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The recent COVID-19 pandemic follows in its early stages an almost exponential expansion, with the number of
cases as a function of time reasonably well fit by N(t) ∝ eαt, in many countries. We analyze the rate α in different
countries, starting in each country from a threshold of 30 total cases and fitting for the following 12 days, captur-
ing thus the early exponential growth in a rather homogeneous way. We look for a link between the rate α and
the average temperature T of each country, in the month of the initial epidemic growth.We analyze a base set of
42 countries, which developed the epidemic at an earlier stage, an intermediate set of 88 countries and an ex-
tended set of 125 countries, which developed the epidemic more recently. Fitting with a linear behavior α(T),
we find increasing evidence in the three datasets for a slower spread at high T, at 99.66% C.L., 99.86% C.L. and
99.99995% C.L. (p-value 5⋅10−7, or 5σ detection) in the base, intermediate and extended dataset, respectively.
The doubling time at 25 °C is 40% ~ 50% longer than at 5 °C. Moreover we analyzed the possible existence of a
bias: poor countries, typically located in warm regions, might have less intense testing. By excluding countries
below a given GDP per capita from the dataset, we find that this affects our conclusions only slightly and only
for the extended dataset. The significance always remains high, with a p-value of about 10−3 - 10−4 or less. Our
findings give hope that, for northern hemisphere countries, the growth rate should significantly decrease as a re-
sult of bothwarmerweather and lockdownpolicies. In general, policymeasures should be taken to prevent a sec-
ond wave, such as safe ventilation in public buildings, social distancing, use of masks, testing and tracking
policies, before the arrival of the next cold season.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The recent coronavirus (COVID-19) pandemic is having a major ef-
fect inmany countries, which needs to be faced with the highest degree
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of scrutiny. An important piece of information is whether the growth
rate of the confirmed cases among the population could decrease with
increasing temperature. Experimental research on related viruses
found indeed a decrease at high temperature and humidity (Chan
et al., 2011). We try to address this question using available epidemio-
logical data. A similar analysis for the data from January 20 to February
4, 2020, among 403 different Chinese cities, was performed inMao et al.
(2020) and similar studies were recently performed in Araujo and
Naimi (2020), Bukhari and Jameel (2020), Feng et al. (2020), Luo et al.
(2020), and Sajadi et al. (n.d.). More studies have subsequently con-
firmed this conclusion, while other studies found mixed results or
even in contradictionwith it, aswewill review in theDiscussion section.

The paper is organized as follows. In Section 2 we explain our
methods, in Section 3 we show the results of our analysis and in
Section 5 we draw our conclusions.

2. Method

We start our analysis from the empirical observation that the data
for the coronavirus disease in many different countries follow a com-
mon pattern: once the number of confirmed cases of infection from
SARS-CoV-2 reaches order 10 there is a very rapid subsequent
growth, which is well fit by an exponential behavior. The latter is
typically a good approximation for the following couple of weeks
and, after this stage of free propagation, the exponential growth typ-
ically gradually slows down, probably due to other effects, such as:
lockdown policies from governments, a higher degree of awareness
in the population and/or the tracking and isolation of the positive
cases.

Our aim is to see whether the temperature of the environment has a
correlation with the disease spread, and for this purpose we choose to
analyze the first stage of free propagation in a selected sample of coun-
tries. We choose our sample using the following rules:

• we start analyzing data from the first day in which the number of
cases in a given country reaches a reference number Ni, which we
choose to be Ni=301;

• we include only countries with at least 12 days of data, after this
starting point.

The data were collected from.2 We then fit the data for each country
with a simple exponential curve N(t) = N0e

αt, with 2 parameters, N0

and α; here t is in units of days. See e.g. Dehning et al. (2020) for a jus-
tification of the exponential behavior. We associated then to each coun-
try an average temperature T, for the relevant weeks, which we took
from.3 More precisely: if for a given country the average T is tabulated
only for its capital city, we directly used such a value. If, instead, more
cities are present for a given country, we used an average of the temper-
atures of themain cities,weighted by their population.4Weused the av-
erage temperature in the relevant time range by interpolating monthly
data (using the month of the epidemic together with the next and the
previous month), constructing an interpolating curve T(d) as a function
1 In practice we choose, as the first day, the one inwhich the number of cases Ni is clos-
est to 30. In some countries, such a numberNi is repeated for several days; in such caseswe
choose the last of such days as the starting point. For the particular case of China, we
started from January 16th, with 59 cases, since the number before that daywas essentially
frozen.

2 https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases.
3 https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature. For some cases

data was missing and so we took it from https://en.climate-data.org and from https://
www.weather-atlas.com/.

4 The only two exceptions to this procedure are: Japan, U.S.A. and Ecuador. For Japanwe
subdivided into three regions: Hokkaido, Okinawa and the rest of the country, using re-
spectively the temperatures of Sapporo, Naha and Tokio. For the U.S.A. we used the na-
tional average of about 5.3 degrees from https://www.ncdc.noaa.gov/sotc/national/
201903. For Ecuador, we used the average T = 27.5°C of Guayaquil, the main site for the
disease.
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of the day. Then, by using such an interpolation we used the value T
(di + 6), in the middle of the chosen range, with duration D=12 days.

We analyze in Section 3 how the parameter reconstruction varies
when using different choices for the total number of days D, which
will fully justify our choice of 12 days.

We analyzed three datasets, as shown in Fig. 1. The three datasets are
simply different groups analyzed at different times of the disease spread
in the planet. A first list of countries was selected onMarch 26th. The list
of such basedataset includes 42 countries: Argentina, Australia, Belgium,
Brazil, Canada, Chile, China, Czech Republic, Denmark, Egypt, Finland,
France, Germany, Greece, Iceland, India, Indonesia, Iran, Ireland, Israel,
Italy, Lebanon, Japan, Malaysia, Netherlands, Norway, Philippines,
Poland, Portugal, Romania, Saudi Arabia, Singapore, Slovenia, South
Korea, Spain, Sweden, Switzerland, Thailand, United Arab Emirates,
United Kingdom, U.S.A.5

An intermediate dataset was built by adding 46 countries (the sec-
ond dataset in Fig. 1, built on April 1st) to the first dataset, reaching a
total of 88 countries. The added countries are: Albania, Andorra,
Algeria, Armenia, Austria, Bahrain, Bosnia and Herzegovina, Brunei,
Bulgaria, Burkina Faso, Cambodia, Colombia, Costa Rica, Croatia,
Cyprus, Dominican Republic, Ecuador, Estonia, Hungary, Iraq, Jordan,
Kazakhstan, Kuwait, Latvia, Lithuania, Luxembourg, Malta, Mexico,
Moldova, Morocco, New Zealand, North Macedonia, Oman, Panama,
Pakistan, Peru, Qatar, Russia, Senegal, Serbia, Slovakia, South Africa,
Tunisia, Turkey, Ukraine, Uruguay, Vietnam.

Finally an extended set was built on April 14th,6 adding the following
countries (third dataset in Fig. 1) to the previous dataset: Belarus, Bolivia,
Cameroon, Congo, Cote d'Ivoire, Cuba, Democratic Republic of Congo,
Djibouti, El Salvador, Georgia, Ghana, Guatemala, Guinea, Honduras,
Jamaica, Kenya, Kosovo, Kyrgyzstan, Madagascar, Mali, Mauritius,
Montenegro, Niger, Nigeria, Paraguay, Puerto Rico, Rwanda, Sri Lanka,
Togo, Trinidad and Tobago, Uganda, Uzbekistan, Venezuela, Zambia.

Using such datasets for α and T for each country, we fit with two
functions α(T), as explained in the next section. Note that the statistical
errors on the α parameters, considering Poissonian errors on the daily
counting of cases, are typically much smaller than the spread of the
values of α among the various countries. This is due to systematic ef-
fects, which are dominant, as we will discuss later on. For this reason
we disregarded statistical errors on α. The analysis was done using the
software Mathematica, from Wolfram Research, Inc.

3. Results

We first fit the base dataset, with a simple linear function α(T) =
α0 + βT, to look for an overall decreasing behavior. Results for the
best fit, together with our data points, are shown in Fig. 2. The estimate,
standard deviation and confidence intervals for the parameters, to-
gether with the significance and the explained variance, R2, are shown
in Table 1. From such results a clear decreasing trend is visible, and
indeed the slope β is negative, at 99.66% Confidence Level (C.L.), or
equivalently with a p-value of 0.0034.

However, the linear fit is able to explain only a small part of the var-
iance of the data, with R2=0.196, and its adjusted value Radjusted2 =0.175,
clearly due to the presence of many more factors.

In addition, a decreasing trend is also visible in this dataset, below
about 10°C. For this reason we also fit with a quadratic function
α(T)= α0− β(T− TM)2. Results for the quadratic best fit are presented
in Fig. 3 and in Table 2. From such results a peak is visible at around
TM ≈ 8 ° C. The quadratic model is able to explain a slightly larger part
of the variance of the data, since R2 ≈ 0.27.7 Moreover, despite the
5 We also added Taiwan as a data point, since data are fully available, irrespective of its
political status, which is irrelevant for our discussion.

6 Only countries with at least 300.000 inhabitants were considered in this dataset.
7 Here R2 is defined as R2≡1 SSR

SST
, where SSR is the residual sum of squares and SST is the

sum of the squared differences between the α values and their mean value.

https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://www.weather-atlas.com/
https://www.weather-atlas.com/
https://www.ncdc.noaa.gov/sotc/national/201903
https://www.ncdc.noaa.gov/sotc/national/201903


Fig. 1. Countries included in the analysis: the base dataset is in red, the intermediate dataset includes both countries in red and in green, and the extended dataset includes red, green and
yellow.
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presence of an extra parameter, one may quantify the improvement of
the fit, using for instance the Akaike Information Criterion (AIC) for
model comparison, ΔAIC ≡ 2Δk − 2Δ ln (ℒ), where Δk is the increase
in the number of parameters, compared to the simple linear model,
and Δ ln (ℒ) is the change in the maximum log-likelihood between
the two models. This gives ΔAIC = − 2.1, slightly in favor of the qua-
dratic model.

We repeated then the same analysis for the intermediate dataset of
88 countries and for the extended dataset of 125 countries. Results for
the linear fit of the intermediate sample are shown in Fig. 4 and in
Table 3. The slope β is smaller in absolute value, but the significance ac-
tually slightly increases, since a zero slope is excluded at 99.86% C.L. (p-
value 0.0014). Now R2=0.11 and Radjusted

2 =0.10.
In this sample the quadratic trend is not visible anymore, and indeed

the AIC does not prefer the quadratic fit:ΔAIC=+0.9 compared to the
Fig. 2. Exponent α for each country vs. average temperature T, for the relevant period of
time, as defined in the text, for the base set of 42 countries. We show the data points
and the best-fit for the linear interpolation.
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linearfit, in disfavor of the quadraticmodel. The R2 is also practically the
same as in the linear fit.

For the extended sample results of the linear fit are shown in Fig. 5
and in Table 4. The slope β becomes larger and, most importantly, the
significance highly increases, since a zero slope is now excluded at
99.99995% C.L. (p-value 5⋅10−7, or 5σ detection, translated in the
language of a Gaussian distribution). Now R2=0.19 and Radjusted

2 =
0.18.

In this dataset, which extends to April 14th, a few anomalies are
however present: in the case of Bangladesh and Thailand it is possible
to see that the exponential growth became much faster after the initial
12 days. We checkedwhat happens by using a different interval of time
for these 2 cases, instead of the standard 12 days. Namely, we used
44 days for Thailand and 21 days for Bangladesh, which give the maxi-
mal value of α in both cases. The results for the linear fits using such
corrected values is shown in Table 5. The significance is lower, but still
very high: p-value 4.6⋅10−6, or 4.6σ detection, translated in the lan-
guage of a Gaussian distribution.

We also tested the existence of a possible bias on the data: the
fact that poor countries have less intense testing. This could in prin-
ciple be a source of major bias, since many countries with low in-
come are located in warm regions. In order to discard such a bias
we analyzed the existence of a nonzero linear correlation β on sub-
samples of the extended dataset, by excluding countries with low
Table 1
In the left panel: best-estimate, standard deviation (σ) and 95% C.L. intervals for the pa-
rameters of the linear interpolation, for the base set of 42 countries. In the right panel:
R2 for the best-estimate and p−value for a non-zero β.

Parameter Estimate σ 95% lower 95% upper

α0 0.280 0.021 0.238 0.321
β −0.00425 0.00136 −0.00701 −0.00149

R2 0.196
p-Value 0.0033



Fig. 3. Exponentα for each country vs. average temperature T, as defined in the text, for the
base set of 42 countries. We show here the quadratic best-fit.

Table 2
In the left panel: best-estimate, standard deviation (σ) and 95% C.L. intervals for the pa-
rameters of the quadratic interpolation, for the base set of 42 countries. In the right panel:
R2 for the best-estimate and p−value for a non-zero β.

Parameter Estimate σ 95% lower 95% upper

α0 0.264 0.0159 0.2325 0.2972
β 0.000345 0.000173 −5.104⋅10−6 0.000694
TM 7.73 3.64 0.37 15.1

R2 0.27
p-Value (β) 0.053
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income. More specifically we set a threshold on the GDP per capita,8

and checked whether the correlation is still there, excluding coun-
tries below such a threshold from the analysis. We show in Fig. 6
our results: we find a correlation to exist, rather independently on
the threshold that we applied. The significance of a nonzero beta
(p-value) is plotted in Fig. 7 and remains always between 5⋅10−7

and 8⋅10−4.
In addition, we also checked for a correlation between the growth

rate α and the GDP per capita, shortly GDP. We find no significant corre-
lation in the base and intermediate datasets, while we find a negative
correlation in the extended dataset, with p-value =0.0012. This is not
so surprising, since the extended dataset contains many low-income
countries, where the disease has arrived later, and where most likely
testing is not intense enough. For this dataset we performed thus a lin-
ear fit with two variables, GDP and T. Results are shown in Table 6. The
dependence on T is still highly significant, with p-value ≃0.000048 and
the best-estimate is β ≃ − 0.0031. As expected, T also has a non-
negligible correlation with the GDP per capita.

Interestingly, when considering only countries above 5 thousand
dollars GDP per capita in the extended dataset, the correlation of α
with GDP per capita becomes insignificant. This should be probably
interpreted as the fact that testing capabilities do not induce a bias as
long as the GDP per capita is not very low.

Finally we performed some tests, by varying the number of days D
used in our analysis. First, we tested the behavior of the statistical errors
on the parameter α extracted from the exponential fits. Each country
has a best estimate for α and an error δα: we show in Fig. 8 the mean
error 〈δα〉 over the full sample of 126 countries, finding that it decreases
with increasing D, as it should. Regarding the parameter N0 we find for
D=12 that the mean is 〈N0〉=33.8 ± 4.1, which is fully consistent with
the choice Ni=30 for the first day (t=0).

Then we also repeated the correlation analysis with temperature for
different values of D, in order to test whether the choice D=12 is opti-
mal. We show in Fig. 9 the dependence of the linear correlation coeffi-
cient β with D. As expected, the error σβ on the correlation β
decreases with increasing D simply because of using more data. For
very short durations (D less than 4 days) there is no significant detec-
tion of a nonzero beta. On the other hand, for large durations D, even
if the statistical errors become smaller, the Temperature effect is ex-
pected to become more difficult to disentangle from other effects
(such as lockdowns, social distancing and othermeasures from the gov-
ernments, which can take place if D is large). Indeed the significance of
the Temperature effect (represented by the t-statistic β/σβ in Fig. 9) is
8 We used here data from https://ourworldindata.org/ on real GDP per capita, for the
year 2017.
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maximal for a duration D between 12 and 20 days, which fully justifies
our choice of 12 days.

4. Discussion

After the publication of the initial preprints of the present work,
several authors analyzed the correlation of the disease spread with
Temperature, finding a similar correlation worldwide (Huang et al.,
2020; Liu et al., n.d.; Mandal and Panwar, 2020; Ozyigit, 2020; Wu
et al., 2020). Other studies focused on particular regions: in Brazilian cit-
ies a negative correlation was found up to about 25 °C (Prata et al.,
2020), in China a negative correlation was found in He et al. (2020)
and Shi et al. (2020) (while a positive correlation was found below
3 °C (Xie and Zhu, 2020)). Significant negative correlations were
found in several Latin american cities (Bolano-Ortiz et al., 2020), in
the U.S.A. (Adam et al., 2020) and in Japan (Mugen et al., 2020). The
fact that many studies found similar effects with different datasets,
also at the regional level, is a further confirmation of the significance
of the correlation with Temperature.

Other studies found mixed results, in very specific places: a positive
correlation in Singapore (Pani et al., 2020) and in Oslo (Menebo, 2020),
and both positive and negative correlations for some Chinese provinces
(Shahzad et al., 2020).

Correlations in agreement with ours, with both GDP and tempera-
ture were found also in Sarmadi et al. (2020).

In Jüni et al. (2020), instead, absence of correlation with Tempera-
ture and GDP was claimed, using the ratio of the number of cases in
two fixed days inmany different geographical areas. Such a study, how-
ever, seems to have methodological problems since it compares data in
different areas at the same time, i.e. at very different stages of the conta-
gion; this introduces large biases, since it is clear that if the epidemic has
been going on for several weeks the effects of lockdowns and govern-
ment policies dominate the spread of the disease. Furthermore, instead
of using all the data of the curves, Jüni et al. (2020) used only the ratio
Fig. 4. Exponent α for each country vs. average temperature T, for the relevant period of
time, as defined in the text, for the intermediate set of 88 countries. We show the data
points and the best-fit for the linear interpolation.

https://ourworldindata.org/


Table 3
In the left panel: best-estimate, standard deviation (σ) and 95% C.L. intervals for the pa-
rameters of the linear interpolation, for the intermediate set of 88 countries. In the right
panel: R2 for the best-estimate and p−value for a non-zero β.

Parameter Estimate σ 95% lower 95% upper

α0 0.247 0.0138 0.220 0.275
β −0.00286 0.000867 −0.00458 −0.00113

R2 0.11
p-Value 0.0014

Table 4
In the left panel: best-estimate, standard deviation (σ) and 95% C.L. intervals for the pa-
rameters of the linear interpolation, for the extended set of 125 countries. In the right
panel: R2 for the best-estimate and p−value for a non-zero β.

Parameter Estimate σ 95% lower 95% upper

α0 0.239 0.0125 0.215 0.264
β −0.00357 0.000678 −0.00491 −0.00223

R2 0.18
p-Value 5.7⋅10−7
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between the initial day and the final day: this introduces very large
measurement errors, due to large statistical fluctuations at these two
specific days.

Note also that we are not claiming here that temperature is the only
factor nor the dominant factor: indeed theremust be other factors, since
Temperature explains only about 18% of the variability of the disease
spread (R2=0.18). We have indeed found many other factors in the
companion paper (Notari and Torrieri, 2020). Note also that some au-
thors (Baker et al., 2020) have stressed that immunity among the pop-
ulation is more important than seasonal variations. This however is
likely to be irrelevant for our analysis, since in the first days of the epi-
demic growth it should play no role. The same applies to lockdown pol-
icies: clearly they have a major impact, since they are able to cut the
exponential growth, but they only do so in the long run. Moreover
there could also be important non-linear interactions in the long run
among immunity (Bansal et al., n.d.), lockdown policies and seasonality,
which is an interesting point for future work, that goes beyond a linear
model.
5. Conclusions

We collected data for countries that had at least 12 days of data after
a starting point, which we fixed to be at the threshold of 30 confirmed
cases. We considered three datasets: a base dataset with 42 countries,
collected onMarch 26th, an intermediate datasetwith a total of 88 coun-
tries, collected on April 1st, and an extended dataset with a total of 125
countries, collected on April 14th. We fitted the data for each country
with an exponential and extracted the exponentsα. Thenwe performed
a fit of such exponents as a function of the temperature T, using the av-
erage temperature for the month of March (or slightly earlier in some
cases), for each of the selected countries.

For the base dataset we showed that the growth rate of the COVID-
19 transmission has a decreasing trend, as a function of T, at 99.66%
C.L. (p-value 0.0034). In this fit R2=0.196. In addition, using a quadratic
Fig. 5. Exponent α for each country vs. average temperature T, for the relevant period of
time, as defined in the text, for the extended set of 125 countries. We show the data
points and the best-fit for the linear interpolation.
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fit, we showed that a peak ofmaximal transmission seems to be present
in this dataset at around (7.7±3.6) ° C. Such findings are in good agree-
ment with a similar study, performed for Chinese cities (Mao et al.,
2020), which also finds the existence of an analogous peak and an over-
all decreasing trend. Other similar previous studies (Araujo and Naimi,
2020; Bukhari and Jameel, 2020; Feng et al., 2020; Sajadi et al., n.d.)
found results which seem to be also in qualitative agreement. Many
other studies, subsequent to the preprints of ourwork, found similar re-
sults, as we reviewed in the Discussion section.

For the intermediate dataset we also found a decreasing slope β. This
is smaller in absolute value, but the significance remains high, since a
zero slope is excluded at 99.86% C.L. (p-value 0.0014). For this fit we
found R2=0.11.

Finally for the extended dataset we found a very highly significance
for a negative β, p-value 5⋅10−6 ~ 5⋅10−7 (depending on the treatment
of some anomalous cases), which would translate in a 4.5σ ~ 5σ detec-
tion, in the language of Gaussian distributions. Here R2=0.16 ~ 0.2.

For all datasets we also tested the influence of a possible large bias:
the fact that poorer countries have less intense testing, which might
be in principle partially degenerate with effects of temperature. Our
analysis indicate that this should not be a major issue: by excluding
countries with low income from the analysis we find small variations
on the best-fit value of β, and the significance of the correlation β re-
mains very high, with p-value 8⋅10−4 or less. We also checked for a cor-
relation between the GDP per capita and α: we find a significant
correlation only in the extended dataset. However, after taking into ac-
count of this variable, the dependence on T remains highly significant.
Moreover, when considering only countries above 5 thousand dollars
GDP per capita, the correlation of αwith GDP per capita becomes insig-
nificant. This should be probably interpreted as the fact that testing ca-
pabilities do not induce a bias as long as the GDP per capita is not
too low.

The decrease at high temperatures is expected, since the same hap-
pens also for other coronaviruses (Chan et al., 2011). It is unclear instead
how to interpret the decrease at low temperature (less than 8∘C), pres-
ent in the base dataset. This could be a statistical fluctuation, since it is
not present in the intermediate and extended datasets. One possible rea-
son for this decrease, if real, could be the lower degree of interaction
among people in countries with very low temperatures, which could
slow down the propagation of the virus.

It is possible to make some hypothesis on possible causal explana-
tions of our findings: (1) less resistance of the virus in aerosols due to
UV radiation and higher temperature (Ratnesar-Shumate et al., 2020),
Table 5
In the left panel: best-estimate, standard deviation (σ) and 95% C.L. intervals for the pa-
rameters of the linear interpolation, for the extended set of 125 countries. Here Thailand
and Bangladesh were corrected for, as explained in the text. In the right panel: R2 for the
best-estimate and p−value for a non-zero β.

Parameter Estimate σ 95% lower 95% upper

α0 0.2364 0.01235 0.2120 0.2609
β −0.00321 0.0006699 −0.004538 −0.001885

R2 0.16
p-Value 4.6⋅10−6



Fig. 6. We show the best estimate and the standard deviation for the parameter β of the
linear model, excluding countries with a GDP per capita below a given threshold (in
units of thousand dollars) from the extended set of 125 countries.

Fig. 7.We show the significance (p-value) for a nonzero parameter β, excluding countries
with a GDP per capita below a given threshold in units of thousand dollars, from the
extended set of 125 countries.

Table 6
In the toppanel: best-estimate, standard error (σ), t−statistic and p−value for the param-
eters of the linear fit in two-variables, temperature (T) and GDP per capita (GDP), for the
extended set of 125 countries. In the bottom panel: R2 and correlation coefficient (i.e. nor-
malized off-diagonal element of the covariance matrix) between T and GDP.

Estimate Standard error t-Statistic p-Value

1 0.2186 0.01795 12.17 8.15−23

GDP 6.165⋅10−7 3.78⋅10−7 1.627 0.1061
T −0.003118 0.0007397 −4.215 0.000048

R2 0.2
T − GDP correlation 0.41
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(2) better functioning of the immune system at higher temperature,9

(3) at high temperature it is less likely to have a large number of people
indoors in the same environment for extended periods of time. And, of
course, a combination of all such factors is likely.

A general observation is also that a large scatter in the residual data
is present, clearly due to many other systematic factors, such as varia-
tions in the methods and resources used for collecting data and varia-
tions in the amount of social interactions, due to cultural reasons. In a
companion paper (Notari and Torrieri, 2020), we studied correlations
withmany other variables and, even after taking those variables into ac-
count, Temperature always remains a significant factor.

Some other limitations are present in our study. First, we considered
GDP per capita to be an indicator of the testing capabilities of a given
country. This could be improved by using more direct indicators, such
as the number of available nasal swabs for COVID-19 or the health-
care expenditure or the number of hospitals per capita.

However, the fact that many studies found similar correlations
with Temperature with different datasets, also at the regional
level, is a further confirmation that lack of testing should not be a
9 Note that a higher serum level of vitamin D has been suggested by many studies and
actually found to be correlatedwith lower virus propagation in Notari and Torrieri (2020),
see also McDonnell et al. (2020). However vitamin D is actually quite weakly correlated
with Temperature, due to other factors such as diet, as explained in Notari and Torrieri
(2020).

6

major issue. Indeed, at regional level, the possible lack of testing
capabilities should not represent a significant bias, since testing ca-
pabilities vary much less within a country than among different
countries.

A second limitation of our study is the use of average Temperature,
which is not very accurate for large countries, especially those that
have a large spread in latitude and in climatic conditions, such as
China or the U.S. or Russia. Possible approaches in order to improve on
the present analysis could be: (i) to exclude very large countries from
the data; (2) to split large countries into regions; (3) to add to Temper-
ature a statistical error, based on the spreadwithin each country. Clearly
a city based approach could also improve the analysis, but thiswould re-
quire the existence of a worldwide database for COVID-19 spread for all
major cities in the world.

Finally other environmental factors, such as humidity, wind speed,
air pressure and pollution could also possibly play a role.

Some of the above points are analyzed in Notari and Torrieri (2020),
while other ones are postponed to future work.

As a final remark, our findings can be very useful for policy makers,
since they support the expectation that with growing temperatures the
coronavirus crisis should becomemilder in the summer, for countries in
the Northern Hemisphere. As an example the estimated doubling time,
with the quadratic fit, at the peak temperature of 7.7 ° C is of 2.6 days,
while at 26 ° C is expected to go to about 4.6 days. The linear fit implies
an increase in the doubling time by 50% (or 40%), going from 5 °C to
25 °C., using the estimate from the extended dataset (or the extended
dataset, taking into account of the GDP per capita, at a reference value
of 40 thousand dollars).

The main relevance of our study for public health policies, however,
is to give motivation to implement safety policies before the arrival of
the next cold season, in order to avoid a resurgence of the epidemic.
For example: keeping social distancing, enforcing the use of masks
and providing safe ventilation systems. In buildings where a large
Fig. 8. We show here in the vertical axis the mean value over the full sample of 126
countries of the errors, δα, on the exponents α, from the exponential fits. On the
horizontal axis: the number of days used in the analysis.



Fig. 9. In the left panel: we show the best estimate for the parameter β of the linearmodel with the error bar given by its standard error σβ, as a function of the number of days used in the
analysis, after the first day (with a number of cases Ni=30). In the right panel: we show the t-statistic, i.e. β/σβ, as a function of the number of days used in the analysis.
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amount of people are staying together for extended periods of time
(such as schools, public offices, workplaces, hospitals) or in transporta-
tion systems, a safe ventilation system seems crucial, in order to allow
for clean air to enter from outdoors, especially in the cold season.
While during mild seasons simply opening windows might be enough
to prevent the virus to accumulate in aerosols, this is not possible in
the winter in many buildings, unless an efficient and safe ventilation
system exists.
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