Skip to main content
. 2020 May 15;59(12):3759–3766. doi: 10.1093/rheumatology/keaa198

Table 3.

Comparison of performance characteristics for RA classification algorithm

General RA mart (n = 200)
AUC PPV NPV Specificity Sensitivity # classified w/ RA by algorithm (n)c
NLP-based algorithms
 2010 RA algorithma 0.932 0.905 0.869 0.952 0.760 15 312
 Updated RA algorithma 0.937 0.906 0.875 0.952 0.773 16 358
Rule-based algorithms
 ≥3 ICD9 RA codesb __ 0.536 0.822 0.592 0.787 25 707
 ≥3 ICD9 or ICD10 RA codesb __ 0.558 0.900 0.576 0.893 28 445
RA subjects with ICD10 codes and no RA ICD9 codes (n = 100)
AUC PPV NPV Specificity Sensitivity
NLP-based algorithm
 Updated RA algorithma 0.784 0.926 0.600 0.954 0.472
Rule-based algorithms
 ≥3 ICD10 RA codesb __ 0.585 0.500 0.500 0.585
a

Specificity set at 0.95. bBinary classification, no AUC shown. cNumber computed by applying the algorithm on RA Mart. AUC: area under the receiver operating characteristic curve; ICD9/10: International Classification of Diseases; NLP: natural language processing; NPV: negative predictive value; PPV: positive predictive value.