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Recognizing specific heart sound patterns is important for the diagnosis of structural heart diseases. 
However, the correct recognition of heart murmur depends largely on clinical experience. Accurately 
identifying abnormal heart sound patterns is challenging for young and inexperienced clinicians. This 
study is aimed at the development of a novel algorithm that can automatically recognize systolic 
murmurs in patients with ventricular septal defects (VSDs). Heart sounds from 51 subjects with VSDs 
and 25 subjects without a significant heart malformation were obtained in this study. Subsequently, 
the soundtracks were divided into different training and testing sets to establish the recognition 
system and evaluate the performance. The automatic murmur recognition system was based on a 
novel temporal attentive pooling-convolutional recurrent neural network (TAP-CRNN) model. On 
analyzing the performance using the test data that comprised 178 VSD heart sounds and 60 normal 
heart sounds, a sensitivity rate of 96.0% was obtained along with a specificity of 96.7%. When 
analyzing the heart sounds recorded in the second aortic and tricuspid areas, both the sensitivity 
and specificity were 100%. We demonstrated that the proposed TAP-CRNN system can accurately 
recognize the systolic murmurs of VSD patients, showing promising potential for the development of 
software for classifying the heart murmurs of several other structural heart diseases.

Ventricular septal defect (VSD), a type of congenital heart disease (CHD) caused by developmental defects 
of the interventricular septum, is the most common type of heart malformation present at birth. It occurs 
in approximately 2–6 of every 1000 live births and accounts for approximately 30% of all CHDs in children/
adolescents1–4. The clinical presentation of a VSD is correlated with the size of the defect5. Mild VSDs are usu-
ally asymptomatic and commonly occur spontaneously within close proximity6. Patients with medium defects 
often suffer from dyspnea. Patients with severe VSDs exhibit cyanosis, dyspnea, syncope, or heart failure and 
require adequate surgeries unless the defects spontaneously decrease7–9. VSDs can also be classified according 
to the morphology and anatomical location of the defect. They can also be classified into four anatomical types: 
type I (outlet supracristal, subarterial, or infundibular), type II (perimembranous, paramembranous, or cono-
ventricular), type III (inlet, atrioventricular canal, or atrioventricular septal defect), and type IV (muscular or 
trabecular)10–12. The perimembranous type is the most common (~ 80%), followed by the muscular (15–20%), 
inlet (~ 5%), and outlet (~ 5%) types.

Similar to many other heart malformations, heart murmurs can be heard in patients with VSD13. Patients 
with a VSD are known to commonly experience holosystolic murmurs, owing to the turbulence of the blood 
flow between the left and right ventricles14,15. Murmur recognition with auscultation is conventionally used for 
the screening and diagnosis of VSD16. However, the accuracy of this method largely depends on clinical experi-
ence and is a challenge for most young and inexperienced clinicians17. Therefore, the development of tools to 
automatically recognize heart-sound patterns can help physicians diagnose heart disease.

Artificial intelligence has recently been widely used in computer-aided diagnosis18,19. For example, many 
algorithms that claim to automatically recognize and classify medical images have been developed using deep 
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learning20–22. Recent efforts have shown significant advances using artificial neural networks (ANNs) or deep 
neural networks (DNNs) to detect and classify heart sounds23–25. Convolutional neural networks (CNNs) have 
also been used to identify heart murmurs26. The aim of this study was to develop a novel algorithm that can 
automatically recognize the systolic murmurs of VSD patients using a novel temporal attentive pooling–convo-
lutional recurrent neural network (TAP-CRNN) model27.

Results
Heart sounds from 76 subjects, including 51 VSD patients and 25 patients without significant heart malforma-
tions, were included in this study. Table 1 shows the mean age, height, weight, and sex distribution of these 
subjects. There were no statistically significant differences between the group suffering from VSD and the normal 
group, with regard to these clinical variables. Regarding the types of VSDs, most patients were diagnosed with 
the type 2 VSD (perimembranous type) and a minor VSD. The details of the VSD types are listed in Table 2.

Two repeated heart sound recordings were obtained at each of the five standard auscultation spaces. For 
some subjects whose recordings did not qualify, owing to the presence of noise, more than two recordings were 
obtained within the same auscultation space to confirm the quality of the soundtracks. A total of 776 heart 
soundtracks were recorded from 76 subjects, including 525 soundtracks from VSD patients and 251 soundtracks 
from normal subjects. The number of soundtracks in the training and test sets is shown in Table 3.

The TAP-CRNN model was used to recognize systolic murmurs in the current study. The structure of TAP-
CRNN is described in Fig. 1, in which the phonocardiogram (PCG) signals were first converted into the spectral 
domain using a short-time Fourier transform, with a frame length of 512 and a frameshift of 256. Then, each 
frame of PCG signals is represented by a 257-dimentional log-power spectral feature vector. An input signal 
was classified as a systolic murmur or a normal signal for training the TAP-CRNN model, which consists of four 
parts: convolutional, recurrent, temporal attentive pooling (TAP), and dense layers. The convolutional layers 
extracted invariant spatial–temporal representations from the spectral features. The recurrent layers were used in 
the following step to extract the long temporal context information from the representations. The TAP layers were 
then used to assign importance weights to each frame in the systolic regions. Finally, the classified results were 
generated by the dense layers according to the temporal attentive pooling feature outputted from the TAP layers.

Table 1.   Basic information of the subjects in this study.

Variables VSD group (N = 51) Normal group (N = 25)

Age (years) 22.12 ± 16.96 (min: 2; max: 65) 29.30 ± 18.67 (min: 4.3; max: 65)

Sex

 Male [n; (%)] 30 (58.82%) 14 (56%)

 Female [n; (%)] 21 (41.18%) 11 (44%)

Height (cm) 147.23 ± 27.86 155.04 ± 23.91

Weight (kg) 46.75 ± 22.70 55.82 ± 24.63

Table 2.   Details of the VSD types included in this study. *Small VSD: Qp/Qs < 1.5; medium VSD: 1.5≦Qp/
Qs < 2; large VSD: 2≦Qp/Qs; where Qp indicates pulmonary blood flow, Qs indicates systemic blood flow.

VSD types (N = 51) Case number (%)

 Type I: infundibular, outlet 2 (3.92%)

 Type II: perimembranous 42 (82.35%)

 Type III: inlet, atrioventricular 0

 Type IV: muscular, trabecular 5 (9.80%)

 Unknown 2 (3.92%)

Size classification*

 Small 30 (58.82%)

 Medium 13 (25.49%)

 Large 4 (7.84%)

 Unknown 4 (7.84%)

Table 3.   Number of subjects and heart sound recordings in this study.

Variables VSD group Normal group

Number of subjects 51 25

Number of sound recordings 525 251
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The performance of the algorithm for systolic murmur recognition was analyzed for two different tasks, 
namely, a train–test split and K-fold cross-validation. Table 4 shows the performance of TAP-CRNN for systolic 
murmur recognition in the train–test split task. The CNN and CRNN models for systolic murmur recognition 
were also analyzed for comparison. The CNN model comprised three convolutional layers, where the first layer 
consisted of 32 filters with a kernel size of 1 × 4, the second layer included 32 filters with a kernel size of 1 × 4, 
and the third layer contained 32 filters with a kernel size of 4 × 4; the model also comprised two dense layers, 
with each layer composed of 512 neurons. The CRNN model comprised two convolutional layers, with each 
layer consisting of 16 filters with a kernel size of 1 × 4; two recurrent layers (long short-term memory unit), with 
each layer including 256 neurons; and two dense layers, with each layer containing 256 neurons. Compared 
with the CRNN architecture, a TAP-CRNN comprises an additional TAP layer. The hyperbolic tangent units 
were used in all the models, and the softmax unit was used in the last output layer. Adaptive moment estimation 
(Adam)28 was used as the optimizer. For the train–test split task, the entire set of data were divided into 70% 
(191 normal sounds, and 351 systolic murmur sounds) and 30% (60 normal sounds and 178 systolic murmur 
sounds) for training the murmur recognition models and testing their performances, respectively. For this task, 
the sensitivity and specificity scores were 88% and 85% for CNN, 92% and 93% for CRNN, and 97% and 98% for 
TAP-CRNN, respectively. In supplementary Tables 1–3, 2 × 2 tables of positive and negative events are shown. 
The receiver operating characteristic (ROC) curves of CNN, CRNN, and TAP-CRNN are shown in Fig. 2. The 
results show that the use of the TAP-CRNN model achieves a better accuracy for systolic murmur recognition 
when compared to the use of the CNN and CRNN models. The K-fold cross-validation task was used to further 
verify the reliability of the system performance. We conducted experiments using a fourfold (K = 4) setup. We 
first divided the entire set of PCG data into four groups, and roughly equal numbers of VSD patients and normal 
people were assigned to each group. We used data belonging to three out of these four groups for training the 
TAP-CRNN model, and the remaining group was used for testing. There were no overlapping subjects in the 
training and test sets. We carried out this procedure four times, the results of which have been listed in Table 5. 
From Table 5, we can see that the fourfold results are quite consistent and share the same trends as the results 
reported in Table 4 (the train– test split task). The average sensitivity and specificity scores over 4-folds were 
97.18% and 91.98% of TAP-CRNN, confirming that the proposed TAP-CRNN can reliably produce satisfactory 
results for all evaluation metrics.  

The capability of the TAP-CRNN model for recognizing the systolic murmurs at the five standard ausculta-
tion sites was also analyzed (Table 6, supplemental Tables 4–8). Both the second aortic and the tricuspid areas 

Figure 1.   The structure of the TAP-CRNN model. STFT was used to transform the phonocardiogram (PPG) 
signals to spectral features at the first step. The second step used CNN to extract invariant spatial–temporal 
representations from the spectral features. Then RNN was used to extract long temporal-context information in 
the representations for classification in the following step. Finally, TAP was used to assign importance weights 
for each frame in the systolic regions in the fourth step. STFT: short time fast Fourier transformation; LSTM: 
long-short term memory; TAP: temporal attentive pooling.

Table 4.   Results of testing the algorithm’s ability to distinguish systolic murmurs from normal heart sounds.

Accuracy Sensitivity Specificity PPV NPV

CNN 87.0% 87.6% 85.0% 94.5% 69.9%

CRNN 92.0% 91.6% 93.3% 97.6% 78.9%

TAP-CRNN 97.1% 96.6% 98.3% 99.4% 90.1%
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showed 100% sensitivity and 100% specificity. The sensitivity was decreased in the other spaces, including the 
aortic (95.5%), pulmonic (94.1%), and mitral (94.1%) areas.

Discussion
A murmur is a sound generated by the turbulent blood flow in the heart. Under normal conditions, the blood 
flow in a vascular bed is smooth and silent. However, blood flow can be turbulent and produce extra noise when 
the heart has a structural defect29. Murmurs can be classified based on their timing, duration, intensity, pitch, and 
shape. Specific murmur patterns may occur as a result of many types of structural heart diseases14. For example, 
holosystolic murmurs, which are characterized by uniform intensity during the systolic period, usually appear 
in patients with mitral regurgitation (MR), tricuspid regurgitation (TR), or VSD30–32. Murmurs that occur dur-
ing the systolic period with a crescendo-decrescendo shape are called systolic ejection murmurs and are often 
heard in patients with aortic stenosis (AS), pulmonic stenosis (PS), and atrial septal defect (ASD)30. Experienced 
cardiologists may successfully distinguish these specific heart sound patterns during routine auscultation, and 
this capability is important in disease diagnosis. However, it is always a challenge for young and inexperienced 
physicians to make a correct diagnosis based on auscultation17,33. Therefore, the development of tools that can 
automatically classify specific murmur types is necessary and clinically significant34,35.

Figure 2.   The experimental result of the ROC curves of the CNN, CRNN, and TAP-CRNN models.

Table 5.   Results of fourfold cross validation of TAP-CRNN.

Accuracy Sensitivity Specificity PPV NPV

1st fold 98.4 99.2% 96.7% 98.5% 98.3%

2nd fold 96.8 96.2% 98.3% 99.2% 92.2%

3rd fold 96.4 99.3% 90.0% 95.7% 98.2%

4th fold 90.2 94.0% 82.9% 91.2% 87.9%

Average 95.45 97.18 91.98 96.15% 94.15%

Table 6.   Test results of the TAP-CRNN model’s ability to distinguish systolic murmur from normal heart 
sounds at the 5 standard auscultation locations.

Auscultation area Accuracy Sensitivity Specificity PPV NPV

Aortic area 94.6% 95.5% 91.7% 97.7% 84.6%

Pulmonic area 95.7% 94.1% 100% 100% 85.7%

Second aortic area/ Erb’s point 100% 100% 100% 100% 100%

Tricuspid area 100% 100% 100% 100% 100%

Mitral area/apex 95.7% 94.1% 100% 100% 85.7%
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In recent years, CNNs have been widely used in computer-aided diagnosis36,37. Previous studies have used 
a CNN to classify pathological heart sounds38,39. A recurrent neural network is another model frequently used 
in computer-aided diagnosis40,41. In this study, we combined CNN and RNN models (forming a CRNN model) 
to recognize the systolic murmurs from VSD patients. We used a convolutional unit to extract invariant spa-
tial–temporal representations and the recurrent unit to capture long temporal-context information for systolic 
murmur recognition. In addition, the TAP mechanism was also applied in the CRNN model to assign an impor-
tance weight for each frame within the murmur regions. Finally, the overall model is called TAP-CRNN. From 
our experimental results, the TAP-CRNN model demonstrated an accuracy of 96% for distinguishing systolic 
murmurs from normal heart sounds, outperforming both CNN and CRNN without TAP.

For heart sounds recorded in the tricuspid and second aortic areas (Erb’s point), both the sensitivity and 
specificity reached 100% when the TAP-CRNN model was used. A high accuracy in these two areas is reasonable 
because the murmurs caused by the blood flow between the right and left ventricles can be most clearly heard 
in the tricuspid area or the lower left sternal border, which overlies the defect42.

The intensity of the murmur is inversely proportional to the size of the VSD. The ability of the algorithm to 
recognize the murmurs caused by a moderate or large VSD was also tested in the current study. In the test set, 
63 soundtracks from 6 patients with moderate/large VSDs were included. When using the TAP-CRNN model, 
the murmurs of these soundtracks from moderate/large VSDs can be accurately recognized, except for two 
soundtracks recorded in the mitral area. Although the results obtained by TAP-CRNN are encouraging, we will 
further test the performance using a larger dataset of heart sound in the future.

This study has several limitations. As a major limitation, this study focused on the specific heart sound pat-
terns of VSD, while not considering other types of structural heart diseases. Although heart murmurs can be 
heard in many other congenital and valvular heart diseases, such as atrial septal defects, patent ductus arteriosus, 
mitral regurgitation, and aortic regurgitation, patients with these diseases were not included in this study. Harm-
less heart murmurs, which occasionally occur in normal subjects, were also not included43–45. A larger heart 
sound database is currently being established to comprehensively collect heart sounds from patients with all types 
of structural heart diseases. An advanced version of the proposed TAP-CRNN algorithm that can recognize the 
specific murmur types in such diseases is also under development.

Conclusions
We demonstrated that a TAP-CRNN model can accurately recognize the systolic murmur of VSD patients. As 
compared to CNN and CRNN without TAP, the proposed TAP-CRNN achieves higher sensitivity and specific-
ity scores for systolic murmurs detections in patients with VSDs. The results suggest that by incorporating the 
attention mechanism, the CRNN-based model can more accurately detect murmur signals. We also noted that 
sounds recorded from the second aortic and the tricuspid areas can facilitate more accurate murmur detection 
results as compared to other auscultation sites. The experimental results from the present study confirmed that 
the proposed TAP-CRNN serves as a promising model for the development of software to classify the heart 
murmurs of many other types of structural heart diseases.

Methods
In this section, we introduce our data source, algorithm, and analysis method.

Data source
The sound dataset used in this study included heart sounds recorded from subjects at the National Taiwan Uni-
versity Hospital (NTUH) using an iMediPlus electronic stethoscope. This study was approved by the research 
ethics committee of NTUH, and informed consent was obtained from all subjects or, if subjects are under 18, 
from a parent and/or legal guardian in accordance with the Declaration of Helsinki. It is also confirmed that all 
methods were carried out in accordance with relevant guidelines and regulations.

Sounds from patients diagnosed with VSD were categorized as the VSD group and sounds from patients 
without a significant heart malformation were categorized as a normal group. Auscultation was applied for each 
subject by a cardiologist with 30 years of experience to confirm whether a pathological systolic murmur occurred 
in patients with VSD. Normal subjects with innocent murmurs were not included in this study. Echocardiography 
was conducted on all subjects to confirm the disease diagnosis46.

For each subject, two repeated heart sound recordings lasting 10 s each were made at each of the following 
sites: the aortic area (the second intercostal space on the right sternal border), the pulmonic area (the second 
intercostal space on the left sternal border), the secondary aortic area/Erb’s point (the third intercostal space on 
the left sternal border), the tricuspid area (the fourth intercostal space on the left sternal border), and the mitral 
area/apex (the fifth intercostal space to the left of the midclavicular line)30,47. The sounds were recorded by trained 
study nurses under the supervision of an experienced cardiologist. The soundtracks were saved as WAV files.

The soundtracks collected were divided into training and test sets. Notably, the training and test sets are two 
mutually exclusive sets without an overlap.

Algorithm characteristics
In this study, a short-time fast Fourier transformation was used to transform the phonocardiogram (PCG) sig-
nal into a time–frequency representation (spectral features), where X = [x(1), . . . , x(n), . . . , x(N)] denotes the 
input feature, and N is the number of frames of X. Each frame is represented by a 257-dimensional log-power 
spectral feature vector. The collection of frames in X forms a spectrogram, which is generally used to visualize the 
characteristics of temporal signals varying over time (Fig. 3). In this study, the TAP-CRNN structure was used 
for classification27. Figure 1 shows the network architecture of TAP-CRNN, in which convolutional layers48 were 
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used to extract invariant frequency-shift features Y =
[

y(1), . . . , y(n), . . . , y(N)
]

. Recurrent layers49 were used 
to explore the global temporal feature h(N) of a sequence from the recurrent layer’s outputs, and the TAP layers 
then extracted the temporal attentive feature and weighed the spectral features when generating the classifica-
tion results. Figure 4 shows CRNN with a TAP mechanism. The idea here is to focus on important features or 
regions by introducing attention blocks. Two different attention approaches, local and global, were used to exploit 
the effectiveness of the TAP mechanism. The back-propagation algorithm is adopted to train the TAP-CRNN 
parameters to minimize the cross entropy50. In terms of global attention, the model decides to focus equally on 

Figure 3.   Spectrograms of heart sounds from the normal subjects (a) and the subjects with VSD (b). The 
spectrums of sounds or other signals as they vary with time is shown. S1 (empty triangle) and S2 (solid triangle) 
are observed in the spectrogram of the normal heart sound. Systolic murmur (white arrow) is observed in the 
spectrogram of the VSD heart sound.

Figure 4.   The mechanism of TAP-CRNN.
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all regions (global). By contrast, local attention focuses on small regions (local). The idea of global attention is 
to consider all outputs of the convolutional layer and the temporal summarization of the output of the recurrent 
layer. For global attention of the TAP, we employ a simple concatenated layer to construct the global attentive 
vector c(n) by combining the information from the output of the convolutional layer y(n) and the output of the 
recurrent layer h(N) , such as in the following:

 where h(N) is the output of the recurrent layer at the last time step, W c and W r are the parameter matrices used 
to concatenate y(n) and h(N) , i.e.,W c ∈ Rcnndim×cnndim and W r ∈ Rrnndim×rnndim , where cnndim and rnndim are the 
output dimensions of the convolutional and recurrent layers, respectively.

The global attentive vector c(n) is subsequently fed into the global attention block to produce the global atten-
tion weights αglobal (scalar) and is shown as follows:

where u ∈ R(cnndim+rnndim)×1 is the vector used to calculate the global attention weight matrix shared by all time 
steps, and bglobal ∈ R(cnndim+rnndim)×1 is the global bias matrix. The global attention weights are used to weight 
the local features from the convolutional layer at each time step as follows:

In addition to the global attention, the local attention is used to further refine the feature extraction and is 
calculated in the following manner:

where W l ∈ Rcnndim×cnndim , bl ∈ Rcnndim×1 , and v ∈ Rcnndim×1 are the parametric matrices used for the local atten-
tion weight calculation. These local attention weights are used to weight the features such as in the following:

where βlocal(n) is the output weight vector for local attention. The final attentive context is calculated as the aver-
age of the weighted outputs and is shown as follows:

After obtaining the attentive context f̂  , we concatenate it with the last time step output h(N) of the CRNN 
as the input s of the dense layers, such as in the following:

The dense layers are constructed using fully connected units. The relationship between feature s and the 
output of the first hidden layer is described as follows:

 where W1 and b1 correspond to the weight and bias vector in the first layer, and F(.) is the activation function. 
After obtaining the output of the first hidden layer, the relationship between the current and next hidden layer 
can be expressed as follows:

 where L is the total number of layers of neurons in the output layer. Thus, the relationship for the classification 
layer or the output layer can be described as follows:

 where G(.) is the softmax function, and o is the final output of TAP-CRNN.
The importance coefficients provided by the global and local attention were regarded as a frame-based event 

presence likelihood (EPL), i.e., αglobal(n)βlocal(n) . To determine the classified result, the frames with low EPLs 
were ignored while being emphasized with high EPLs. Figure 5 illustrates the spectrogram (Fig. 5a) and the EPL 
score (Fig. 5b) of heart sounds from subjects with VSD, in which the murmur regions showed high EPLs when 
the global attention coefficients and the local attention coefficients were calculated. The features of the murmur 
regions with a high EPL will be emphasized during the feature extraction.

(1)c(n) =

[

W cy(n)
W rh(N)

]

,

(2)αglobal(n) = softmax
(

uT tanh
(

c(n)+ bglobal
)

)

,

(3)z(n) = αglobal(n)y(n),

(4)βlocal(n) = softmax
(

vT tanh(W lz(n)+ bl)
)

,

(5)f (n) = αglobal(n)βlocal(n)y(n),

(6)f̂ =
1

N

N
∑

n=1

αglobal(n)βlocal(n)y(n),

(7)s =

[

f̂
Wgh(N)

]

,

(8)a1 = F
(

W1s + b1
)

,

(9)al = F
(

W lal−1 + bl
)

, l = 2, . . . , L,

(10)o = G(aL),
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Statistical analysis
The sex distribution, mean age, mean height, and mean weight of the subjects were calculated. An independent 
sample t-test and a chi-square test were conducted to compare the differences between the VSD and normal 
groups in terms of continuous and categorical variables, respectively.

The soundtracks used in the test set were applied to test the recognition performance. The accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative predictive value (NPV) for the distinction of the systolic 
murmur of VSD patients from the normal heart sounds of healthy volunteers were calculated51–53. A diagnosis 
using echocardiography was applied as the gold standard for these calculations9,10,54. The equations are as follows:

where Tp indicates a true positive, Tn indicates a true negative, Fp indicates a false positive, and Fn indicates a 
false negative.
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