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restriction or related to neuron density in the prefrontal
cortex of extremely aged rhesus macaques
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Abstract As human lifespan increases and the popula-
tion ages, diseases of aging such as Alzheimer’s disease
(AD) are a major cause for concern. Although calorie
restriction (CR) as an intervention has been shown to
increase healthspan in many species, few studies have
examined the effects of CR on brain aging in primates.
Using postmortem tissue from a cohort of extremely
aged rhesus monkeys (22–44 years old, average age
31.8 years) from a longitudinal CR study, we measured
immunohistochemically labeled amyloid beta plaques
in Brodmann areas 32 and 46 of the prefrontal cortex,
areas that play key roles in cognitive processing, are
sensitive to aging and, in humans, are also susceptible to
AD pathogenesis. We also evaluated these areas for
cortical neuron loss, which has not been observed in
younger cohorts of aged monkeys. We found a

significant increase in plaque density with age, but this
was unaffected by diet. Moreover, there was no change
in neuron density with age or treatment. These data
suggest that even in the oldest-old rhesus macaques,
amyloid beta plaques do not lead to overt neuron loss.
Hence, the rhesus macaque serves as a pragmatic animal
model for normative human aging but is not a complete
model of the neurodegeneration of AD. This model of
aging may instead prove most useful for determining
how even the oldest monkeys are protected from AD,
and this information may therefore yield valuable infor-
mation for clinical AD treatments.
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Abbreviations
Aβ Amyloid beta
AD Alzheimer’s disease
APOE Apolipoprotein E
APP Amyloid precursor protein
BA 32 Brodmann Area 32 of the cingulate cortex
BA 46 Brodmann Area 46 of the prefrontal cortex
CDC Centers for Disease Control and Prevention
CR Calorie restriction
MCI Mild cognitive impairment
NeuN Neuronal nucleic protein
NHP Nonhuman primate
NIA National Institute on Aging
PFC Prefrontal cortex
ROI Region of interest
TBS 7.6 pH Tris-buffered saline
US United States of America

Introduction

Aging and neurodegeneration

The US population is becoming increasingly old, with
one in five Americans predicted to be 65 years old or
older by 2030 [1, 2]. Associated with this shift in pop-
ulation distribution are concerns about the socioeco-
nomic costs of chronic poor health and fragility. Cogni-
tively, older adults can show mild changes including
reductions in processing speed, attention, and memory
retrieval [3, 4]. Critically, older adults are also at risk for
developing age-related neurodegenerative diseases,
such as Alzheimer’s disease (AD; [2]). In fact, the
chance of developingAD and other dementias continues
to increase markedly with age: after the age of 65, risk
for developing AD is predicted to double every 5 years
([5]; Alzheimer’s Association 2019). An additional bur-
den is unpaid care for AD patients, estimated by the year
2050 to bring the societal cost of AD to over $1 trillion
annually [6–8]. For these reasons, characterizing rele-
vant animal models of cognitive aging and AD is of
major value in order to identify pathological mecha-
nisms as well as to develop and test novel treatments.

Mechanisms and therapeutic interventions

Normative aging of the brain does not result in overt
neuron loss, even though mild brain atrophy can occur;

this may reflect deterioration of dendrites, shrinkage of
neurons, or reduction in white matter [9, 10]. Other
physical changes in the brain, such as microgliosis and
astrogliosis, the accumulation of amyloid beta (Aβ)
plaques, and tauopathy also occur with normal aging
and can alter cognitive function [4, 11]. Amyloid beta, a
primary focus of this study, is a protein derived from the
aptly named amyloid precursor protein (APP). While
soluble forms of Aβ exist, insoluble Aβ has the capacity
to form extracellular plaques which accumulate across
age, and are considered to range anywhere from broadly
pathological, to neurotoxic; for a more complete discus-
sion of Aβ across aging as well as AD, see Duyckaerts
et al. [12].

Patients with AD show these aforementioned chang-
es, but on an accelerated time course, and with much
higher levels of Aβ and phosphorylated tau in associa-
tionwith pronounced neuron death [12].While there has
been limited short-term treatment management success
using the few FDA-approved drugs, there are currently
no available medications that effectively treat the under-
lying causes to slow or arrest the disease itself. Ap-
proaches that target reductions in Aβ have thus far been
unsuccessful in slowing or reversing the progression of
AD, with these failures necessitating the exploration of
alternative therapeutic approaches [13–17].

Calorie restriction (CR) in various animal models has
long been studied as an intervention to attenuate aging
processes to prolong healthspan and lifespan [18–21].
For example, in rodents, CR has been shown to benefit
brain aging by extending life span by 25%, mitigating
hippocampal gene methylation, decreasing apoptosis,
increasing neurogenesis, and improving cognitive func-
tion ([19, 21–23].

Assessing the effects of CR in humans is understand-
ably difficult as it is impossible to completely control the
environment, adherence to diet regimens is poor, and
participant retention is low. Yet, the Comprehensive
Assessment of Long-term Effects of Reducing Caloric
Intake of Energy (CALERIE) trial, a multi-center clin-
ical study of CR, has provided valuable insight on the
effects of health parameters [24]. Improved cardiomet-
abolic health was the primary outcome of this trial, but
enhanced mood and sleep in the CR group indicate that
there may be central effects as well [25]. However, in
order to more easily identify the mechanisms by which
CR affects the brain and body, it is necessary to have
available a preclinical animal model for which environ-
mental factors such as diet, temperature, photoperiod,
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and medication can be strictly controlled. This also
allows for optimal tissue sample collection and process-
ing due to a minimized postmortem interval.

Preclinical rodent models

Compared to humans and nonhuman primates (NHP),
rodents have relatively short lifespans allowing for more
rapid experimental turnaround in longitudinal studies.
However, rodents do not naturally develop measurable
cognitive impairments or pathological features of AD
such as Aβ plaques [26]. To compensate for these
phylogenetic differences, transgenic approaches have
been partially successful in replicating AD neuropathol-
ogy and have contributed significantly to our under-
standing of basic mechanisms. For instance, Halagappa
et al. [27] have shown that CR is capable of reducing
levels of both Aβ and phosphorylated tau in hippocampi
of a triple-transgenic mouse model of AD. These find-
ings are promising insights into possible mechanisms
but are not always successful in translation ([28]; for a
review of mouse AD models, see [29]). For example,
neurocognitive testing, which is widely regarded as the
gold standard in assessment of AD risk and progression
[3, 6, 29, 30], lacks the appropriate cognitive test batte-
ries for complex tasks, such as episodic memory or
robust executive function for mouse models of MCI
and AD. Many mouse models of AD are indeed im-
paired on one or more neurocognitive measures, but
tasks must be simple for effective acquisition and testing
[29]. Thus, rodent models are insufficient for evaluating
the complexities of AD in areas such as temporal devel-
opment, cognitive deficits, complete brain pathology,
and non-cognitive neuropsychiatric symptoms.

The rhesus macaque model

To bridge the translational gap between humans and
lower vertebrates, nonhuman primates (NHPs) have
been used as a preclinical model to study human aging.
The rhesus macaque (Macaca mulatta) is a well-studied
NHP that shows close genetic homology to humans
[31], an extended lifespan with similar developmental
phases and physiology [32], and a capacity for learning
and performing complex cognitive tasks, which decline
naturally with age [33–36]. In contrast to rodents, rhesus
monkeys develop cortical Aβ plaques during aging,
without any experimental manipulations [37, 38]. As
Aβ is a hallmark of AD and does not need to be induced

in this species, it has been proposed that naturally aging
rhesus macaques may be a suitable AD model (i.e.,
[39]). In addition, there is some evidence that early
stages of pathological tauopathy, another hallmark of
the disease, may be present in middle-aged and old
monkeys, though these reports have been mixed [40,
41]. However, another major pathological hallmark of
AD—that is, neuron loss—has not been observed in
studies of macaque monkeys that have used modern
stereology [42–48]. A notable exception from Smith
et al. [49] reported significant neuron loss in the PFC
BA 8A of aged macaques compared to younger con-
trols, with no neuronal loss in adjacent BA 46. Howev-
er, as a prelude to the present study, a larger cohort of
aging monkeys at Boston University was evaluated
using the same ROI and methods as Smith et al. [49],
and failed to find any cell loss (see Online Resource Fig.
S1). Importantly, this finding calls into questionwhether
neuron loss occurs anywhere in the aging rhesus mon-
key brain, at least up to the age of 35, the oldest subject
in these stereological studies.

Aims of the current study

The rhesus macaque is the most widely studied NHP
model of human agingwith an average lifespan of 26 years
[30], and amaximum reported lifespan of 40 years [50]. In
1987, the NIA’s intramural research program initiated a
longitudinal study of CR in NHPs and includes some of
the oldest rhesus macaques in recorded history, at well
over 40 years of age [50–52]. Although it remains unclear
why some monkeys lived well beyond the reported aver-
age lifespan, postmortem tissue from these oldest-old an-
imals may provide valuable insights into very advanced
NHP aging. For example, because aging is the primary risk
factor for AD diagnosis [53], there is increased likelihood
of detecting clinical AD pathology such as neuron loss in
the brains of these very old animals. In the current study,
postmortem brain tissue was obtained from a subset of
these aged NIA animals and examined for differences
between diet groups (CR and control) and the effects of
age [32].

We initiated our analysis with the PFC, which has
been shown to contain a very high number of Aβ
plaques in aged rhesus monkeys [37]. Within the PFC,
we focused on BA 46, a key cognitive area with well-
documented sensitivity to aging in both humans and
monkeys [54–57], and BA 32, a region with many
implications in clinical aging [58–61], and which has
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not yet been fully characterized in aging monkeys.
Importantly, because BA 32 is located within the same
coronal sections as BA 46, it can serve as an internal
comparison for each subject. We reasoned that if neuron
death does occur in NHPs, it is likely to be revealed in
the current cohort of very old monkeys, as it is exceed-
ingly rare for macaques to live beyond the age of
40 years. However, three animals in this cohort lived
beyond this age, with one other nearly reaching 40, at
39.4 years. This cohort has an average age of 31.8 years
and contains some of the oldest known rhesus monkeys;
therefore, brain changes that occur due to aging are
likely to become evident within this population. To
assess neuron numbers, PFC sections were immuno-
stained for the neuronal marker NeuN, with parallel
sections immunostained with the Aβ marker 4G8. Both
markers were quantified using unbiased stereology. We
hypothesized that Aβ plaque load would increase with
age in BA 46 and 32, and might possibly be attenuated
by CR, while neuronal cell number, similar to previous
studies, would be stable across age, even in the oldest-
old animals. If neuronal loss occurs, we hypothesized
we would observe it only in the oldest monkeys, and/or
those with the highest plaque load.

Materials and methods

Animals

All procedures were conducted in accordance with the
Guide for the Care and Use of Laboratory Animals and
approved by the NIA Intramural Research Program
Animal Care and Use Committee. Subjects included
18 rhesus macaques (5 females; 13 males) housed at
the NIH Animal Center (Table S2, Online Resource).
These animals represented a subpopulation of the NIA
longitudinal study of CR in NHPs, initiated in the late-
1980s with approximately 120 subjects. Notably, this
subset included all subjects with PFC brain tissue that
was not over-fixed (and therefore unusable for the IHC
protocol detailed below), that were available at the time
of the current study. Age at death (ranging from 22 to
44 years) was not significantly different between the
control (n = 10, mean = 31.29 years, SEM = ±
1.33 years) and CR (n = 8, mean = 32.49 years, SEM=
± 2.82 years) groups (t = 0.414, p > 0.6). Of note, blood
pressure, which is associated with some clinical neuro-
pathological conditions, did not change statistically over

time in either control animals or those on CR (data not
shown). As previously described, animals were housed
in standard primate caging with controlled temperature
and humidity and a 12-h light-dark cycle [52, 62].

The diet was naturally sourced, with the potential
advantage of having micronutrients such as phytochem-
icals and ultra-trace minerals included. However, we
note that there was the possibility for batch-to-batch
variation [32, 63]. CR and control monkeys received
the same food, supplemented with additional vitamins
and minerals to ensure a 100% daily level for CR
monkeys. Thus, with the larger food intake, these levels
were exceeded in control monkeys. Control animals
were maintained on a diet to approximate natural ad
libitum levels: a stable ration based on age and body
size in order to avoid confounding obesity effects. An-
imals in the CR group were fed 30% less than individual
sex-, age-, and weight-matched controls, and these diet
conditions were maintained for the duration of the study
from age of CR onset through death, which ranged from
1 to 15 years in duration. See supplementary Table S1
(Online Resource) for additional demographics.

Specially formulated monkey chow was distributed
twice per day at 0630 and 1300, which was supplement-
ed with daily food enrichment. Drinking water was
provided ad libitum. Approximately 3 h after the 0630
meal, any unfinished food was removed and a low
calorie treat was provided. For the second meal, at
1300, any left-over food was not removed, so animals
had continued access during the dark cycle (1800).
However, in general, the monkeys tended to eat before
lights-out. Because intermittent daily fasting was not a
variable that was under consideration when the study
began 30 years ago, if and when the afternoon ration
was totally consumed was not monitored.

At necropsy, brains were collected, rinsed with 0.9%
saline, and hemisected along the medial longitudinal
plane. Immediately following collection, right hemi-
spheres were immersed in 0.1 M phosphate buffer (pH
7.4) with 4% paraformaldehyde fixative while the left
hemispheres were flash frozen for biochemical assay.
The right hemispheres were maintained in fixative at
4 °C for 5–9 days (notably, three animals in this study
had longer fixation times, from 52 to 116 days, but have
retained antigenicity). After fixation, brains were rinsed
in 0.1 M phosphate buffer and transferred to cryopro-
tectant consisting of 0.1 M phosphate buffer with 10%
glycerol and 2%DMSO. After equilibration (1–2 days),
they were transferred to 20% glycerol with 2% DMSO
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for 3–4 days after which they were blocked in the
coronal plane posterior to the corpus callosum and flash
frozen in isopentane at − 75 °C, then stored at − 80 °C.
This cryoprotection method almost totally eliminates
freezing artifact and avoids the shrinkage inherent in
sucrose cryoprotection [64]. For processing, the right
hemisphere was removed from − 80 °C storage and cut
into parallel sets of frozen sections, eight at 30 μm thick
and one at 60 μm so that adjacent sections in each series
were spaced 300 μm apart. After cutting, each series of
sections was transferred to cryovials containing 0.1 M
phosphate buffer plus 15% glycerol, equilibrated over-
night at 4 °C, and then stored at − 80 °C until processed.
This method of storing frozen sections has been shown
to preserve antigenicity for at least a decade [65].

One eighth of one series through the frontal block of
each animal was used to process each antibody (i.e.,
4G8 and NeuN). From this series, there was a median of
7 equally spaced sections per animal (~ 2.4-mm inter-
vals) spanning the entire brain region containing BA 46.
We were able to use the same PFC brain sections to
evaluate both BA 46 and BA 32. BA 32 is shorter in the
rostral-caudal axis, so only 4–5 sections per animal
contained BA 32.

Immunohistochemistry

Vials containing 1/8th of a set in the series (i.e., sections
every 2.4 mm) for all animals were removed simulta-
neously from − 80 °C and thawed at room temperature.
Immunohistochemistry was performed on cryoprotected
free-floating PFC sections transferred into 6-well culture
plates and stored overnight in 7.6 pH Tris-buffered
saline (TBS) at 4 °C. Between each step of the process
outlined below, sections were rinsed with TBS three
times for 10 min. All steps were performed on a slowly
rotating agitation plate at room temperature unless oth-
erwise noted.

To identify neurons, a well-validated primary anti-
body against NeuN was used to stain cortical neurons
(1:2000, MilliporeSigma, Darmstadt, Germany). Aβ
was visualized using 4G8 primary antibody (1:5000,
Biolegend, San Diego, CA, USA), which identifies both
the amyloid precursor protein (APP) and native species
of Aβ cleaved from APP, including but not limited to
Aβ40 and Aβ42. On day 1 of immunostaining, endog-
enous peroxidase activity was blocked using a 1% H202
solution for 45 min after which nonspecific binding was
blocked using 5% normal horse serum for 30 min.

Sections were then incubated with the primary antibody
overnight at 4 °C. On day 2, they were transferred to
secondary antibody (Vector biotinylated horse anti-
mouse, Burlingame, CA, USA, 1:500) for 60min. Then,
the signal was amplified with Avidin-Biotin Complex
(manufacturer’s instructions; Vector; Burlingame, CA,
USA) for 90 min and immune-positive labeling visual-
ized by exposing the sections to nickel chloride-
enhanced 3,3′-diaminobenzadine tetrahydrochloride
(manufacturer’s instructions; Sigma-Aldrich, St. Louis,
MO, USA) for 5 min. After this step, sections were
rinsed, stored overnight at 4 °C, then mounted on glass
microscope slides, dehydrated using increasing concen-
trations of ethanol baths followed by xylenes, and final-
ly sealed with DPX mounting medium (Electron Mi-
croscopy Services, Hatfield, PA, USA).

Stereology

All analyses were done with the investigator blind to
subject characteristic (age, sex, group, etc.). Blind, cod-
ed slides were scanned at × 20 objective in one z-plane
using a Leica Aperio AT2 slide scanner (Wetzlar, Ger-
many). Aβ plaques were manually quantified from
these images using the area fraction fractionator (AFF)
probe in Stereo Investigator 2018 (MBF Bioscience,
Williston, VT, USA), and neuronal cells were quantified
using the optical fractionator procedure found in the
same program. AFF is a form of Cavalieri point
counting based on a systematic random sampling grid,
which uses manually determined areas of positive stain-
ing to estimate a fraction of the entire region. The same
blinded investigator manually completed stereological
counts on all sections of all animals, in order to eliminate
inter-rater variability and to ensure consistent criteria
were used to differentiate intracellular staining from
amyloid plaques. In brief, the digitized histologically
stained images were imported into Stereo Investigator,
and counting frames systematically randomly placed
across manually delineated ROIs in each brain section
(determined with Scalable Brain Atlas Markov Cortical
Regions Atlas 2014, regions 46d, 46v, 9-46d, and 9-46v
for BA 46, and region 32 for BA 32). After counting
was complete, we verified that sampling for each subject
had Gunderson’s coefficient of error (an estimate of the
accuracy of the counting scheme) scores of < 0.10. Aβ
plaques were determined to be positive if they were
larger than a pyramidal neuron (i.e., to exclude
intraneuronal Aβ) and ellipsoid (as opposed to linear
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vasculature staining), and only plaque area inside the
counting frame was marked positive.

Neurons were counted using the optical fractionator
probe in the same program if the nucleus was visible or
if the cell was morphologically deemed to be a neuron
(Bhattacherjee et al. [66]) and was contained either
within the counting frame, or if the cell body or process-
es contacted the green bottom or right edges of the
frame. Neurons were not counted if cell bodies or pro-
cesses were in contact with the red top and left edges of
the counting frame. See Fig. 1 for representative exam-
ples of high and low plaque burdens.

Statistical analysis

Two animals of the initial twenty subjects were exclud-
ed from all analyses as statistical outliers in high Aβ
percent area coverage (i.e., area fractions of these ani-
mals were higher than 1.5x the determined interquartile
range added to the third quartile). Both animals were CR
females in the early-30’s age range. Future studies with
more animals will determine whether these animals
represent true outliers or are indicative of a phenotype
for which we do not yet have the power to detect.

Linear regressions and correlations were performed in
GraphPad Prism (San Diego, CA), with alpha level set at
0.05. To calculate neurons per mm2, the estimated total
number of neurons per animal was divided by the sum of
the area of all ROIs for that animal, as calculated by Stereo
Investigator software. Neurons per mm2 was used instead
of neuron count estimations to normalize data, as animals
varied in number of available PFC sections due to varying
brain size. Estimated area fraction of Aβ (i.e., fraction of
the area covered by Aβ plaques, or percentage) was cal-
culated by Stereo Investigator.

Results

Qualitative staining

PFC neurons positively stained with anti-NeuN antibody
occurred densely through the cortex but were absent in the
underlying white matter. In the prefrontal cortex, NeuN-
positive neurons displayed three different patterns of stain-
ing: nuclear staining, cytoplasmic staining, or both. Since
this pattern has not been previously reported, we ruled out
a cohort effect using PFC sections from two additional
male middle-aged (i.e., mid-20’s) rhesus monkeys that

were part of a separate aging study at Boston University,
and were processed identically to the NIA samples. They
showed the same three NeuN phenotypes (data not
shown). In contrast, the occipital cortex in both cohorts
of animals showed a more traditional cellular staining
pattern with more nuclear and less cytoplasmic NeuN
expression (Fig. S2, Online Resource).

Staining of Aβ with 4G8 also revealed multiple
immunostaining patterns. As expected, Aβ plaques
were detected only in cortical regions, but many animals
also showed varying degrees of vasculature amyloidosis
as well as presumed intracellular 4G8 labeling (Fig. 2
and Fig. 3), neither of which were counted as positive
plaque labeling. Of note, no major phenotypic differ-
ences were seen between BA 46 and BA 32.

Stereological analysis of plaques and neuron numbers

After plaque density was quantified via Stereo Investiga-
tor’s optical fraction fractionator, linear regression was
applied to calculate whether trajectories of plaque accumu-
lation and neuron number varied based on dietary treat-
ment group. Pearson’s correlations were used to evaluate
relationships between measured outcomes (i.e., relation-
ships between neuron density and plaque area fraction).
Results showed that there were no differences in plaque
accumulation due to sex or genetic origin (Chinese or
Indian) from which rhesus monkeys in this study were
derived, as the slopes of these linear regressions were not
significantly different (Fig. S3 and S4, Online Resource).
Therefore, both sexes and both genetic origins were com-
bined across subsequent analyses.

BA 46

In BA 46 (Fig. 4), Aβ plaque load increased significant-
ly as a factor of age (F[1,16] = 5.640, p = 0.030), con-
sistent with previous observations. Additionally, there
was no difference in plaque density across age in con-
trols versus animals on CR (slope: F[1,14] = 0.013,
p > 0.9; intercept: F[1,14] = 0.200, p > 0.6; pooled re-
gression equation: y = 0.040x–0.711). Also in BA 46,
even in these extremely aged animals, neuron number
was not significantly changed with age (F[1,16] =
0.139, p > 0.7), and the number was similar irrespective
of dietary treatment (slope: F[1,14] = 0.365, p > 0.3;
intercept: F[1,15] = 0.302, p > 0.5). Additionally, densi-
ty of plaques and density of neurons were not signifi-
cantly correlated in BA 46 (r = 0.196, p > 0.4).
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BA 32

Using the same tissue sections and same stereological
methodology, we noted a significant increase inAβ plaque
density in BA 32 across age (F[1,16] = 7.797, p = 0.013;
Fig. 5). As in BA46, neuronal number did not changewith
age andwas similar irrespective of dietary treatment (slope:
F[1,14] = 0.003, p > 0.9; intercept: F[1,15] = 0.164,
p > 0.6; pooled regression equation: y = 0.144x–3.391).
Despite relatively high plaque density in BA 32, there
was no significant decrease in neuron density with age
(F[1,16] = 0.080, p> 0.7), nor were Aβ plaque density and

neuron density significantly correlated (r = − 0.018,
p > 0.9). We did not observe any dietary treatment effect
for either measure in BA 32 (Aβ plaque density: slope:
F[1,14] = 0.003, p > 0.9; intercept: F[1,15] = 0.164, p > 0.6
and neuron density: slope: F[1,14] = 0.176, p > 0.6; inter-
cept: F[1,15] = 0.006, p > 0.9).

Interestingly, plaque densities in BA 46 and 32 were
significantly correlated (r = 0.727, p < 0.001; line of best
fit: y = 0.229x + 0.296; Fig. 6a). However, when com-
paring density of neurons between BA 46 and BA 32,
there was no significant correlation between areas (r =
0.147, p > 0.5; Fig. 6b).

Fig. 1 Age-related changes in the density of amyloid beta plaques
in the rhesus macaque PFC. a, b Low-power representative mi-
crographs depicting PFC sections from a 22.4-year-old and a 40.3-
year-old animal, respectively. High-power representative

photomicrographs emphasizing the difference in PFC plaque den-
sity between the same 22.4-year-old (c) and 40.3-year-old animal
(d). Scale bars, 2 mm and 200 μm for the upper and lower panels,
respectively
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Discussion

Clinical significance

Rhesus macaques are considered to have a lifespan ratio
of about 3:1 to that of humans [40, 67]. The oldest
animal in the current cohort lived for more than 44 years,
well beyond the average lifespan in captivity of 26 years
[30] and exceeding an earlier reported maximum
lifespan of 40 years [50]. By analyzing tissue from a
cohort of the oldest recorded rhesus macaques, the pres-
ent data extend current knowledge about the aging
rhesus macaque brain. Importantly, the data provide
insights into the similarities and differences between
the brain of aging rhesus macaques and that of humans
undergoing normative and pathological aging.

Although the aging macaque brain has an age-related
increase in amyloid plaques that is suggestive of human
AD pathology, it is not a definitive model of naturally
occurring AD for numerous reasons. For example, both
humans and rhesus macaques have Aβ peptides that are
generally cleaved at a length of 40 or 42 [68, 69]. In
humans, Aβ40 is found in ten-fold higher concentrations
than Aβ42 [69], even though the Aβ plaques are predom-
inantly comprised of Aβ42. In contrast, in rhesus ma-
caques, Aβ40 is the primary component of theAβ plaques
[68]. Thus, the relative levels of these peptides seem to be
an important differentiator between plaques in monkeys
and in AD patients. On a higher level, this study supports
others which posit that Aβ plaques are not necessarily an
early sign of AD, and may, in fact, be unrelated to more
blatantly pathological aspects of the disease, such as loss of
cortical neurons and dementia. Clinical data repeatedly
shows that many aged humans accumulate Aβ plaques
with no signs of mild or overt dementia [70]. In a similar
fashion, amyloid levels were not correlated with cognitive
ability in aged monkeys [71].

While Aβ plaques are a classical hallmark of AD,
some theories suggest that soluble forms of Aβ may be
more important for pathological aging than insoluble,
plaque-forming confirmations (reviewed in [72]). While
plaque load (i.e., insoluble Aβ) increased across age in
this study, there was no evidence of effect on neuron
number. Therefore, future studies of soluble Aβ may
help elucidate the importance of peptide length and
solubility in the toxicity of Aβ in humans, and the lack
of neurotoxicity in macaques.

Finally, human data shows that prefrontal cortical
areas like BA 46 and the less well-studied BA 32 are

vulnerable to neurodegeneration in AD [3, 55, 60, 73].
Hence, this first analysis of the cortex of extremely old
rhesus monkeys began with BA 46 [55], and BA 32.
The extreme age of the subjects alongwith identification
of brain areas that are typically affected by aging was

Fig. 2 NeuN and 4G8 immunostaining phenotypes in the rhesus
macaque PFC. a Phenotypes of NeuN staining. Open pink arrow
indicates a neuron with both nuclear and cytoplasmic staining,
closed blue arrow points to a cell with only nuclear staining, and
the large green arrow emphasizes a neuron with only cytoplasmic
staining. All animals showed all three phenotypes in the PFC. b
4G8 staining, which is presumed to be intracellular. Contrast has
been enhanced tomore clearly show the size and shape of staining.
Arrows indicate examples of staining, which can be morphologi-
cally identified as pyramidal neurons. c 4G8 vasculature staining.
Black arrows indicate the immunostained capillary, while the pink
open arrow indicates a diffuse plaque. Scale bar in (a) applies to
panel (b) as well: 50 μm. Scale bar (c) 100 μm
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designed to increase the probability that neuronal loss
might be identified in relationship to Aβ. Furthermore,
we hypothesized that while Aβ plaque load would

increase with age in both dietary groups, and might be
associated with neuron loss, these effects of aging might
be attenuated by CR. While Aβ plaque increase was

Fig. 3 4G8 immunostaining phenotypes in the rhesus macaque
PFC. The top row shows full cortical sections from BA 46 in three
animals, representing various staining phenotypes. All three im-
ages are shown at the same magnification, encapsulating all cor-
tical layers, and with the pial surface at the top of the image. a 4G8
staining in a 30.7-year-old animal is nearly exclusively intracellu-
lar. b Only plaques and vasculature are stained in a 34.1-year-old
animal. c 4G8-labeled plaques and vasculature as well as intracel-
lular staining in a 41.2-year-old animal. The middle row contains

some representative Aβ plaque phenotypes. d Multiple very dif-
fuse plaques cluster together with light intracellular staining. e A
larger plaque with distinctive intracellular 4G8 staining. f A sin-
gular plaque with very little intracellular staining surrounding it.
The bottom panels are representative images of vasculature stain-
ing phenotypes. g, h Larger 4G8-positive blood vessels. i Smaller
stained vasculature, with intracellular staining. j A 4G8-positive
capillary in cross-section. Note the difference in scale between
panel (j) and other panels
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Fig. 4 Aβ plaque and neuron density in BA 46 of the PFC. a There
was a significant overall increase in plaque density with age (dashed
line; F[1,16] = 5.640, p = 0.030; pooled regression equation: y =
0.040x–0.711), but no effect of dietary treatment (slope: F[1, 14] =
0.013, p> 0.9; intercept: F[1,15] = 0.198, p> 0.6). Solid black line
indicates control group, while dotted gray line shows regression for
the CR animals, in both (a) and (b). b There was no significant age-
related change in neuron number in BA 46 (F[1,16] = 0.139, p> 0.7),
nor significant differences between treatment groups (slope: F[1,14] =
0.365, p> 0.3; intercept: F[1,15] = 0.302, p> 0.5). c There was no
significant correlation betweenAβ plaque density and neuron number
in BA 46 (r= 0.196, p> 0.4)

Fig. 5 Aβ plaque and neuron density in BA 32 of the cingulate. a
There was a significant overall increase in plaque density with age
(dashed black line; F[1,16] = 7.797, p = 0.013; pooled regression
equation: y= 0.144x–3.391), but no significant effect of dietary treat-
ment (slope: F[1,14] = 0.003, p > 0.9; intercept: F[1,15] = 0.164,
p> 0.6). Dashed black line shows significant overall increase in Aβ
plaques across age, solid black line represents the control group, while
gray dotted line indicates CR group regression, in both (a) and (b). b
There was no significant age-related change in neuron density in BA
32(F[1,16] = 0.080, p> 0.7), nor significant differences between treat-
ment groups (slope: F[1,14] = 0.176, p > 0.6; intercept: F[1,15] =
0.006, p> 0.9). c There was no significant correlation between Aβ
plaque density and neuron number in BA 32 (r=− 0.018, p> 0.9)
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quantitatively confirmed, there was no effect of CR nor
was any neuron loss observed. Nevertheless, it remains
unclear as to whether CR confers any benefit to brain
aging in primates as many other factors such as dendritic
and synaptic effects remain to be explored.

Staining patterns

NeuN

In the rhesus monkey PFC, we saw three distinct NeuN
immunostaining phenotypes: nuclear staining, cytoplas-
mic staining, or both, in the same neuron. NeuN (neu-
ronal nuclear antigen) has been identified as the splicing
protein Fox-3, which can be found in varying levels in
cytoplasm as well as in neuronal nuclei [74, 75], sug-
gesting that the differential NeuN staining observed here
may be due to differential expression of Fox-3 splicing
protein. While the exact function of Fox-3 is unknown,
it is specific to post-mitotic neurons in the brain [75].
NeuN is traditionally considered a nuclear marker; how-
ever, in the current study, animals of both sexes, differ-
ent ages, and different genetic backgrounds all showed
these three phenotypes of NeuN throughout the PFC
regions examined. Of note, occipital cortices from the
same animals showed more traditional nuclear NeuN
staining patterns suggesting this may be a PFC-specific
phenomenon ([74, 76]; Online Resource Fig. S2). Fur-
ther information onNeuN staining can be found in Duan
et al. [77].

4G8

Although the focus of the present study was on extra-
cellular Aβ plaques, it was interesting that many ani-
mals showed apparent intracellular labeling with the
4G8 antibody. As double-labeling was not performed
with NeuN and 4G8, we cannot be completely certain
that the observed staining was entirely intraneuronal.
However, intraneuronal Aβ has been implicated as a
possible precursor to extracellular plaques [78] and has
been reported in macaques and humans of varying ages
[79, 80]. Therefore, it is plausible that light cytoplasmic
4G8 staining indicates labeling of either intraneuronal
APP or Aβ [75, 81].

In addition to plaques and presumed intracellular
4G8 labeling, rhesus monkeys showed 4G8 blood ves-
sel staining in both small and large vessels. Aβ
angiopathy seemed to be present to some extent in all

of the animals in the current study. In humans, vascular
Aβ is not uncommon, nor is it specifically related to
AD; roughly a quarter of aged adults show this pheno-
type, regardless of AD status. In the human population,
Aβ angiopathy has been linked to several different
mutations in the APP gene, and occurs most commonly
in larger vessels [12]. As shown in Fig. 2, both large and
small diameter vessels are Aβ-positive within this co-
hort, and a more in-depth histological exploration of
specific phenotypes may reveal more clinically relevant
information.

In regard to Aβ plaques, human amyloidosis gener-
ally consists of both diffuse (present in macaques) and
dense core (not typically observed in macaques)
plaques. This is also of interest as dense core plaques
are more strongly correlated with cognitive decline in

Fig. 6 Correlations between BA 46 and BA 32. a Aβ plaque
density is significantly correlated between BA 46 and BA 42 (r =
0.727, p < 0.001). b No significant correlation exists between
neuron number in BA 46 and BA 32 (r = 0.147, p>0.5). This is
thought to be due to cytoarchitechtonic differences between re-
gions, as all layers of cortex were quantified
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humans [29], providing additional support to the idea
that the rhesus macaque likely mimics normative aging
rather than AD. Aβ levels in this study (~ 1% area
coverage in area 46, and ~ 2–3% coverage in area 32)
also do not reach the 7 +%Aβ area coverage seen in the
PFC in late stages of diagnosed AD in the clinic [73].
The existence of a very high plaque load may be neces-
sary before cell death or pathological cognitive decline
occurs, so the relatively low levels seen here in both
PFC regions might indicate that the density is simply
insufficient to induce an AD phenotype, especially if the
plaques are mainly Aβ40 rather than Aβ42.

Lack of diet effects

Animals in the current study represent a subset from a
larger study which showed a significant effect of CR on
healthspan [32], leading to the hypothesis that these
benefits may translate to healthier brain aging in the
CR group as well. However, no CR effect on the age-
related increase in amyloid load emerged in analyses of
BA 46 or 32. This could be due to the fact that the
overall CR effect on other measures of health span is
small, or, rather, that CR has effects on other factors
such as dendritic atrophy [82], synapse loss [35] or
inflammation [83], as opposed to Aβ plaques.

There was large heterogeneity amongst the subjects
in this study, as the cohort included both sexes, animals
of differing genetic backgrounds (i.e., both Chinese and
Indian ancestry), and began CR diets at different stages
of life (see Table S2 in the Online Resource for individ-
ual information). Small effects were more difficult to
detect due to this diversity, in combination with a rela-
tively small sample size compared to human clinical
studies, yet this variability is not unlike the heterogene-
ity found in clinical populations. As ~ 20 additional
monkeys from the original study are still alive, more
definitive conclusions about the effects of aging and diet
on markers of brain pathology will hopefully become
more apparent as these subjects reach the end of life, and
their brains are added to the current analysis as well as to
future analytic assays.

It also needs to be emphasized that unlike dietary
controls in many other calorie restriction studies [32,
84–86], the control animals in the current study were not
fed ad libitum with continuous access to food, but
instead receive a standardized caloric intake that was
designed to prevent obesity. It has been hypothesized
that the benefits of CR are primarily driven by a lack of

overeating, i.e., a return to a more evolutionarily rele-
vant state of fewer calories overall, and longer periods of
time between feedings [87, 88]. If this is the case, we
may simply be seeing a “floor” effect, as both the CR
and the control group animals escape the deleterious
effects of overeating and obesity. This theory is support-
ed by Bodkin et al. [50], who showed that when caloric
intake was only mildly restricted (i.e., restricted enough
to prevent obesity), it resulted in reduced morbidity and
improved mortality compared to ad libitum control an-
imals. With the assumption that CR is simply a return to
evolutionarily relevant dietary standards, restriction be-
yond recommended caloric intake may not be advanta-
geous in Aβ plaque reduction or overall brain health in
primates.

Similar patterns—that is, a significant increase in Aβ
plaques across age, but no differences due to CR—have
also emerged in another cohort of CRmacaques, albeit in
the hippocampus. Sridharan et al. [86] report an age-
related increase in Aβ plaques in hippocampi ofmonkeys
in the University of Wisconsin Dietary Restriction and
Aging Study without a CR effect on Aβ plaque load.
However, the level of hippocampal astrogliosis was in-
deed attenuated by CR, similarly to what has been previ-
ously shown in rodents [86, 89]. Given similar Aβ find-
ings in both studies, it is likely that CR is not effective at
reducing Aβ plaque burden in NHPs, even in the pres-
ence of other brain health benefits. This contrasts with
transgenic rodent AD models which have shown attenu-
ated plaque formation as well as improved cognitive
scores using CR interventions [21, 27, 85]. Moreover,
like some clinical studies [90], prior NHP studies showed
no correlation between cognitive scores and Aβ plaques
[71], but did show other qualitative and quantitative
benefits of CR on brain aging such as reduced iron
deposition and beneficial lowering of proinflammatory
cytokines [83, 91]. Therefore, it may be pertinent to shift
focus in this model to identifying other potential bio-
markers of aging and neurodegeneration, which may be
more relevant to normative aging. It is also important to
distinguish the rhesus model from genetically manipulat-
ed rodent models of overt, AD-like damage.

Absence of neuron loss in extreme old age

Finally, it is worth noting that even in this cohort of
extremely aged subjects, there was no loss of neurons.
To put this into perspective, other studies of neuron
number in BA 46 did not include any animals over
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32 years of age, while all animals in this cohort survived
past the age of 22, and six of which were older than the
oldest previously studied animal (i.e., older than 32 years
old). For example, in Smith et al. [49], aged subjects had
an average age of 25.4 years, while Peters et al., (1994),
had a group of five aged subjects ranging from 25 to 32.
In both of these cases, even when compared to young
adult groups, there was no evidence of neuron loss in
BA 46. Our results extend these findings to reveal that
even the oldest-old rhesus macaques do not show any
significant loss of neurons in either of the PFC regions
examined. Overall, this comparison leaves little doubt
that in normal aging rhesus macaques, despite age-
related amyloid accumulation, there is no age-related
loss of neurons in BA 46 of the PFC.

Conclusions

Both BA 46 and BA 32 are brain regions that show age-
related increases in Aβ plaque load in rhesus macaques,
but neither region displays neuron loss, even in the oldest-
old rhesus monkeys. Similarly, stability in neuron number
across age is shown in PFC BA 8A (Supplemental data).
As more brains become available for analysis, nuances in
sex differences, genetic backgrounds, age at CR onset, and
more parameters will be explored.

Differential staining patterns of NeuNwere observed in
the PFC, whereas, the occipital cortices of the same ani-
mals contained commonly observed phenotypes. To our
knowledge, we are the first group to identify these three
immunostaining phenotypes within the rhesus PFC. These
patterns are presumed to be due to varying levels of Fox-3;
however, for what function is currently unknown.

The percent coverage of Aβ plaques in BA 46 and
BA 32 increased significantly with age, but not at a cost
to neuron density in the oldest-old individuals. The
question is why? Perhaps chronic clinical health issues
(obesity, high blood pressure, diabetes etc.) which are
suppressed in animal husbandry programs, retard age-
related neuropathology. Moreover, regulation of amy-
loid metabolism in aged monkeys shows a lack of 2-mer
amyloid isoforms [92], whereas the addition of amyloid
oligomers induces pathology [93, 94]. Continued efforts
to study the monkey model will provide insights into
mechanisms that underlie these differences and could
lead to novel preventions and treatments for AD.
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