid
providing numerical anchors when describing the scale and no
additional physical landmarks were present on the scale. Prior
studies have found that analog scales are superior to numerical
scales for capturing the pain power function often encoun-
tered in psychophysical testing (Price et al. 1994; Nielsen et al.
2005). Prior to testing, participants were given an opportunity
to practice using the device with their eyes open and closed.
During testing, participants were permitted to briefly open their
eyes while rating. Pain ratings were collected from the manual
analog scale at a rate of 1000 Hz. Manual analog scale data were
transformed by converting the horizontal position of the slider
into a continuous value between 0 and 100.

Quantitative Sensory Testing

Participants were asked to complete four threshold tests: 1) to
report when they felt a temperature increase (Warmth Detection
Threshold); 2) to report when they felt a temperature decrease
(Cool Detection Threshold); 3) to report when an increasing
temperature first became painful (Heat Pain Threshold); and 4)
to report when a decreasing temperature first became painful
(Cold Pain Threshold). A total of three trials were presented for
each test with an ISI of 4–6 s (randomly determined on per trial
basis). Participants provided feedback for each test by clicking
either the left or right button of a computer mouse placed in
their right hand. For each test, temperatures were applied with
a rise rate of 1 ◦C/s and a return rate of 2 ◦C/s (initiated on any
mouse click).

All testing was performed on the volar surface of the left fore-
arm. The distance from the wrist to elbow joint was measured
and the forearm was divided into three equal length zones. For
each test, the first trial was administered to the zone closest to
the wrist, the second trial administered to the middle forearm
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Table 1 Summary of exclusions and participants contributing data at each testing visit

Participant type Visit 1 Visit 2

Capsaicin
responder

Capsaicin
nonresponder

High pain
tolerance

Capsaicin
responder

Capsaicin
nonresponder

High pain
tolerance

Total participants 35 (19 female) 15 (6 female) 11 (5 female) 27 (14 female) 11 (4 female) 8 (3 female)
Exclusions
EEG technical error 1 (1 female) 0 0 0 0 0
Abnormal pain ratings 1 (1 female) 0 1 (0 female) 1 (1 female) 0 1 (0 female)
Abnormal CHP change 1 (1 female) 0 0 1 (1 female) 0 0
Participants remaining 32 (16 female) 15 (6 female) 10 (5 female) 25 (12 female) 11 (4 female) 7 (3 female)

zone, and the third trial administered to the zone closest to the
elbow.

PHP Model

Temperatures used during the PHP model were determined
during each participant’s initial screening visit to the laboratory
(Visit 0). During these sessions, participants were exposed to
12, 20-s trials in which a single temperature (2.5-s rise and fall)
was applied to the volar surface of the left forearm. At the
conclusion of each trial, participants reported the average pain
they experienced during temperature application; participants
were instructed to report pain ratings on a scale of 0–10, with
0 indicating no pain and 10 the most pain imaginable. It is
important to note that this was the only time during the experi-
ment at which participants were asked to rate along a numerical
pain scale. Temperatures ranged from 37 to 48 ◦C (intervals of
2 ◦C, starting as if 37 ◦C was 38 ◦C) and each temperature was
presented twice in a pseudorandom order. Trials were separated
by 10 s, and after each trial, the thermode was moved to a
neighboring forearm zone in order to minimize sensitization.
Using pain reports from these trials, the temperature that most
closely evoked an average pain rating of 5/10 was selected. This
level of pain was targeted in order to best match the intensity
of pain evoked by the CHP model (Furman et al. 2018). For a few
participants, none of applied temperatures were able to produce
a pain rating close to 5/10. For these individuals, 48 ◦C was used
during PHP testing.

The PHP model itself consisted of a series of five consecutive
stimulus trains. Each train lasted 1 min and consisted of applica-
tion of a predetermined temperature for 40 s (rise and fall times
of 2 s) followed by the application of a neutral skin temperature
stimulus (32 ◦C) for 20 s. PHP scores were calculated by averaging
pain ratings from the five, 40-s periods in which the temperature
was present.

CHP Model

The CHP model lasts for hours to days and recapitulates some
cardinal sensory aspects of chronic neuropathic pain (Culp et al.
1989; LaMotte et al. 1992; Baron 2009; Lötsch et al. 2015) without
causing lasting tissue damage (Henriques and Moritz 1947).
CHP procedures were similar to those used in our prior study
(Furman et al. 2018). In brief, we applied ∼1 g 10% capsaicin
paste (Professional Arts Pharmacy, Baltimore, MD) topically to
the volar surface of the left forearm, fixing it in place with a
Tegaderm bandage. A thermode was then placed over top of
the capsaicin application, heated to 40 ◦C, and held in place
for 20 min to allow for capsaicin incubation. Given that pain
from topically applied capsaicin varies as a function of skin

temperature (Anderson et al. 2002), the thermode temperature
was held at 40 ◦C for all participants. This temperature was
selected because, in the absence of capsaicin, most individuals
find it nonpainful thereby providing comfort that any pain gen-
erated by this temperature during capsaicin exposure is likely a
consequence of the agent’s sensitizing effects. CHP scores were
calculated by averaging ratings across the entire 5-min CHP test
that followed incubation.

To further test the reliability of CHP sensitivity, we included a
“rekindling” phase (CHP rekindle; Dirks and Petersen 2003). After
the initial CHP testing was completed, an icepack (see below for
details) was applied to the forearm until a complete termination
of pain was reported. Afterward, the thermode was again placed
over top of the site of capsaicin application, heated to 40 ◦C,
and held in place for 5 min. CHP rekindle scores were calculated
as the average of the pain ratings provided during this 5-min
period.

Icepack Application

At the conclusion of the PHP and CHP tests, the thermode was
removed and a disposable icepack was applied to the stimulated
area of the left forearm. This was done to prevent pain carryover
from one test to another and to ensure that pain ratings for
subsequent tests were captured from a starting state of no
ongoing pain. The icepack was left in place until the complete
absence of pain was reported by the participant. No participants
indicated that the icepack itself was ever painful. Following each
icepack application, a 5-min pain-free, eyes closed EEG session
occurred.

Procedure

An outline of the experimental timeline and procedures is pre-
sented in Figure 1. In order to allow sufficient time for any
long-term effects of capsaicin exposure to subside, visits were
separated by 21 days or more (except for one case where a
subject returned at 19 days because of a scheduling conflict;
mean separation of Visit 1 and Visit 2 = 54.74 days, standard
deviation (SD) = 55.92 days, range = 19–310 days, Supplementary
Figure 1).

Participants first underwent an initial screening visit, Visit 0,
that included quantitative sensory testing as well as additional
tests to ensure that 40 ◦C was rated as minimally painful to
identify the appropriate PHP temperature and to provide initial
exposure to capsaicin. For the first four participants, these pro-
cedures, excluding capsaicin exposure, were performed during
Visit 1.

Participants returned for Visit 1 at least 3 weeks after com-
pleting Visit 0. Most participants then returned at least 3 weeks
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Figure 1. Outline of the experimental procedure. After a brief sensory testing session, participants completed a pain-free EEG. Next, participants completed a “PHP”
EEG. After a 5-min period in which an icepack was applied to the skin, a second pain-free EEG was collected (not shown). Afterward, capsaicin was applied to the
forearm and incubated for 20 min. Next, a CHP EEG was completed while a 40 ◦C thermode was placed on top of the capsaicin. After a 5-min period in which an icepack
was applied to the skin and a third pain-free EEG was collected (not shown), the 40 ◦C thermode was again placed on top of the capsaicin and a 5-min eyes-closed

“CHP Rekindle” EEG was completed. For each EEG, data were collected for 5 min, while participants were instructed to keep their eyes closed. Identical procedures were
performed at Visit 1 and Visit 2.

after Visit 1 for Visit 2. Procedures for Visits 1 and 2 were iden-
tical. For the entirety of Visits 1 and 2, participants were seated
in a comfortable chair in a quiet room that was isolated from
strong electrical interference. For all EEG sessions, lights in the
testing room were turned off and participants were instructed
to close their eyes, remain still, relax without falling asleep, and
continuously rate any pain they experienced with the manual
analog scale placed at their right hand. Visits 1 and 2 began with
quantitative sensory testing. For the first four participants, this
sensory testing was not performed at Visit 2. After quantitative
sensory testing, a brief, 2-min EEG was collected to ensure the
quality of EEG recording. Next, a room temperature thermode
was placed onto the left forearm while eyes closed, pain-free
EEG was collected for 5 min. The primary objective of the current
study was to use PAF recorded during this pain-free period as a
predictor of subsequent pain sensitivity during CHP and PHP.

Following the pain-free EEG, prolonged pain was induced
with the PHP model. During the 5 min of PHP, EEG was collected
while participants rested with their eyes closed and continu-
ously rated the intensity of any perceived pain. Upon completion
of the PHP model, a disposable ice pack was placed onto the
participant’s left forearm until they reported being completely
free of pain after which 5 min of eyes closed EEG was collected.
Next, the second model of prolonged pain, CHP, was induced.
Participants were instructed to continuously rate the intensity
of experienced pain during this incubation period.

Following the 20-min incubation period, and with the ther-
mode temperature still held at 40 ◦C, 5 min of eyes closed, con-
tinuous EEG was recorded while participants continuously rated
the intensity of any perceived pain. An icepack was then applied
to the forearm, and once pain was reported to be completely
absent, 5 min of eyes closed EEG was collected. Afterward, a 40 ◦C
thermode was placed over the site of capsaicin application to
induce CHP rekindling. Five minutes of eyes closed EEG was then
recorded while participants continuously rated the intensity of
any perceived pain.

Data Processing

Because our primary objective was predicting pain sensitivity,
the EEG data of interest were the initial pain-free EEGs
collected at the beginnings of Visits 1 and 2. EEG data were
preprocessed with EEGLAB 13.6.5b (Delorme and Makeig 2004).
Preprocessing began with filtering the data between 0.2 and
100 Hz using a linear FIR filter. Channel data were then visually
inspected, and overtly noisy channels were removed from
further analysis. Removed channels were not interpolated. On

average, 1.64 (SD = 1.92, range: 0–8) and 1.79 (SD = 1.79, range: 0–
6) channels were removed per individual from Visit 1 and Visit
2 datasets, respectively. Finally, principal components analysis
was performed, and components with spatial topographies and
time series resembling blinks and/or saccades were removed
from the data.

As opposed to our previous studies which used ICA to isolate
alpha sources over visual and somatosensory regions, we used
channel level data to increase the ease with which our methods
can be reproduced. Although it may decrease the signal-to-noise
ratio of the data, this approach eliminates the need to identify
ICA components on a participant by participant basis and is
equally effective for capturing the PAF-pain sensitivity relation-
ship (Furman et al. 2019). For channel level analyses, we focused
on channels (C3, Cz, and C4) that most strongly reflected the sen-
sorimotor component topography observed in our original study
(Furman et al. 2018). If a channel from this sensorimotor region
of interest (ROI) was removed due to noise, only the remaining
channels were used; this affected few participants (Visit 1: n = 4;
Visit 2: n = 1) and no participant had more than one channel
removed. In order to make the current results easily comparable
to previous findings, all main analyses use PAF calculated from
this sensorimotor ROI; the use of this ROI is not intended to
imply a mechanism or source for any documented effects.

To explore if additional EEG channels capture the PAF-pain
sensitivity relationship, the surface Laplacian was computed fol-
lowing preprocessing (Perrin et al. 1989). Results from analyses
using this estimate of current source density can be found in the
Supplementary Data (Supplementary Fig. 6).

Quantification of Sensorimotor PAF

The frequency decomposition of the sensorimotor ROI data
was performed using routines in FieldTrip (Oostenveld et al.
2011). Data from each pain-free EEG session were segmented
into nonoverlapping 5-s epochs, and power spectral density
in the 0.2–100 Hz range (0.2 Hz bins) was derived with the
“ft_freqanalysis_mtmfft” function. A Hanning taper was applied
to the data prior to calculating the spectra to reduce edge
artifacts (e.g., Mazaheri et al. 2014).

At every channel and for each epoch, PAF was estimated
using a center of gravity (CoG) method (Klimesch et al. 1993). We
defined CoG as follows:

CoG =
∑n

i=1 fi ∗ ai
∑n

i=1 ai
,
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where fi is the ith frequency bin including and above 9 Hz, n
is the number of frequency bins between 9 and 11 Hz, and ai

the spectral amplitude for fi. From our previous work, we have
determined that this restricted frequency range reduces the
influence of 1/f EEG noise on PAF estimation (Furman et al. 2018).
Epoch-level PAF estimates were averaged to yield a single mean
PAF estimate for each channel. Channel-level PAF estimates
were further averaged across sensorimotor channels to yield a
single sensorimotor PAF estimate for each participant at each
visit.

To ensure that results were not an artifact of the range used
for PAF estimation, PAF was additionally calculated with the
wider 8–12 Hz range. Results with this wider estimation range
are presented throughout the text, and PAF estimates calcu-
lated using either the 9–11 or 8–12 ranges were highly similar
(Supplementary Fig. 2).

Statistical Analysis

All analyses were performed using custom scripts implemented
in the MATLAB environment (version R2013A). Statistical tests
were conducted in MATLAB or SPSS (Version 25).

Previous work has found that CHP evokes limited pain
or hypersensitivity in roughly one-third of individuals (Liu
et al. 1998; Walls et al. 2017). While the reasons for this
remain unclear, certain physiological factors, such as genetic
polymorphisms (Campbell et al. 2009), appear to play a role in
limiting the effects of the TRPV1 against itself. For this reason,
it is difficult to determine whether insensitivity to capsaicin
reflects a failure of the CHP model or an individual’s sensitivity
to pain. To address this problem, we separated participants into
three pain response classes: 1) individuals who display a clear
pain response to CHP (average pain ≥ 10/100) at either Visit 1 or
Visit 2 (“CHP responder”); 2) individuals who display a clear pain
response to PHP at either Visit 1 or Visit 2 but no response to CHP
at either visit (average pain <10/100; “CHP non-responder”); and
3) individuals who do not display a clear pain response to PHP
or CHP at either visit (“high tolerance”). For the high tolerance
pain class, the presence of PHP insensitivity provides important
evidence that CHP insensitivity is unlikely to reflect model
failure alone. To ensure that results were not confounded by
variability associated with an individual’s physiological ability
to experience CHP, we chose to focus our main analyses on
CHP responder and high tolerance individuals. For all tests
involving PHP, results when including all three pain classes are
also provided.

To determine if sensitivity to prolonged pain is similar across
prolonged pain models, a series of pairwise correlations was cal-
culated between all possible test pairs at each visit. For these and
all other correlational analyses, Spearman’s rank order correla-
tions were computed, and outliers were defined as data points
>2.5 SD above or below the mean value obtained from Visit 1
data. To account for multiple correlations between prolonged
pain tests, Bonferroni corrections were applied at the visit level
yielding a corrected significance threshold of P = 0.0167. We
further assessed whether sensitivity is reliable across prolonged
pain tests using Cronbach’s α.

To begin testing whether pain-free, sensorimotor PAF is
related to prolonged pain sensitivity, we performed a series
of pairwise correlations between pain-free, sensorimotor PAF
and each pain test (PHP, CHP, and CHP rekindle) at each visit.
Bonferroni corrections were applied to correlations between
PAF and prolonged pain tests for each visit (three tests) yielding

a corrected significance threshold of P = 0.0167. For each test,
we also investigated the effect of sex by performing correlations
separately for males and females. To ensure that our results
were not an artifact of our PAF estimation algorithm, we
correlated pain sensitivity scores to the average, pain-free
estimate of spectral power at each 0.2-Hz element within the
8–12 Hz range. For this analysis, spectra were z-scored in order
to normalize total spectral power across individuals.

Next, we determined whether pain-free, sensorimotor PAF
can accurately identify the most or least pain sensitive indi-
viduals. In the first analysis, we used a series of linear support
vector machines (SVMs) to perform leave-one-out, within-study
classification (internal validation). To do so, pain scores from
PHP, CHP, and CHP rekindle were averaged, and, in separate tests,
the top or bottom 10% of averaged pain scores were labeled as
targets. A series of SVMs were then trained to identify targets
based on Visit 1 baseline, pain-free PAF estimates from all but
one individual (training set). Trained SVMs were then used to
predict whether the withheld participant was a target. Visit 1
data were used in order to maximize the size of the available
dataset. Each participant served as the test exactly once and
predictions were evaluated using F1 scores (harmonic mean of
precision and recall; Sokolova and Lapalme 2009; Lipton et al.
2014). F1 scores are often used when the proportions of two
classes are uneven. To determine the full scope of prediction,
we repeated this analysis by increasing the percentage of data
labeled as a target in increments of 10% up to a maximum
of 50% (i.e., median split of data). To evaluate F1 scores, we
generated a distribution of null F1 scores by assigning targets at
random and then performing the analysis described above. This
procedure was carried out 10 000 times, and obtained F1 scores
were evaluated as significant if they were equal to or surpassed
the 95th percentile of the null distribution.

In the second analysis, we used a single linear SVM to
perform cross-study classification using data from the current
study as the training set and data from an earlier study on
CHP sensitivity as the test set (external validation; Furman
et al. 2018). Prior to analysis, PAF estimates within each study
were normalized to z-scores. Otherwise, details of this analysis
were identical to those of the within-study classification
analysis.

To examine whether pain-free, sensorimotor PAF is reliable
across Visits 1 and 2, estimates from each visit were compared
using a paired t-test. Bayes factor analysis was used to determine
whether the null hypothesis could be accepted (i.e., no change
in PAF between visits). Bayes factor analysis provides a method
for assessing the relative evidence in favor of either the null
or alternative hypothesis with a Bayes factor <0.33 or >3 is
taken as strong evidence in favor of the null and alternative
hypotheses, respectively (Rouder et al. 2009); Bayes factor scores
in-between these values are considered to provide no evidence
in favor of either hypothesis. As an additional test of stability,
PAF estimates at Visits 1 and 2 were correlated with one another.

The stability of prolonged pain scores was assessed using
a linear mixed effects model with subjects as random effects
(intercept included) and Visit (Visit 1 vs. Visit 2), Type (PHP vs.
CHP vs. CHP Rekindle), and the Visit × Type interaction as fixed
effects. We were specifically interested in determining whether
scores change over time (main effect of Visit) and whether
these changes were specific to individual tests (Visit × Type
interaction). For each prolonged pain test, Bayes factor analysis
was used to determine whether the null hypothesis could
be accepted (i.e., no change in pain score between visits).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa124#supplementary-data
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Additionally, the stability of pain scores from each test was
analyzed by correlating Visit 1 and Visit 2 pain scores.

To further test the stability of pain-free, sensorimotor
PAF and prolonged pain scores, we examined the correlation
between pain-free, sensorimotor PAF at Visit 1 and Visit 2 pain
sensitivity. To ensure that results were not an artifact of our PAF
estimation algorithm, we also correlated pain sensitivity scores
to the average, pain-free estimate of spectral power at each 0.2-
Hz element within the 8–12 Hz range. Finally, we tested whether
pain-free, sensorimotor PAF at Visit 1 could accurately identify
the least and most pain sensitive individuals at Visit 2. As before,
a series of leave-one-out SVMs were trained to identify the
least or most pain sensitive individuals and then tested on the
withheld participant. Performance was quantified by comparing
the observed F1 score to a bootstrapped, null distribution of F1

scores.

Results
From our initial cohort of 61 individuals, two individuals
were removed due to abnormal pain ratings: one participant
fell asleep during ratings, while another participant provided
extremely high pain ratings in the absence of any noxious
stimuli indicating that they may been confused by the
rating scheme. We excluded one additional participant who
experienced a change in CHP score, +69.26, that was 3.82 SD
greater than the average CHP change (average change = 1.76,
SD = 17.64). No other change in CHP scores was >2.05 SD above
the mean (range = +37.96 to −31.05).

From the remaining 58 participants (Table 1), 33 participants
were classified as CHP responders (CHP score > 10); 10 partic-
ipants were classified as high tolerance individuals (CHP and
PHP scores < 10); and 15 participants were classified as CHP
nonresponders (PHP score > 10 and CHP score < 10). Due to a
technical error, EEG data were lost for one CHP responder at
Visit 1; Visit 1 data for this individual were only included in
prolonged pain analyses. Of the 58 individuals providing data
at Visit 1, a total of 43 individuals also provided data at Visit
2, of which 32 had been classified as a CHP responder or high
tolerance individual. CHP rekindle data for one participant at
Visit 2 were not collected. Unless otherwise stated, analyses only
include data from high tolerance and CHP responder individuals.

A summary of prolonged pain scores for each pain response
classification is presented in Figure 2. Both PHP and CHP pro-
duced sensitization, a hallmark of prolonged pain (see Sup-
plementary Data), and similar amounts of pain in males and
females (Supplementary Fig. 3). Correlations between all possi-
ble pairs of tests were significant (Table 2) and this conclusion
held when analyses were repeated while including all partici-
pants regardless of pain response classification (Supplementary
Table 1). Reliability analysis further revealed that sensitivity
was consistent across prolonged pain tests, Chronbach’s α = 0.91
(Visit 1 alone, α = 0.82, Visit 2 alone, α = 0.83). Including all sub-
jects, regardless of pain response classification, did not alter this
finding, Chronbach’s α = 0.90 (Visit 1 alone, α = 0.77, Visit 2 alone,
α = 0.83). Thus, CHP and PHP appear to sample similar prolonged
pain processes.

Sensorimotor PAF Is Reliably Predicts Thermal,
Prolonged Pain Sensitivity.

Visit 1, pain-free, sensorimotor ROI spectra from all par-
ticipants are presented in Figure 3A. At Visit 1, pain-free,

sensorimotor PAF predicted pain sensitivity to all three
prolonged pain tests, PHP: Spearman ρ = −0.43, P < 0.05 cor-
rected; CHP: Spearman ρ = −0.44, P < 0.05 corrected; and CHP
rekindle sensitivity: Spearman ρ = −0.44, P < 0.05 corrected
(Fig. 4). Similar results were obtained for PHP when we used a
partial correlation to account for variability in the thermode
temperature used during PHP, Spearman ρ = −0.40, P < 0.05
corrected, or when we included all participants regardless
of pain response classification, Spearman ρ = −0.34, P < 0.05
corrected. Expanding the PAF calculation range to 8–12 Hz
did not greatly impact the relationship for any prolonged
pain test, PHP: Spearman ρ = −0.38, P < 0.05 corrected; CHP:
Spearman ρ = −0.34, P = 0.03 (not significant after correction);
and CHP rekindle: −0.38, P < 0.05 corrected (Supplementary Fig.
2E). Furthermore, inspection of the relationship between pain
sensitivity and power at each frequency element within the
alpha range demonstrates that these results are not an artifact
of our PAF calculation method: for each test, slower (8–9.5 Hz)
elements were positively associated with pain sensitivity, while
faster (10.5–12 Hz) elements were negatively associated with
pain sensitivity (Fig. 4 lower panels). We found no evidence of
sex effects on the relationship of PAF to either PHP, CHP, or CHP
rekindle (Supplementary Fig. 4A). Interestingly, the relationship
between PAF and prolonged pain sensitivity was apparent at
nearly every scalp channel even when volume conduction
was accounted for with a surface Laplacian transformation
(Supplementary Figs 5 and 6).

At Visit 2, pain-free, sensorimotor PAF again predicted pain
sensitivity to all three prolonged pain tests, PHP: Spearman
ρ = −0.59, P < 0.05 corrected; CHP: Spearman ρ = −0.57, P < 0.05
corrected; and CHP rekindle sensitivity: Spearman ρ = −0.43,
P < 0.05 corrected (Fig. 5). As before, PHP outcomes remained
stable when either accounting for thermode temperature with
a partial correlation, Spearman ρ = −0.55, P < 0.05 corrected,
or including all 43 participants regardless of pain response
classification, Spearman ρ = −0.37, P < 0.05 corrected. Expanding
the PAF calculation range to 8–12 Hz did not impact PAF’s
relationship to any test, PHP: Spearman ρ = −0.51, P < 0.05
corrected; CHP: Spearman ρ = −0.58, P < 0.05 corrected; CHP
rekindle: Spearman ρ = −0.44, P < 0.05 corrected (Supplementary
Fig. 2E); and correlations between pain and power across the
alpha range once again revealed an association of slow and
fast ranges with heightened and decreased pain sensitivity,
respectively (Fig. 5 lower panels). As in Visit 1, there did not
appear to be an influence of sex on the relationship between
PAF and any of our prolonged pain tests (Supplementary Fig.
4A) and this relationship was evident across the entire scalp
(Supplementary Figs 5 and 6).

Sensorimotor PAF Can Identify the Most Pain
Sensitive Individuals

Given the high sensitivity of classification analyses to outliers,
one participant with an extreme PAF estimate was not included
in either analysis (PAF = 10.65, 3.20 SD above the mean). In
order to make the classification analysis generalizable to
other datasets, and to take advantage of the strong correlation
between prolonged pain tests, we created a composite pain
sensitivity score by averaging scores from all three prolonged
pain tests (PHP, CHP, and CHP Rekindle). This pain sensitivity
score was significantly correlated with PAF at both Visit 1:
Spearman ρ = −0.51, P < 0.05 and Visit 2: Spearman ρ = −0.60,
P < 0.05 (Supplementary Fig. 7A). This relationship remained

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa124#supplementary-data
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Figure 2. Prolonged pain models were stable across visits. A. Average pain time courses for CHP responder (orange), CHP nonresponder (blue), and high tolerance (gray)

pain classifications during each prolonged pain test. Dotted lines reflect the temperature of the thermode applied to the forearm during each test. CHP responders
were defined as participants with pain scores >10/100 in response to CHP, CHP nonresponders, were defined as participants who had pain scores <10/100 during CHP
and pain scores >10/100 during PHP, and high pain tolerance individuals were defined as participants with pain scores <10/100 in response to both CHP and PHP. B. Pain

ratings broken down by prolonged pain test, pain response classification, and visit. Bar graphs reflect means and error bars reflect +1 SD. Scatter plots only include
data from CHP responders and high tolerance individuals. Off-color data points represent statistical outliers not included in analyses, and dotted lines represent the
linear regression line of best fit. Asterisks (∗) reflect, where applicable, significance after statistical correction for multiple tests (P = 0.0167).

evident when we included all participants regardless of
classification, Visit 1: Spearman ρ = −0.42, P < 0.05 and Visit 2:
Spearman ρ = −0.33, P < 0.05 (Supplementary Fig. 7A).

SVMs trained and tested on the current dataset were able
to identify both the least and most sensitive individuals using
just pain-free PAF estimates (internal validation; details found
in the Statistics). Compared with a simulated null distribution
of F1 scores, the least pain sensitive individuals were identified

at above chance levels at all labeling intervals but the 20% one
(Fig. 7B). Similarly, the most sensitive individuals were identified
at above chance levels at all labeling intervals but the 30%
one. When including all participants, regardless of classification,
PAF significantly identified the least sensitive individuals at all
labeling intervals but only the most sensitive individuals at the
10% and 50% intervals (Supplementary Fig. 7B). This latter result
likely reflects that the composite pain sensitivity score fails to

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa124#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa124#supplementary-data
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Table 2 Spearman correlation coefficients (P values) between prolonged pain tests at each testing visit

Visit 1 Visit 2

CHP CHP rekindle CHP rekindle CHP

PHP 0.52 (<0.05∗) 0.50 (<0.05∗) 0.58 (<0.05∗) 0.77 (<0.05∗)
CHP 0.88 (<0.05∗) 0.78 (<0.05∗)

Asterisks (∗) reflect, where applicable, significance after statistical correction for multiple tests (P = 0.0167).

Figure 3. A. Pain-free, sensorimotor ROI spectra collected from all participants Visit 1. Colored lines reflect individual participants, and the black dashed line reflects the

average spectra across all participants. The red zone reflects the frequency range (9–11 Hz) used to calculate PAF according to the CoG method. B. Pain-free, sensorimotor
PAF estimates are strongly correlated across Visits. Note that Visit 2 occurred, on average, 7.8 weeks after Visit 1. Off-color data points represent statistical outliers not
included in analyses, and the dotted line represents the linear regression line of best fit. C. Pain-free, sensorimotor PAF and prolonged pain models are stable across
Visits.

Figure 4. Visit 1 pain-free, sensorimotor PAF is correlated with sensitivity to all three Visit 1 prolonged pain tests. Off-color data points represent statistical outliers

not included in analyses, and dotted lines represent the linear regression line of best fit. Bar graphs below each scatter plot reflect Spearman correlation coefficients
between Visit 1 pain scores and Visit 1 estimates of pain-free power at each 0.2-Hz bin within the 8–12 Hz range. For all three tests, frequency elements below 10 Hz are
positively associated with pain sensitivity, while frequency elements above 10 Hz are negatively associated with pain sensitivity. Asterisks (∗) reflect, where applicable,
significance after statistical correction for multiple tests (P = 0.0167).

capture the mixed sensitivity of CHP nonresponders to CHP and
PHP.

A linear SVM trained on the current dataset could iden-
tify high and low pain sensitive individuals in a separate,

independent study (external validation). Using a similar proce-
dure to one used for within-study classification, a single linear
SVM trained on data from the current study was used to predict
the identity of 21 participants from a previous study on CHP
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Figure 5. Visit 2 pain-free, sensorimotor PAF is significantly correlated with sensitivity to all three Visit 2 prolonged pain tests. Off-color data points represent statistical

outliers not included in analyses, and dotted lines represent the linear regression line of best fit. Bar graphs below each scatter plot reflect Spearman correlation
coefficients between Visit 2 pain scores and Visit 2 estimates of pain-free power at each 0.2-Hz bin within the 8–12 Hz range. For all three tests, frequency elements
below 10 Hz are positively associated with pain sensitivity, while frequency elements above 10 Hz are negatively associated with pain sensitivity. Asterisks (∗) reflect,
where applicable, significance after statistical correction for multiple tests (P = 0.0167).

sensitivity (Furman et al. 2018). Compared with a simulated null
distribution of F1 scores, we found that PAF estimates identified
the most pain sensitive individuals at above chance levels for
all labeling intervals and identified the least pain sensitive
individuals at above chance levels only at the two largest, 40%
and 50%, intervals (Fig. 7D). Rerunning the analysis with all
participants, regardless of pain response classification, included
in the training set yielded identical results (Supplementary Fig.
7B).

Sensorimotor PAF and Prolonged Pain Sensitivity
Are Stable over Time

One possible explanation for the presence of a reliable relation-
ship between pain-free, sensorimotor PAF and prolonged pain
sensitivity at Visits 1 and 2 is that both measures are themselves
stable over time. In line with this premise, Visit 1 (mean = 10.04,
SD = 0.20) and Visit 2 (mean = 10.04, SD = 0.16) estimates of
pain-free, sensorimotor PAF were not significantly different,
t(29) = 0.32, P = 0.75, and Bayes factor analysis supported the
null hypothesis of no differences between the two, Bayes
factor < 0.01. These results did not change when we included
all participants regardless of pain response classification
t(40) = 0.34, P = 0.73, Bayes factor < 0.01. What is more, Visit 1 and
Visit 2 estimates of pain-free, sensorimotor PAF were strongly
correlated, Spearman ρ = 0.81, P < 0.05 (Fig. 3A); this finding did
not change when we including all participants regardless of
pain response, Spearman ρ = 0.82, P < 0.05, or expanded the PAF
calculation range to 8–12 Hz, Spearman ρ = 0.86, P < 0.05.

Similarly, a linear mixed effects model revealed that
prolonged pain sensitivity did not change over time with
neither the main effect of Visit, F(1,161.32) = 0.13, P = 0.72, nor the
Visit × Pain Type interaction, F(2,113.244) = 0.26, P = 0.77, reaching
significance. Bayes factor analysis failed, however, to support

either the null or alternative hypothesis for any prolonged
pain test, PHP: Bayes factor = 1.19; CHP: Bayes factor = 0.71; and
CHP Rekindle: Bayes factor = 0.74. Visit 1 and Visit 2 pain scores
were correlated for all three prolonged pain tests, PHP: ρ = 0.79,
P < 0.05 corrected; CHP: ρ = 0.59, P < 0.05 corrected; and CHP
Rekindle: ρ = 0.70, P < 0.05 corrected (Fig. 2), and remained so
when we expanded the dataset to include CHP nonresponders,
PHP: ρ = 0.74, P < 0.05 corrected; CHP: ρ = 0.69, P < 0.05 corrected;
and CHP Rekindle, ρ = 0.68, P < 0.05 corrected.

Sensorimotor PAF Can Predict Thermal, Prolonged
Pain Sensitivity Occurring 8 Weeks Later

If pain-free, sensorimotor PAF and prolonged pain sensitivity are
stable traits, then Visit 1 PAF should be able to predict Visit 2
pain scores collected, on average, 8 weeks later. Indeed, we found
that Visit 1 pain-free, sensorimotor PAF and Visit 2 pain scores
were strongly correlated, PHP: Spearman ρ = −0.67, P < 0.05 cor-
rected; CHP: Spearman ρ = −0.62, P < 0.05 corrected; and CHP
Rekindle: Spearman ρ = −0.52, P < 0.05 corrected (Fig. 6). For PHP,
this relationship remained when we controlled for variability in
thermode temperature, Spearman ρ = −0.66, P < 0.05 corrected,
or included all participants regardless of pain response classi-
fication, Spearman ρ = −0.44, P < 0.05 corrected. Expanding the
PAF calculation range to 8–12 Hz did not impact PAF’s relation-
ship to any test, PHP: Spearman ρ = −0.57, P < 0.05 corrected;
CHP: Spearman ρ = −0.52, P < 0.05 corrected; and CHP Rekindle:
Spearman ρ = −0.45, P < 0.05 corrected, and correlations between
pain and power across the alpha range again demonstrated that
the slow and fast ranges were associated with heightened and
decreased pain sensitivity, respectively (Fig. 6 Lower Panels).

What is more, the least and most pain sensitive individuals
at Visit 2 could be identified using Visit 1 pain-free, sensorimotor
PAF. Visit 2 pain sensitivity, represented as the average pain

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa124#supplementary-data
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Figure 6. Visit 1 pain-free, sensorimotor PAF predicts sensitivity to all three Visit 2 prolonged pain tests. Note that Visit 2 occurred, on average, 7.8 weeks after Visit

1. Off-color data points represent statistical outliers not included in analyses, and dotted lines represent the linear regression line of best fit. Bar graphs below each
scatter plot reflect Spearman correlation coefficients between Visit 2 pain scores and Visit 1 estimates of pain-free power at each 0.2-Hz bin within the 8–12 Hz range.
For all three tests, frequency elements below 10 Hz are positively associated with pain sensitivity, while frequency elements above 10 Hz are negatively associated
with pain sensitivity. Asterisks (∗) reflect, where applicable, significance after statistical correction for multiple tests (P = 0.0167).

score across tests, was strongly correlated to Visit 1 pain-free,
sensorimotor PAF, Spearman ρ = −0.66, P < 0.05, and remained so
when including all participants regardless of pain classification,
Spearman ρ = −0.45, P < 0.05 (Supplementary Fig. 7A). Compared
with a null distribution of F1 scores, pain-free, sensorimotor PAF
identified the most sensitive individuals at all but the smallest
labeling interval and the least sensitive individuals at all but the
two smallest labeling intervals (Fig. 7E). Classification failure at
the smallest labeling intervals was likely due to the relatively
low number of targets available (sample = 30; targets = 3 and
targets = 6 at the 10% and 20% labeling intervals, respectively).
Rerunning the analysis with all participants, regardless of pain
response classification, again demonstrated that pain-free, sen-
sorimotor PAF could identify the most sensitive individuals at
all labeling intervals but the smallest one. For the least pain
sensitive individuals, pain-free, sensorimotor PAF failed to yield
significant predictions at any labeling interval (Supplementary
Fig. 7B).

Discussion
Cycles of the 8–12 Hz Alpha oscillation are thought to reflect
rhythmic, inhibitory processes that control the temporal
dynamics of sensory processing (Jensen and Mazaheri 2010; Van
Rullen 2016). PAF, the individual-specific frequency at which
these rhythms are dominantly expressed, is thought to reflect
the speed at which sensory information is sampled (e.g., Cecere
et al. 2015; Samaha and Postle 2015; Wutz et al. 2018). PAF
abnormalities are evident in several chronic pain conditions,
with patients often demonstrating slowed PAFs relative to age-
matched controls (e.g., Sarnthein et al. 2006; de Vries et al.
2013; Lim et al. 2016). These findings have led to proposals that
PAF disturbances reflect ongoing, pathological processes such

as Thalamocortical Dysrhythmia (e.g., Llinás et al. 1999). PAF,
however, also appears to play a role in shaping the sensitivity
of healthy individuals to prolonged pain (Nir et al. 2010; Furman
et al. 2018, 2019). We have previously shown that the speed of
PAF collected in the absence of a noxious stimulus is negatively
related to an individual’s sensitivity to future prolonged pain
events (i.e., slower PAF = greater pain sensitivity). This has led
us to propose that pain-free PAF is a biomarker of prolonged
pain sensitivity and, furthermore, that chronic-pain-related
disturbances of PAF may reflect differences in pain sensitivity
that predate disease onset.

In the current study, we examined the relationship of pain-
free PAF to two models of prolonged pain, CHP and PHP, within
the same group of participants at two separate timepoints.
From these experiments, we present two key pieces of evidence
supporting the hypothesis that pain-free PAF is a prolonged pain
sensitivity biomarker. First, pain-free PAF shares a near identical,
negative relationship to CHP and PHP sensitivity, with increas-
ingly slower PAF associated with increasingly greater pain inten-
sity during each test. While we have previously reported a
relationship between pain-free PAF and CHP sensitivity (Furman
et al. 2018), the described relationship to PHP sensitivity is
entirely novel. Reproduction of this relationship across models,
despite differences in their length of application, the temper-
atures used, and the presence of a sensitizing agent, provides
important evidence that PAF is a marker of prolonged pain sensi-
tivity per se and not specific portions of either model. This inter-
pretation is also supported by the replication of our earlier CHP
findings despite large procedural differences between the two
studies (i.e., CHP preceded by a cognitive or separate pain task).
Preservation of the PAF-pain sensitivity relationship through
the rekindling phase of the CHP model provides yet another
piece of evidence that PAF captures an element of the prolonged

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa124#supplementary-data
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Figure 7. Visit 1 pain-free, sensorimotor PAF can accurately predict the identity of the most pain sensitive individuals, and an SVM trained on this data can identify
the most pain sensitive in an independent study. A. Visit 1 pain scores from the three prolonged pain models were averaged, and a relevant percentage of the sample,

ranging from 10% to 50% (i.e., median split), was identified as high or low pain sensitive. Colored lines (shading = 95% confidence interval) reflect the average sensitivity
for identified participants and those not classified (black lines; “Remaining”). B. An SVM trained on Visit 1 pain-free, sensorimotor PAF predicts the identity of high and
low pain sensitive individuals from the same study at almost all labeling intervals. An F1 score of 1 indicates perfect classifier performance and the dashed red lines
reflect the 95th % of a null distribution of F1 scores. C. Similar as in A, except pain scores were taken from an independent study on PAF and CHP (Furman et al. 2018).

D. An SVM trained on Visit 1 pain-free, sensorimotor PAF predicts the identity of high pain sensitive individuals from an independent study at all labeling intervals. E.
An SVM trained on Visit 1 pain-free, sensorimotor PAF predicts the identity of Visit 2 high pain sensitive individuals. Note that pain scores for this test are not provided
but are nearly identical to those present in C.

pain experience that is independent of the local context (i.e.,
continuous vs. interrupted pain). Although the association of
pain-free PAF with nonthermal forms of prolonged pain was not
tested in the current study, similar findings in a musculoskeletal
model of prolonged pain provide some assurance that pain-
free PAF is likely to apply to a wide range of prolonged pain
modalities (Furman et al. 2019).

Second, the relationship between pain-free PAF and pro-
longed pain sensitivity is reliable over time. Within the same set
of individuals, we show that the relationship between pain-free
PAF and prolonged pain sensitivity is present at two separate

testing visits. It should be acknowledged that this relationship
was qualitatively stronger at Visit 2, which could be interpreted
as evidence that factors that change with repeated testing, such
as participant familiarity and/or vigilance, mediate the con-
nection between pain-free PAF and prolonged pain sensitivity.
While these effects cannot be entirely discounted, a separate
explanation centers on the limited participant sample available
at Visit 2; restricting Visit 1 analyses to only those participants
completing both visits revealed relationship magnitudes, PHP:
ρ = −0.50; CHP: ρ = −0.50; and CHP Rekindle: −0.52, closer to
those found at Visit 2.
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This temporally stable association of pain-free PAF and pro-
longed pain sensitivity appears to be a consequence of the
temporal stability of the measures themselves. For both pain-
free PAF and prolonged pain sensitivity, we found that Visit
1 and Visit 2 estimates were strongly correlated and did not
significantly differ from one another. These findings fit well
with previous studies of PAF and prolonged pain sensitivity that
demonstrate that each is traitlike measures (e.g., Naert et al.
2008; Grandy et al. 2013; Koenig et al. 2014). Importantly, the
average length of time separating visits (∼8 weeks), as well
as the absence of visual and haptic feedback during rating,
provides comfort that the reliability of pain scores is not simply
the result of participant’s explicit recollection of previous pain.
From a broader perspective, these findings suggest that the
relationship between pain-free PAF and prolonged pain is not
uniquely determined at each visit but is instead an association
that remains consistent across time; put another way, the same
pain-free PAF and the same prolonged pain sensitivity are sam-
pled from individuals at each visit. Indeed, the ability of Visit
1 pain-free PAF to predict prolonged pain sensitivity at Visit 2
provides strong evidence in favor of this conclusion. Thus, these
findings clearly show that pain-free PAF can provide cogent
information about prolonged pain sensitivity at both short (i.e.,
minutes/hours separating PAF acquisition and pain testing) and
long (weeks/months separating visits) timescales.

Considering its apparent reliability as a pain sensitivity
biomarker, as well as its ease of obtainment, pain-free PAF
holds real promise as a pain management and prophylaxis
tool. This may be especially true in cases of planned surgery,
where postoperative pain sensitivity is consistently found to
be an important risk factor for chronic pain development (Hah
et al. 2019). For example, identification of high pain sensitivity
with PAF could be used to inform clinician decision-making
about surgical alternatives. To evaluate this possible real-world
application, we examined whether pain-free PAF can predict
the identify of high or low pain sensitive individuals. In almost
all cases, an SVM trained on pain-free PAF was able to predict
the identity of the most pain sensitive individuals. This held
true when the test data came from the current study or when it
originated from an entirely separate study (Furman et al. 2018).
In contrast, identification of the least pain sensitive individuals
occurred when classification was applied to data from the
current study but not when applied to outside data. These
results suggest that pain-free PAF is particularly well suited
for identifying high pain sensitive individuals. Importantly, Visit
1 pain-free PAF could be used to predict high pain sensitivity
at Visit 2 suggesting that pain sensitivity prediction remains
relevant across clinically relevant periods of time. Prospective
collection of pain-free PAF at routine check-ups may therefore
prove an effective strategy for ensuring that information about
an individual’s pain sensitivity is available to clinicians in cases
of unplanned surgical intervention.

Despite the promise of the current findings, some potential
limitations must be acknowledged. First, a subset of individuals
demonstrating insensitivity to CHP were not included in the
main set of analyses. Although a wide range of factors can ren-
der an individual less sensitive to capsaicin, at least, some cases
appear to be determined by physiological factors, such as genetic
polymorphisms (Campbell et al. 2009), that limit the effects of
the TRPV1 agonist itself (i.e., model failure). The sources of pain
sensitivity for these individuals and for those susceptible to the
full range of capsaicin effects are thus fundamentally different
and not comparable. This represents a limitation of the CHP
model and not, in our opinion, a limitation of PAF’s ability to

reflect pain sensitivity. To overcome this potential pitfall, we
only included CHP-insensitive individuals if they also reported
minimal pain in response to PHP. In these cases, the presence of
PHP insensitivity provided important evidence that CHP insen-
sitivity was at least partly attributable to an individual’s high
tolerance of pain and not just model failure. While this decision
could be interpreted as a confound to analyses of PHP, where
sensitivity to capsaicin is not a relevant factor, supplementary
results when all participants were included are provided for each
test and, in all cases, conclusions regarding the relationship of
pain-free PAF and PHP remained unchanged. Similarly, averag-
ing pain scores across tests revealed that, even when including
all participants, this broader description of pain sensitivity was
well described by pain-free PAF. As a result, we feel confident
that pain-free PAF’s relationship to pain sensitivity holds broadly
across individuals.

Additionally, the current study is unable to provide con-
crete information about PAF’s source or identity. For the sole
purpose of remaining consistent with our earlier methods, we
chose to explicitly focus on PAF recorded from sensorimotor
channels. As we have noted previously (Furman et al. 2019),
PAF’s relationship to pain sensitivity is not restricted to sen-
sorimotor channels and instead appears to encompass nearly
every scalp channel. This continued to hold true in the cur-
rent study even when possible volume conduction effects were
controlled with a Laplacian transform. Although considered a
limitation here, the widespread nature of PAF’s relationship to
pain sensitivity may provide an important clue to its identity.
In line with findings that the alpha rhythm travels across the
cortex in “waves” (Zhang et al. 2018; Lozano-Soldevilla and Van-
Rullen 2019), PAF may reflect processes or sources whose actions
are distributed across the brain. The thalamus represents one
obvious candidate given its extensive cortical projections (e.g.,
Behrens et al. 2003) and central role in generating the alpha
rhythm (Hughes and Crunelli 2005). Large-scale functional net-
works like those involved in attention also represent promis-
ing possibilities. Among these, the frontoparietal network is
particularly interesting given that its relationship to the alpha
rhythm is speed dependent (Sauseng et al. 2005; Sadaghiani et al.
2012) and has itself been implicated in individual differences
in pain sensitivity (Kong et al. 2013; Tu et al. 2019). Resolution
of this question will ultimately require both spatially sensitive
methods, such as EEG-fMRI, and careful behavioral testing to
determine the brain regions and processes which mediate the
relationship between pain-free PAF and pain sensitivity.

Some readers may also be concerned with the limited, 9–
11 Hz frequency range that was used to calculate PAF. Alpha
activity is not limited to 9–11 Hz range and has even been sug-
gested to extend beyond the canonical 8–12 Hz range (Haegens
et al. 2014). One advantage of the restricted calculation range
we employed is that it most effectively negates the impact of
the 1/f aperiodic signal on PAF estimation (Furman et al. 2018).
While methods for isolating narrowband signal from aperiodic
signal are advancing quickly (i.e., Haller et al. 2018), we found
that they were unable to generate adequate solutions for all
participants. As a result, we chose to focus on the 9–11 Hz range
in order to provide the cleanest possible estimate of PAF. Impor-
tantly, results for all analyses were unchanged when PAF was
calculated using the full 8–12 Hz range. Similarly, correlations of
pain with estimates of spectral power at each 0.2-Hz element
within the 8–12 Hz range confirmed that this relationship is not
an artifact of either the range or method used to calculate PAF.
Frequency elements below 10 Hz showed a consistent, positive
relationship to pain sensitivity, whereas elements above 10 Hz
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were negatively associated with pain. This finding reinforces
that where power is expressed within the alpha range is relevant
to pain sensitivity and, furthermore, suggests that different
elements of the alpha range represent distinct processes (e.g.,
Klimesch et al. 1998).

In summary, our results clearly demonstrate that pain-free
PAF is a reliable predictor of prolonged pain sensitivity. In addi-
tion to demonstrating that pain-free PAF is related to multiple
models of prolonged pain, we provide compelling evidence that
this relationship is stable over both immediate, that is, min-
utes/hours, and more extended, that is, weeks/months, periods
of time. Furthermore, we demonstrate that pain-free PAF can
be used to accurately identify high pain sensitive individuals in
multiple datasets. These findings now firmly position pain-free
PAF as a biomarker of pain sensitivity with untapped potential
in clinical settings.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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