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THE BIGGER PICTURE Proteins are linear polymers that fold into an incredible variety of three-dimensional
structures that enable sophisticated functionality for biology. Computational modeling allows scientists to
predict the three-dimensional structure of proteins fromgenomes, predict properties or behavior of a protein,
and even modify or design new proteins for a desired function. Advances in machine learning, especially
deep learning, are catalyzing a revolution in the paradigm of scientific research. In this review, we summarize
recent work in applying deep learning techniques to tackle problems in protein structural modeling and
design. Some deep learning-based approaches, especially in structure prediction, now outperform conven-
tional methods, often in combination with higher-resolution physical modeling. Challenges remain in exper-
imental validation, benchmarking, leveraging known physics and interpretingmodels, and extending to other
biomolecules and contexts.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY

Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful
computational resources, impacting many fields, including protein structural modeling. Protein structural
modeling, such as predicting structure from amino acid sequence and evolutionary information, designing
proteins toward desirable functionality, or predicting properties or behavior of a protein, is critical to under-
stand and engineer biological systems at the molecular level. In this review, we summarize the recent ad-
vances in applying deep learning techniques to tackle problems in protein structural modeling and design.
We dissect the emerging approaches using deep learning techniques for protein structural modeling and
discuss advances and challenges that must be addressed. We argue for the central importance of structure,
following the ‘‘sequence / structure / function’’ paradigm. This review is directed to help both computa-
tional biologists to gain familiarity with the deep learningmethods applied in protein modeling, and computer
scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning
techniques.
INTRODUCTION

Proteins are linear polymers that fold into various specific confor-

mations to function. The incredible variety of three-dimensional

(3D) structures determined by the combination and order in

which 20 amino acids thread the protein polymer chain

(sequence of the protein) enables the sophisticated functionality

of proteins responsible for most biological activities. Hence, ob-

taining the structures of proteins is of paramount importance in

both understanding the fundamental biology of health and dis-

ease and developing therapeutic molecules. While protein struc-

ture is primarily determined by sophisticated experimental tech-
This is an open access article under the CC BY-N
niques, such as X-ray crystallography,1 NMR spectroscopy2

and, increasingly, cryoelectron microscopy,3 computational

structure prediction from the genetically encoded amino acid

sequence of a protein has been used as an alternative when

experimental approaches are limited. Computational methods

have been used to predict the structure of proteins,4 illustrate

the mechanism of biological processes,5 and determine the

properties of proteins.6 Furthermore, all naturally occurring pro-

teins are a result of an evolutionary process of random variants

arising under various selective pressures. Through this process,

nature has explored only a small subset of theoretically possible

protein sequence space. To explore a broader sequence and
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Figure 1. Striking Improvement inModel Accuracy in CASP13Due to
the Deployment of Deep Learning Methods
(A) Trend lines of backbone accuracy for the best models in each of the 13
CASP experiments. Individual target points are shown for the two most recent
experiments. The accuracy metric, GDT_TS, is a multiscale indicator of the
closeness of the Ca atoms in a model to those in the corresponding experi-
mental structure (higher numbers are more accurate). Target difficulty is based
on sequence and structure similarity to other proteins with known experi-
mental structures (see Kryshtafovych et al.4 for details). Figure from Kryshta-
fovych et al. (2019).4

(B) Number of FM + FM/TBM (FM, free modeling; TBM, template-based
modeling) domains (out of 43) solved to a TM score threshold for all groups in
CASP.13 AlphaFold ranked first among them, showing that the progress is
mainly due to the development of DL-based methods. Figure from Senior et al.
(2020).26
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structural space that potentially contains proteins with enhanced

or novel properties, techniques, such as de novo design can be

used to generate new biological molecules that have the poten-

tial to tackle many outstanding challenges in biomedicine and

biotechnology.7,8

While the application of machine learning and more general

statistical methods in protein modeling can be traced back de-

cades,9–13 recent advances in machine learning, especially in

deep learning (DL)-related techniques,14 have opened up new

avenues in many areas of protein modeling.15–18 DL is a set of

machine learning techniques based on stacked neural network

layers that parameterize functions in terms of compositions of

affine transformations and non-linear activation functions. Their

ability to extract domain-specific features that are adaptively

learned from data for a particular task often enables them to sur-

pass the performance of more traditional methods. DL hasmade
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dramatic impacts on digital applications like image classifica-

tion,19 speech recognition,20 and game playing.21 Success in

these areas has inspired an increasing interest in more complex

data types, including protein structures.22 In the most recent

Critical Assessment of Structure Prediction (CASP13 held in

2018),4 a biennial community experiment to determine the

state-of-the-art in protein structure prediction, DL-based

methods accomplished a striking improvement in model accu-

racy (see Figure 1), especially in the ‘‘difficult’’ target category

where comparative modeling (starting with a known, related

structure) is ineffective. The CASP13 results show that the com-

plex mapping from amino acid sequence to 3D protein structure

can be successfully learned by a neural network and generalized

to unseen cases. Concurrently, for the protein design problem,

progress in the field of deep generative models has spawned a

range of promising approaches.23–25

In this review, we summarize the recent progress in applying

DL techniques to the problem of protein modeling and discuss

the potential pros and cons. We limit our scope to protein struc-

ture and function prediction, protein design with DL (see

Figure 2), and a wide array of popular frameworks used in these

applications. We discuss the importance of protein representa-

tion, and summarize the approaches to protein design based

on DL for the first time. We also emphasize the central impor-

tance of protein structure, following the sequence / structure

/ function paradigm and argue that approaches based on

structures may be most fruitful. We refer the reader to other re-

view papers for more information on applications of DL in biology

and medicine,16,15 bioinformatics,27 structural biology,17 folding

and dynamics,18,28 antibody modeling,29 and structural annota-

tion and prediction of proteins.30,31 Because DL is a fast-moving,

interdisciplinary field, we chose to include preprints in this re-

view. We caution the reader that these contributions have not

been peer-reviewed, yet are still worthy of attention now for their

ideas. In fact, in communities such as computer science, it is not

uncommon for manuscripts to remain in this stage indefinitely,

and some seminal contributions, such as Kingma and Welling’s

definitive paper on autoencoders (AEs),32 are only available as

preprints. In addition, we urge caution with any protein design

studies that are purely in silico, and we highlight those that

include experimental validation as a sign of their trustworthiness.

PROTEIN STRUCTURE PREDICTION AND DESIGN

Problem Definition
The prediction of protein 3D structure from amino acid sequence

has been a grand challenge in computational biophysics for de-

cades.33,34 Folding of peptide chains is a fundamental concept in

biophysics, and atomic-level structures of proteins and com-

plexes are often the starting point to understand their function

and to modulate or engineer them. Thanks to the recent ad-

vances in next-generation sequencing technology, there are

now over 180 million protein sequences recorded in the UniProt

dataset.35 In contrast, only 158,000 experimentally determined

structures are available in the Protein Data Bank. Thus, compu-

tational structure prediction is a critical problem of both practical

and theoretical interest.

More recently, the advances in structure prediction have led to

an increasing interest in the protein design problem. In design,



Figure 2. Schematic Comparison of Three
Major Tasks in Protein Modeling: Function
Prediction, Structure Prediction, and Protein
Design
In function prediction, the sequence and/or the
structure is known and the functionality is needed as
output of a neural net. In structure prediction,
sequence is known input and structure is unknown
output. Protein design starts from desired function-
ality, or a step further, structure that can perform this
functionality. The desired output is a sequence that
can fold into the structure or has such functionality.
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the objective is to obtain a novel protein sequence that will fold

into a desired structure or perform a specific function, such as

catalysis. Naturally occurring proteins represent only an infinites-

imal subset of all possible amino acid sequences selected by the

evolutionary process to perform a specific biological function.7

Proteins with more robustness (higher thermal stability, resis-

tance to degradation) or enhanced properties (faster catalysis,

tighter binding) might lie in the space that has not been explored

by nature, but is potentially accessible by de novo design. The

current approach for computational de novo design is based

on physical and evolutionary principles and requires significant

domain expertise. Some successful examples include novel

folds,36 enzymes,37 vaccines,38 novel protein assemblies,39

ligand-binding protein,40 and membrane proteins.41 While

some papers occasionally refer to redesign of naturally occurring

proteins or interfaces as ‘‘de novo’’, in this review we restrict that

term only to works where completely new folds or interfaces are

created.

Conventional Computational Approaches
The current methodology for computational protein structure

prediction is largely based on Anfinsen’s42 thermodynamic hy-

pothesis, which states that the native structure of a protein

must be the one with the lowest free energy, governed by the

energy landscape of all possible conformations associated

with its sequence. Finding the lowest-energy state is challenging

because of the immense space of possible conformations avail-

able to a protein, also known as the ‘‘sampling problem’’ or

Levinthal’s43 paradox. Furthermore, the approach requires

accurate free energy functions to describe the protein energy

landscape and rank different conformations based on their

energy, referred to as the ‘‘scoring problem.’’ In light of these

challenges, current computational techniques rely heavily on

multiscale approaches. Low-resolution, coarse-grained energy

functions are used to capture large-scale conformational sam-

pling, such as the hydrophobic burial and formation of local sec-

ondary structural elements. Higher-resolution energy functions

are used to explicitly model finer details, such as amino acid

side-chain packing, hydrogen bonding, and salt bridges.44

Protein design problems, sometimes known as the inverse of

structure prediction problems, require a similar toolbox. Instead

of sampling the conformational space, a protein design protocol

samples the sequence space that folds into the desired topol-

ogy. Past efforts can be broadly divided into two broad classes:

modifying an existing protein with known sequence and proper-

ties, or generating novel proteins with sequences and/or folds

unrelated to those found in nature. The former class evolves an

existing protein’s amino acid sequence (and as a result, structure
and properties) and can be loosely referred to as protein engi-

neering or protein redesign. The latter class of methods is called

de novo protein design, a term originally coined in 1997 when

Dahiyat and Mayo45 designed the FSD-1 protein, a soluble

protein with a completely new sequence that folded into the pre-

viously known structure of a zinc finger. Korendovych and De-

Grado’s46 recent retrospective chronicles the development of

de novo design. Originally de novo design meant creation of

entirely new proteins from scratch exploiting a target structure

but, especially in the DL era, many authors now use the term

to include methods that ignore structure in creating new se-

quences, often using extensive training data from known pro-

teins in a particular functional class. In this review, we split our

discussion ofmethods according towhether they trained directly

between sequence and function (as certain natural language

processing [NLP]-based DL paradigms allow), or whether they

directly include protein structural data (like historical methods

in rational protein design; see below in the section on ‘‘Protein

Design’’).

Despite significant progress in the last several decades in the

field of computational protein structure prediction and

design,7,34 accurate structure prediction and reliable design

both remain challenging. Conventional approaches rely heavily

on the accuracy of the energy functions to describe protein

physics and the efficiency of sampling algorithms to explore

the immense protein sequence and structure space. Both pro-

tein engineering and de novo approaches are often combined

with experimental directed evolution8,47 to achieve the optimal

final molecules.7

DL ARCHITECTURES

In conventional computational approaches, predictions from

data are made by means of physical equations and modeling.

Machine learning puts forward a different paradigm in which al-

gorithms automatically infer—or learn—a relationship between

inputs and outputs from a set of hypotheses. Consider a collec-

tion ofN training samples comprising features x in an input space

X (e.g., amino acid sequences), and corresponding labels y in

some output space Y (e.g., residue pairwise distances), where

fxi; yigNi =1 are sampled independently and identically distributed

from some joint distribution P. In addition, consider a function

f : X/Y in some function class H, and a loss function

[ : Y3Y/R that measures how much fðxÞ deviates from the

corresponding label y. The goal of supervised learning is to

find a function f˛H that minimizes the expected loss, E½[ðfðxÞ;
yÞ�, for ðx; yÞ sampled from P. Since one does not have

access to the true distribution but rather N samples from it, the
PATTER 1, December 11, 2020 3
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Figure 3. Schematic Representation of Several Architectures Used in Protein Modeling and Design
(A) CNNs are widely used in structure prediction.
(B) RNNs learn in an auto-regressive way and can be used for sequence generation.
(C) The VAE can be jointly trained by protein and properties to construct a latent space correlated with properties.
(D) In the GAN setting, a mapping from a priori distribution to the design space can be obtained via the adversarial training.
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popular empirical risk minimization (ERM) approach seeks to

minimize the loss over the training samples instead. In neural

network models, in particular, the function class is parameter-

ized by a collection of weights. Denoting these parameters

collectively by q, ERM boils down to an optimization problem

of the form

min
q

1

N

XN

i =1

[ ðfqðxiÞ; yiÞ: (Equation 1)

The choice of the network determines how the hypothesis class

isparameterized.Deepneuralnetworks typically implementanon-

linear function as the composition of affinemaps,W l : R
nl/Rnl +1 ,

where W lx = Wlx +bl, and other non-linear activation functions,

sð ,Þ. Rectifying linear units and max-pooling are some of the

most popular non-linear transformations applied in practice. The

architecture of the model determines how these functions are

composed, themostpopular optionbeing their sequential compo-

sition fðxÞ=WLsðWL�1sðWL�2sð.W2sðW1xÞÞÞÞ for a network

with L layers. Computing fðxÞ is typically referred to as the forward

pass.

We will not dwell on the details of the optimization problem in

Equation (1), which is typically carried out via stochastic gradient

descent algorithms or variations thereof, efficiently implemented

via back-propagation (see instead, e.g., LeCun et al.,14 Sun,48

and Schmidhuber).49 Rather, in this section we summarize

some of the most popular models widely used in protein struc-

tural modeling, including how different approaches are best

suited for particular data types or applications. High-level dia-

grams of the major architectures are shown in Figures 3.
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Convolutional Neural Networks
Convolutional networks architectures50 are most commonly

applied to image analysis or other problems where shift-invari-

ance or covariance is needed. Inspired by the fact that an object

on an image can be shifted in the image and still be the same ob-

ject, convolutional neural networks (CNNs) adopt convolutional

kernels for the layer-wise affine transformation to capture this

translational invariance. A 2D convolutional kernel w applied to

a 2D image data x can be defined as

Sði; jÞ = ðx �wÞði; jÞ=
X

m

X

n

xðm; nÞwði�m; j � nÞ;

(Equation 2)

where Sði; jÞ represents the output at position ði; jÞ, xðm; nÞ is the

value of the input x at position ðm;nÞ,wði�m; j�nÞ is the param-

eter of kernel w at position ði � m; j � nÞ, and the summation is

over all possible positions. An important variant of CNN is the re-

sidual network (ResNet),51 which incorporates skip-connections

between layers. These modification have shown great advan-

tages in practice, aiding the optimization of these typically

huge models. CNNs, especially ResNets, have been widely

used in protein structure prediction. An example is AlphaFold,22

which used ResNets to predict protein inter-residue distance

maps from amino acid sequences (Figure 3A).

Recurrent Neural Networks
Recurrent architectures are based on applying several iterations

of the same function along a sequential input.52 This can be seen

as an unfolded architecture, and it has been widely used to pro-

cess sequential data, such as time series data and written text



Figure 4. Different Types of Representation
Schemes Applied to a Protein
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(i.e., NLP). With an initial hidden state hð0Þ and sequential data

[xð1Þ;xð2Þ;.;xðnÞ], we can obtain hidden states recursively:

hðtÞ = gðtÞ�xðtÞ; xðt�1Þ; xðt�2Þ;.; xð1Þ�= f
�
hðt�1Þ; xðtÞ; q

�
;

(Equation 3)

where f represents a function or transformation from one position

to the next, and gðtÞ represents the accumulative transformation

up to position t. The hidden state vector at position i, hðiÞ, con-
tains all the information that has been seen before. As the

same set of parameters (usually called a cell) can be applied

recurrently along the sequential data, an input of variable length

can be fed to a recurrent neural network (RNN). Due to the

gradient vanishing and explosion problem (the error signal de-

creases or increases exponentially during training), more recent

variants of standard RNNs, namely long short-term memory

(LSTM)53 and gated recurrent unit54 are more widely used. An

example of an RNN approach in the context of protein structure

prediction is using an N-terminal subsequence of a protein to

predict the next amino acid in the protein sequence (Figure 3B;

e.g., M€uller et al.55).

In conjunction with recurrent networks, attention mechanisms

were first proposed (in an encoder-decoder framework) to learn

which parts of a source sentence are most relevant to predicting

a target word.56 Compared with RNN models, attention-based

models are more parallelizable and better at capturing long-

range dependencies, and they are driving big advances in

NLP.57,58 Recently, the transformer model, which solely adopted

attention layers without any recurrent or convolutional layers,

was able to surpass state-of-the-art methods on language trans-

lation tasks.57 For proteins, these methods could learn which

parts of an amino acid sequence are critical to predicting a target

residue or the properties of a target residue. For example, trans-

former-based models have been used to generate protein se-

quences conditioned on target structure,23 learn protein

sequence data to predict secondary structure and fitness land-

scapes,59 and to encode the context of the binding partner in

antibody-antigen binding surface prediction.60

Variational Autoencoder
AEs,61 unlike the networks discussed so far, provide a

model for unsupervised learning. Within this unsupervised
framework, an AE does not learn

labeled outputs but instead attempts

to learn some representation of the

original input. This is typically accom-

plished by training two parametric

maps: an encoder function g : X/Rm

that maps an input x to an m-dimen-

sional representation or latent space,

and a decoder intended to implement

the inverse map so that fðgðxÞÞzx.

Typically, the latent representation is

of small dimension (m is smaller than
the ambient dimension of X ) or constrained in some other

way (e.g., through sparsity).

Variational autoencoders (VAEs),32,62 in particular, provide a

stochastic map between the input space and the latent space.

This map is beneficial because, while the input space may

have a highly complex distribution, the distribution of the repre-

sentation z can bemuch simpler; e.g., Gaussian. Thesemethods

derive from variational inference, a method from machine

learning that approximates probability densities through optimi-

zation.63 The stochastic encoder, given by the inference model

q4ðzjxÞ and parametrized byweights 4, is trained to approximate

the true posterior distribution of the representation given the

data, pqðzjxÞ. The decoder, on the other hand, provides an esti-

mate for the data given the representation, pqðxjzÞ. Direct optimi-

zation of the resulting objective is intractable, however. Thus,

training is done by maximizing the ‘‘evidence lower bound,’’

Lq;4ðxÞ, instead, which provides a lower bound on the log-like-

hood of the data:

Lq;4ðxÞ = Ez�q4ðzjxÞ logpqðxjzÞ � DKLðq4ðzjxÞjjpqðzjxÞÞ:
(Equation 4)

Here, DKLðq4jjpqÞ is the Kullback-Leibler divergence, which

quantifies the distance between distributions q4 and pq. Employ-

ing Gaussians for the factorized variational and likelihood distri-

butions, as well as using a change of variables via differentiable

maps, allows for the efficient optimization of these architectures.

An example of applying VAE in the protein modeling field is

learning a representation of antimicrobial protein sequences

(Figure 3C; e.g., Das et al.64). The resulting continuous real-

valued representation can then be used to generate new se-

quences likely to have antimicrobial properties.

Generative Adversarial Network
Generative adversarial networks (GANs)65 are another class of

unsupervised (generative) models. Unlike VAEs, GANs are

trained by an adversarial game between two models, or net-

works: a generator, G, which given a sample, z, from some sim-

ple distribution pzðzÞ (e.g., Gaussian), seeks to map it to the dis-

tribution of some data class (e.g., naturally looking images); and

a discriminator, D, whose task is to detect whether the images

are real (i.e., belonging to the true distribution of the data,
PATTER 1, December 11, 2020 5



Table 1. Features Contained by CUProtein Dataset

Feature Name Description Dimensions Type IO

AA Sequence sequence of amino acid n 3 1 21 chars input

PSSM position-specific scoring matrix, a residue-

wise score for motifs appearance

n 3 21 real [0, 1] input

MSA covariance covariance matrix across homologous NA

sequences

n 3 n real [0, 1] input

SS a coarse categorized secondary structure

(Q3 or Q8)

n 3 1 3 or 8 chars input

Distance matrices pairwise distance between residues (Ca

or Cb)

n 3 n positive real (Å) output

Torsion angles variable dihedral angles for each residues

(4, c)

n 3 2 real [�p, +p] (radians) output

n, number of residues in one protein. Data from Drori et al.78
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pdataðxÞ), or fake (produced by the generator). With this game-

based setup, the generator model is trained by maximizing the

error rate of the discriminator, thereby training it to ‘‘fool’’ the

discriminator. The discriminator, on the other hand, is trained

to foil such fooling. The original objective function as formulated

by Goodfellow et al.65 is:

min
G

max
D

VðD;GÞ= Ex�pdataðxÞ½logDðxÞ�+Ez�pzðzÞ½logð1�DðGðzÞÞÞ�:
(Equation 5)

Training is performed by stochastic optimization of this differ-

entiable loss function. While intuitive, this original GAN objective

can suffer from issues, such as mode collapse and instabilities

during training. The Wasserstein GAN (WGAN)66 is a popular

extension of GAN which introduces a Wasserstein-1 distance

measure between distributions, leading to easier and more

robust training.67

An example of a GAN, in the context of protein modeling

is learning the distribution of protein backbone distances to

generate novel protein-like folds (Figure 3D).68 During

training, one network G generates folds, and a second

network D aims to distinguish between generated folds

and fake folds.

PROTEIN REPRESENTATION AND FUNCTION
PREDICTION

One of the most fundamental challenges in protein modeling is

the prediction of functionality from sequence or structure. Func-

tion prediction is typically formulated as a supervised learning

problem. The property to predict can either be a protein-level

property, such as a classification as an enzyme or non-

enzyme,69 or a residue-level property, such as the sites or motifs

of phosphorylation (DeepPho)70 and cleavage by proteases.71

The challenging part here and in the following models is how to

represent the protein. Representation refers to the encoding of

a protein that serves as an input for prediction tasks or the output

for generation tasks. Although a deep neural network is in princi-

ple capable of extracting complex features, a well-chosen repre-

sentation canmake learningmore effective and efficient.72 In this

section, we will introduce the commonly used representations of
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proteins in DL models (Figure 4): sequence-based, structure-

based, and one special form of representation relevant to

computational modeling of proteins: coarse-grained models.

Amino Acid Sequence as Representation
As the amino acid sequence contains the information essential

to reach the folded structure for most proteins,42 it is widely

used as an input in functional prediction and structure predic-

tion tasks. The amino acid sequence, like other sequential

data, is typically converted into one-hot encoding-based repre-

sentation (each residue is represented with one high bit to iden-

tify the amino acid type and all the others low) that can be

directly used in many sequence-based DL techniques.73,74

However, this representation is inherently sparse and, thus,

sample-inefficient. There are many easily accessible additional

features that can be concatenated with amino acid sequences

providing structural, evolutionary, and biophysical information.

Some widely used features include predicted secondary struc-

ture, high-level biological features, such as sub-cellular locali-

zation and unique functions,75 and physical descriptors, such

as AAIndex,76 hydrophobicity, ability to form hydrogen bonds,

charge, solvent-accessible surface area, etc. A sequence can

be augmented with additional data from sequence databases,

such as multiple sequence alignments (MSA) or position-spe-

cific scoring matrices (PSSMs),77 or pairwise residue co-evolu-

tion features. Table 1 lists typical features as used in CU-

Protein.78

Learned Representation from Amino Acid Sequence
Because the performance of machine learning algorithms highly

depends on the features we choose, labor-intensive and

domain-based feature engineering was vital for traditional ma-

chine learning projects. Now, the exceptional feature extraction

ability of neural networks makes it possible to ‘‘learn’’ the repre-

sentation, with or without giving the model any labels.72 As pub-

licly available sequence data are abundant (see Table 2), a well-

learned representation that utilizes these data to capture more

information is of particular interest. The class of algorithms that

address the label-less learning problem fall under the umbrella

of unsupervised or semi-supervised learning, which extracts in-

formation from unlabeled data to reduce the number of labeled

samples needed.



Table 2. A Summary of Publicly Available Molecular Biology Databases

Dataset Description N Website

European Bioinformatics Institute

(EMBL-EBI)

a collections of wide range of

datasets

– https://www.ebi.ac.uk

National Center for Biotechnology

Information (NCBI)

a collections of biomedical and

genomic databases

– https://www.ncbi.nlm.nih.gov

Protein Data Bank (PDB) 3D structural data of biomolecules,

such as proteins and nucleic acids

�160,000 https://www.rcsb.org

Nucleic Acid Database (NDB) structure of nucleic acids and

complex assemblies

�10,560 http://ndbserver.rutgers.edu

Universal Protein Resource

(UniProt)

protein sequence and function

infromations

� 562; 000 http://www.uniprot.org/

Sequence Read Archive (SRA) raw sequence data from ‘‘next-

generation’’ sequencing

technologies

� 33 1016 NCBI database
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The most straightforward way to learn from amino acid

sequence is to directly apply NLP algorithms. Word2Vec79 and

Doc2Vec80 are groups of algorithms widely used for learning

word or paragraph embeddings. These models are trained by

either predicting a word from its context or predicting its context

from one central word. To apply these algorithm, Asgari andMo-

frad81 first proposed a Word2Vec-based model called BioVec,

which interprets the non-overlapping 3-mer sequence of amino

acids (e.g., alanine-glutamine-lysine or AQL) as ‘‘words’’ and

lists of shifted ‘‘words’’ as ‘‘sentences.’’ They then represent a

protein as the summation of all overlapping sequence fragments

of length k, or k-mers (called ProtVec). Predictions based on the

ProtVec representation outperformed state-of-the-art machine

learning methods in the Pfam protein family82 classification

(93% accuracy for ~7,000 proteins, versus 69.1%–99.6%83

and 75%84 for previous methods). Many Doc2Vec-type exten-

sions were developed based on the 3-mer protocol. Yu et al.85

showed that non-overlapping k-mers perform better than the

overlapping ones, and Yang et al.86 compared the performance

of all Doc2Vec frameworks for thermostability and enantioselec-

tivity prediction.

In these approaches, the three-residue segmentation of a pro-

tein sequence is arbitrary and does not embody any biophysical

meaning. Alternatively, Alley et al.87 directly used an RNN (unidi-

rectional multiplicative long-short-term-memory or mLSTM)88

model, called UniRep, to summarize arbitrary length protein se-

quences into a fixed-length real representation by averaging

over the representation of each residue.87 Their representation

achieved lower mean squared errors on 15 property prediction

tasks (e.g., absorbance, activity, stability) compared with former

models, including Yang et al.’s86 Doc2Vec. Heinzinger et al.89

adopted the bidirectional LSTM in a manner similar to Peters

et al.’s90 ELMo (Embeddings from Language Models) model

and surpassed Asgari and Mofrad’s81 Word2Vec model at pre-

dicting secondary structure and regions with intrinsic disorder

at the per-residue level.89 The success of the transformer model

in language processing, especially those trained on large num-

ber of parameters, such as BERT58 and GPT3,91 has inspired

its application in biological sequence modeling. Rives et al.59

trained a transformer model with 670 million parameters on 86

billion amino acids across 250 million protein sequences span-
ning evolutionary diversity. Their transformermodel was superior

to traditional LSTM-based models on tasks, such as the predic-

tion of secondary structure and long-range contacts, as well as

the effect of mutations on activity on deep mutational scanning

benchmarks.

AEs can also provide representations for subsequent super-

vised tasks.32 Ding et al.92 showed that a VAE model is able to

capture evolutionary relationships between sequences and sta-

bility of proteins, while Sinai et al.93 and Riesselman et al.94

showed that the latent vectors learned fromVAEs are able to pre-

dict the effects of mutations on fitness and activity for a range of

proteins, such as poly(A)-binding protein, DNA methyltransfer-

ase, and b-lactamase. Recently, a lower-dimensional embed-

ding of the sequence was learned for the more complex task

of structure prediction.78 Alley et al.’s87 UniRep surpassed

former models, but since UniRep is trained on 24 million se-

quences and previous models (e.g., Prot2Vec) were trained on

much smaller datasets (0.5 million), it is not clear if the improve-

ment was due to better methods or the larger training dataset.

Rao et al.95 introduced multiple biological-relevant semi-super-

vised learning tasks, TAPE, and benchmarked the performance

against various protein representations. Their results show con-

ventional alignment-based inputs still outperform current self-

supervised models on multiple tasks, and the performance on

a single task cannot evaluate the capacity of models. A compre-

hensive and persuasive comparison of representations is

required.

Structure as Representation
Since the most important functions of a protein (e.g., binding,

signaling, catalysis) can be traced back to the 3D structure of

the protein, direct use of 3D structural information, and analo-

gously, learning a good representation based on 3D structure,

are highly desired. The direct use of raw 3D representations

(such as coordinates of atoms) is hindered by considerable chal-

lenges, including the processing of unnecessary information due

to translation, rotation, and permutation of atomic indexing.

Townshend et al.96,97 and Simonovsky andMeyers96,97 obtained

a translationally invariant, 3D representation of each residue by

voxelizing its atomic neighborhood for a grid-based 3D CNN

model. The work of Kolodny et al.,98 Taylor,99 and Li and
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Koehl100 representing the 3D structure of a protein as 1D strings

of geometric fragments for structure comparison and fold recog-

nition may also prove useful in DL approaches. Alternatively, the

torsion angles of the protein backbone, which are invariant to

translation and rotation, can fully recapitulate protein backbone

structure under the common assumption that variation in bond

lengths and angles is negligible. AlQuraishi101 used backbone

torsion angles to represent the 3D structure of the protein as a

1D data vector. However, because a change in a backbone tor-

sion angle at a residue affects the inter-residue distances

between all preceding and subsequent residues, these 1D vari-

ables are highly interdependent, which can frustrate learning.

To circumvent these limitations, many approaches use 2D pro-

jections of 3D protein structure data, such as residue-residue

distance and contact maps,24,102 and pseudo-torsion angles

and bond angles that capture the relative orientations between

pairs of residues.103 While these representations guarantee

translational and rotational invariance, they do not guarantee

invertibility back to the 3D structure. The structure must be

reconstructed by applying constraints on distance or contact

parameters using algorithms, such as gradient descent minimi-

zation, multidimensional scaling, a program like the Crystallog-

raphy and NMR system (CNS),104 or in conjunction with an

energy-function-based protein structure prediction program.22

An alternative to the above approaches for representing pro-

tein structures is the use of a graph, i.e., a collection of nodes

or vertices connected by edges. Such a representation is highly

amenable to the graph neural network (GNN) paradigm,105 which

has recently emerged as a powerful framework for non-

Euclidean data106 in which the data are represented with rela-

tionships and inter-dependencies, or edges between objects

or nodes.107 While the representation of proteins as graphs

and the application of graph theory to study their structure and

properties has a long history,108 the efforts to apply GNNs to pro-

tein modeling and design is quite recent. As a benchmark, many

GNNs69,109 have been applied to classify enzymes from non-en-

zymes in the PROTEINS110 and D&D111 datasets. Fout et al.112

utilized aGNN in developing amodel for protein-protein interface

prediction. In their model, the node feature comprised residue

composition and conservation, accessible surface area, residue

depth, and protrusion index; and the edge feature comprised a

distance and an angle between the normal vectors of the amide

plane of each node/residue. A similar framework was used to

predict antibody-antigen binding interfaces.60 Zamora-Resendiz

and Crivelli113 and Gligorijevic et al.114 further generalized and

validated the use of graph-based representations and the graph

convolutional network (GCN) framework in protein function pre-

diction tasks, using a class activation map to interpret the struc-

tural determinants of the functionalities. Torng and Altman115

applied GCNs tomodel pocket-like cavities in proteins to predict

the interaction of proteins with small molecules, and Ingraham

et al.23 adopted a graph-based transformer model to perform a

protein sequence design task. These examples demonstrate

the generality and potential of the graph-based representation

and GNNs to encode structural information for protein modeling.

The surface of the protein or a cavity is an information-rich re-

gion that encodes how a protein may interact with other mole-

cules and its environment. Recently, Gainza et al.116 used a geo-

metric DL framework117 to learn a surface-based representation
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of the protein, called MaSIF. They calculated ‘‘fingerprints’’ for

patches on the protein surface using geodesic convolutional

layers, whichwere further used to perform tasks, such as binding

site prediction or ultra-fast protein-protein interaction (PPI)

search. The performance of MaSIF approached the baseline of

current methods in docking and function prediction, providing

a proof-of-concept to inspire more applications of geometry-

based representation learning.

Score Function and Force Field
A high-quality force field (or, more generally, score function) for

sampling and/or ranking models (decoys) is one of the most vital

requirements for protein structural modeling.118 A force field de-

scribes the potential energy surface of a protein. A score function

may contain knowledge-based terms that do not necessarily

have a valid physical meaning, and they are designed to distin-

guish near-native conformations from non-native ones (for

example, learning the GDT_TS).119 A molecular dynamics (MD)

or Monte Carlo (MC) simulation with a state-of-the-art force field

or score function can reproduce reasonable statistical behaviors

of biomolecules.120–122

Current DL-based efforts to learn the force field can be divided

into two classes: ‘‘fingerprint’’ based and graph based. Behler

and Parrinello123 developed roto-translationally invariant fea-

tures, i.e., the Behler-Parrinello fingerprint, to encode the atomic

environment for neural networks to learn potential surfaces from

density functional theory (DFT) calculations. Smith et al.

extended this framework and tested its accuracy by simulating

systems up to 312 atoms (Trp-cage) for 1 ns.124,125 Another fam-

ily that includes deep tensor neural networks126 and SchNet127

uses graph convolutions to learn a representation for each

atom within its chemical environment. Although the prediction

quality and the ability to learn a representation with novel chem-

ical insight make the graph-based approach increasingly popu-

lar,28 the application scales poorly to larger systems and thus

has mainly focused on small organic molecules.

We anticipate a shift towardDL-based score functions because

of the enormous gains in speed and efficiency. For example,

Zhang et al.128 showed that MD simulation on a neural potential

was able to reproduce energies, forces, and time-averaged prop-

erties comparablewith ab initioMD(AIMD) at a cost that scales lin-

early with system size, compared with cubic scaling typical for

AIMDwithDFT.Although these force fields are, in principle, gener-

alizable to larger systems, direct applications of learned potentials

tomodel full proteinsarestill rare.PhysNet, trainedonasetof small

peptide fragments (atmost eight heavy atoms), was able to gener-

alize todeca-alanine (Ala10),129 andANI-1xandAIMNethavebeen

tested on chignolin (10 residues) and Trp-cage (20 residues) within

the ANI-MD benchmark dataset.125,130 Lahey and Rowley131 and

Wang et al.132 combined the quantum mechanics/molecular me-

chanics (QM/MM) strategy133 and the neural potential to model

docking with small ligands and larger proteins.131,132 Recently,

Wang et al.134 proposed an end-to-end differential MM force field

by training aGNNonenergies and forces to learn atom-typing and

force field parameters.

Coarse-Grained Models
Coarse-grained models are higher-level abstractions of biomol-

ecules, such as using a single pseudo-atom or a bead to
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represent multiple atoms, grouped based on local connectivity

and/or chemical properties. Coarse graining smoothens out

the energy landscape, and thereby helps avoid trapping in local

minima and speeds up conformational sampling.135 One can

learn the atomic-level properties to construct a fast and accurate

neural coarse-grained model once the coarse-grained mapping

is given. Early attempts to apply DL-based methods to coarse-

graining focus on water molecules with the roto-translationally

invariant features.136,137 Wang et al.138 developed CGNet and

learned the coarse-grained model of the mini protein, chignolin,

in which the atoms of a residue aremapped to the corresponding

Ca atom. The free energy surface learned with CGNet is quanti-

tatively correct and MD simulations performed with CGNet

potentially predict the same set of metastable states (folded,

unfolded, and misfolded). Another critical question for coarse

graining is determining which sets of atoms to map into a united

atom. For example, one choice is to use a single coarse-grained

atom to represent a whole residue, and a different choice is to

use two coarse-grained atoms, one to represent the backbone

and the other to represent the side chain. To determine the

optimal choice, Wang and Gómez-Bombarelli139 applied an

encoder-decoder-based model to explicitly learn the lower-

dimensional representation of proteins by minimizing the infor-

mation loss at different levels of coarse graining. Li et al.140

treated this problem as a graph segmentation problem and pre-

sented a GNN-based coarse-graining mapping predictor called

Deep Supervised Graph Partitioning Model.

STRUCTURE DETERMINATION

The most successful application of DL in the field of protein

modeling so far has been the prediction of protein structure. Pro-

tein structure prediction is formulated as a well-defined problem

with clear inputs and outputs: predict the 3D structure (output)

given amino acid sequences (input), with the experimental struc-

tures as the ground truth (labels). This problem perfectly fits the

classical supervised learning approach, and once the problem is

defined in these terms, the remaining challenge is to choose a

framework to handle the complex relationship between input

and output. The CASP experiment for structure prediction is

held every 2 years and served as a platform for DL to compete

with state-of-the-art methods and, impressively, outshine them

in certain categories. We will first discuss the application of DL

to the protein folding problem, and then comment on some prob-

lems related to structure determination. Table 3 summarizesma-

jor DL efforts in structure prediction.

Protein Structure Prediction
Before the notable success of DL at CASP12 (2016) and CASP13

(2018), the state-of-the-art methodology used complex work-

flows based on a combination of fragment insertion and struc-

ture optimization methods, such as simulated annealing with a

score function or energy potential. Over the last decade, the

introduction of co-evolution information in the form of evolu-

tionary coupling analysis (ECA)154 improved predictions. ECA re-

lies on the rationale that residue pairs in contact in 3D space tend

to evolve or mutate together; otherwise, they would disrupt the

structure to destabilize the fold or render a large conformational

change. Thus, evolutionary couplings from sequencing data
suggest distance relationships between residue pairs and aid

structure construction from sequence through contact or dis-

tance constraints. Because co-evolution information relies on

statistical averaging of sequence information from a large num-

ber of MSAs,145,155,156 this approach is not effective when the

protein target has only a few sequence homologs. Neural net-

workswere, at first, introduced to deduce evolutionary couplings

between distant homologs, thereby improving ECA-type contact

predictions for contact-assisted protein folding.154 While the

application of neural networks to learn inter-residue protein con-

tacts dates back to the early 2000s,157,158 more recently this

approach was adopted by MetaPSICOV (two-layer NN),146

PConsC2 (two-layer NN),145 and CoinDCA-NN (five-layer

NN),155 which combined neural networks with ECAs. However,

there was no significant advantage to neural networks compared

with other machine learning methods at that time.159

In 2017, Wang et al.102 proposed RaptorX-Contact, a residual

neural network (ResNet)-based model,51 which, for the first time

used a deep neural network for protein contact prediction, signif-

icantly improving the accuracy on blind, challenging targets with

novel folds. RaptorX-Contact ranked first in free modeling tar-

gets at CASP12.161 Its architecture (Figure 5(a)) entails (1) a 1D

ResNet that inputs MSAs, predicted secondary structure and

solvent accessibility (from DL-based prediction tool RaptorX-

Property)162 and (2) a 2D ResNet with dilations that inputs the

1D ResNet output and inter-residue co-evolution information

from CCMpred.144 In its original formulation, RaptorX-Contact

outputs a binary classification of contacting versus non-contact-

ing residue pairs.102 Later versions were trained to learn multi-

class classification for distance distributions between Cb

atoms.147 The primary contributors to the accuracy of predic-

tions was the co-evolution information from CCMpred and the

depth of the 2DResNet, suggesting that the deep neural network

learned co-evolution information better than previous methods.

Later, the method was extended to predict Ca�Ca, Ca�Cg,

Cg�Cg, N-O distances and torsion angles (DL-based RaptorX-

Angle),163 giving constraints to locate side chains and addition-

ally constrain the backbone; all five distances, torsions, and sec-

ondary structure predictions were converted to constraints for

folding by CNS.147 At CASP12, however, RaptorX-Contact (orig-

inal contact-based formulation) and DL drew limited attention

because the difference between top-ranked predictions from

DL-based methods and hybrid DCA-based methods was small.

This situation changed at CASP13 4 when one DL-based

model, AlphaFold, developed by team A7D, or Deep-

Mind,26,22,164 ranked first and significantly improved the accu-

racy of ‘‘free modeling’’ (no templates available) targets

(Figure 1). The A7D team modified the traditional simulated an-

nealing protocol with DL-based predictions and tested three

protocols based on deep neural networks. Two protocols

used memory-augmented simulated annealing (with domain

segmentation and fragment assembly) with potentials gener-

ated from predicted inter-residue distance distributions and

predicted GDT_TS,165 respectively, whereas the third protocol

directly applies gradient descent optimization on a hybrid po-

tential combining predicted distance and Rosetta score. For

the distance prediction network, a deep ResNet, similar to

that of RaptorX,102 inputs MSA data and predicts the probabil-

ity of distances between b� carbons. A second network was
PATTER 1, December 11, 2020 9



Table 3. A Summary of Structure Prediction Models

Model Architecture Dataset N_train Performance Testset Citation

/ MLP(2-layer) proteases 13 3.0 Å RMSD (1TRM),1.2 Å

RMSD (6PTI)

1TRM, 6PTI Bohr et al.9

PSICOV graphical Lasso – – precision: Top-L 0.4, Top-L/2

0.53,Top-L/5 0.67, Top-L/

10 0.73

150 Pfam Jones et al.141

CMAPpro 2D biRNN + MLP ASTRAL 2,352 precision: Top-L/5 0.31, Top-L/

10 0.4

ASTRAL 1.75

CASP8, 9

Di Lena et al.142

DNCON RBM PDB SVMcon 1,230 precision: Top-L 0.46, Top-L/2

0.55, Top-L/5 0.65

SVMCON_TEST,

D329, CASP9

Eickholt et al.143

CCMpred LM – – precision: Top-L 0.5, Top-L/2

0.6, Top-L/5 0.75, Top-L/10 0.8

150 Pfam Seemayer et al.144

PconsC2 Stacked RF PSICOV set 150 positive predictive value

(PPV) 0.44

set of 383

CASP10(114)

Skwark et al.145

MetaPSICOV MLP PDB 624 precision: Top-L 0.54, Top-L/2

0.70, Top-L/5 0.83, Top-L/

10 0.88

150 Pfam Jones et al.146

RaptorX-Contact ResNet subset of PDB25 6,767 TM score: 0.518 (CCMpred:

0.333, MetaPSICOV: 0.377)

Pfam, CASP11,

CAMEO, MP

Wang et al, 2017102

RaptorX-Distance ResNet subset of PDB25 6,767 TM score: 0.466 (CASP12),

0.551 (CAMEO), 0.474 (CASP13)

CASP12 + 13,

CAMEO

Xu, 2018147

DeepCov 2D CNN PDB 6,729 precision: Top-L 0.406, Top-L/2

0.523, Top-L/5 0.611, Top-L/

10 0.642

CASP12 Jones et al, 2018148

SPOT ResNet,

Res-bi-LSTM

PDB 11,200 AUC: 0.958 (RaptorX-contact

ranked 2nd: 0.909)

1,250 chains

after June 2015

Hanson et al.149

DeepMetaPSICOV ResNet PDB 6,729 precision: Top-L/5 0.6618 CASP13 Kandathil

et al, 2019150

MULTICOM 2D CNN CASP 8-11 425 TM score: 0.69, GDT_TS: 63.54,

SUM Z score (� 2.0): 99.47

CASP13 Hou et al.151

C-I-TASSER* 2D CNN – – TM score: 0.67, GDT_HA: 0.44,

RMSD: 6.19, SUM Z score(�
2:0): 107.59

CASP13 Zheng et al.152

AlphaFold ResNet PDB 31,247 TM score: 0.70, GDT_TS:

61.4,SUM Z score (�
2.0): 120.43

CASP13 Senior et al.22

MapPred ResNet PISCES 7,277 precision: 78.94% in SPOT,

77.06% in CAMEO, 77.05 in

CASP12

SPOT, CAMEO,

CASP12

Wu et al, 2019153

trRosetta ResNet PDB 15,051 TM_score: 0.625

(AlphaFold: 0.587)

CASP13, CAMEO Yang et al, 2020103

RGN bi-LSTM ProteinNet 12

(before 2016)**

104,059 10.7 Å dRMSD on FM, 6.9 Å

on TBM

CASP12 AlQuraishi, 2019101

/ biGRU,

Res LSTM

CUProtein 75,000 preceded CASP12 winning

team, comparable with

AlphaFold in RMSD

CASP12 + 13 Drori et al.78

FM, free modeling; GRU, gated recurrent unit; LM, pseudo-likelihood maximization; MLP, multi-layer perceptron; MP, membrane protein; RBM,

restricted Boltzmann machine; RF, random forest; RMSD, root-mean square deviation; TBM, template-based modeling.

*C-I-TASSER and C-QUARK were reported, we only report one here.

**RGN was trained on different ProteinNet for each CASP, we report the latest one here.
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trained to predict GDT_TS of the candidate structure with

respect to the true or native structure. The simulated annealing

process was improved with a conditional variational autoen-

coder (CVAE)166 model that constructs a mapping between

the backbone torsions and a latent space conditioned by

sequence. With this network, the team generated a database
10 PATTER 1, December 11, 2020
of nine-residue fragments for the memory-augmented simu-

lated annealing system. Gradient-based optimization per-

formed slightly better than the simulated annealing, suggesting

that traditional simulated annealing is no longer necessary and

state-of-the-art performance can be reached with simply opti-

mizing a network predicted potential. AlphaFold’s authors,



Figure 5. Two Representative DL Approaches to Protein Structure Prediction
(A) Residue distance prediction by RaptorX: the overall network architecture of the deep dilated ResNet used in CASP13. Inputs of the first-stage, 1D con-
volutional layers are a sequence profile, predicted secondary structure, and solvent accessibility. The output of the first stage is then converted into a 2Dmatrix by
concatenation and fed into a deep ResNet along with pairwise features (co-evolution information, pairwise contact, and distance potential). A discretized inter-
residue distance is the output. Additional network layers can be attached to predict torsion angles and secondary structures. Figure from Xu andWang (2019).160

(B) Direct structure prediction: overview of recurrent geometric networks (RGN) approach. The raw amino acid sequence along with a PSSM are fed as input
features, one residue at a time, to a bidirectional LSTM net. Three torsion angles for each residue are predicted to directly construct the 3D structure. Figure from
AlQuraishi (2019).101

ll
OPEN ACCESSReview
like the RaptorX-Contact group, emphasized that the accuracy

of predictions relied heavily on learned distance distributions

and co-evolutionary data.

Yang et al.103 further improved the accuracy of predictions on

CASP13 targets using a shallower network than former models

(61 versus 220 ResNet blocks in AlphaFold) by also training their

neural network model (named trRosetta) to learn inter-residue
orientations along with b� carbon distances. The geometric fea-

tures—Ca-Cb torsions, pseudo-bond angles, and azimuthal rota-

tions—directly describe the relevant coordinates for the physical

interaction of two amino acid side chains. These additional out-

puts created significant improvement on a relatively fixed DL

framework, suggesting that there is room for additional

improvement.
PATTER 1, December 11, 2020 11
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An alternative and intuitive approach to structure prediction is

directly learning the mapping from sequence to structure with a

neural network. AlQuraishi101 developed such an end-to-end

differentiable protein structure predictor, called RGN, that allows

direct prediction of torsion angles to construct the protein back-

bone (Figure 5B). RGN is a bidirectional LSTM that inputs a

sequence, PSSM, and positional information and outputs pre-

dicted backbone torsions. Overall 3D structure predictions are

within 1–2 Å of those made by top-ranked groups at CASP13,

and this approach boasts a considerable advantage in predic-

tion time compared with strategies that learn potentials. More-

over, the method does not use MSA-based information and

could potentially be improved with the inclusion of evolutionary

information. The RGN strategy is generalizable and well suited

for protein structure prediction. Several generative methods

(see below) also entail end-to-end structure prediction models,

such as the CVAE framework used by AlphaFold, albeit with

more limited success.22

Related Applications
Side-chain prediction is required for homology modeling and

various protein engineering tasks, such as fixed-backbone

design. Side-chain prediction is often embedded in high-resolu-

tion structure prediction methods, traditionally with dead-end

elimination167 or preferential sampling from backbone-depen-

dent side-chain rotamer libraries.168 Liu et al.169 specifically

trained a 3D CNN to evaluate the probability score for different

potential rotamers. Du et al.170 adopted an energy-based model

(EBM)171 to recover rotamers for backbone structures. Recent

protein structure prediction models, such as Gao et al.’s163 Rap-

torX-angle and Yang et al.’s103 trRosetta, predict the structural

features that help locate the position of side-chain atoms as well.

PPI prediction identifies residues at the interface of the two

proteins forming a complex. Once the interface residues are

determined, a local search and scoring protocol can be used

to determine the structure of a complex. Similar to protein

folding, efforts have focused on learning to classify contact or

not. For example, Townshend et al.96 developed a 3D CNN

model (SASNet) that voxelizes the 3D environment around the

target residue, and Fout et al.112 developed a GCN-basedmodel

with each interacting partner represented as a graph. Unlike

those starting from the unbound structures, Zeng et al.172 reuse

the model trained on single-chain proteins (i.e., RaptorX-Con-

tact) to predict PPI with sequence information alone, which re-

sulted in the RaptorX-Complex that outperforms ECA-based

methods at contact prediction. Another interesting approach

directly compares the geometry of two protein patches. Gainza

et al.116 trained their MaSIF model by minimizing the Euclidean

distances between the complementary surface patches on the

two proteins while maximizing the distances between non-inter-

acting surface patches. This step is followed by a quick nearest-

neighbor scanning to predict binding partners. The accuracy of

MaSIF was comparable with traditional docking methods. How-

ever, MaSIF, similar to existing methods, showed low prediction

accuracy for targets that involve conformational changes during

binding.

Membrane proteins (MPs) are partially or fully embedded in a

hydrophobic environment composed of a lipid bilayer and,

consequently, they exhibit hydrophobic motifs on the surface
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unlike the majority of the proteins that are water soluble. Wang

et al.173 used a DL transfer learning framework comprising

one-shot learning from non-MPs to MPs. They showed that

transfer learning works surprisingly well here because the most

frequently occurring contact patterns in soluble proteins and

MPs are similar. Other efforts include classification of the

trans-membrane topology.174 Since experimental biophysical

data are sparse for MPs, Alford and Gray175 compiled a collec-

tion of 12 diverse benchmark sets for membrane protein predic-

tion and design for testing and learning of implicit membrane en-

ergy models.

Loop modeling is a special case of structure prediction, where

most of the 3D protein structure is given, but coordinates of seg-

ments of the polypeptide are missing and need to be completed.

Loops are irregular and sometimes flexible segments, and thus

their structures have been difficult to capture experimentally or

computationally.176,177 So far, DL frameworks based on inter-

residue distance prediction (similar to protein structure predic-

tion),178 and those based on treating the loop residue distances

with the remaining residues as an image inpainting problem179

have been applied to loop modeling. Recently, Ruffolo et al.177

used a RaptorX-like network setup and a trRosetta geometric

representation to predict the structure of antibody hypervariable

complementarity-determining region (CDR) H3 loops, which is

critical for antigen binding.

PROTEIN DESIGN

We divide the current DL approaches to protein design into two

broad categories. The first uses knowledge of other sequences

(either ‘‘all’’ sequenced proteins or a certain class of proteins)

to design sequences directly (Table 4). These approaches are

well suited to create new proteins with functionality matching ex-

isting proteins based on sequence information alone, in a

manner similar to consensus design.180 The second class fol-

lows the ‘‘fold-before-function’’ scheme and seeks to stabilize

specific 3D structures, perhaps but not necessarily with the

intent to perform a desired function (Tables 5 and 6). The first

approach can be described as function/sequence (structure

agnostic), and the second approach fits the traditional stepwise

inverse design: function /structure / sequence.

Many of the recent studies describe novel algorithms that

output putative designed protein sequences, but only a few

studies also present experimental validation. In traditional pro-

tein design studies, it is not uncommon for most designs to

fail, and some of the early reports of protein designs were later

withdrawn when the experimental evidence was not confirmed

by others. As a result, it is usually expected that design studies

offer rigorous experimental evidence. In this review, because

we are interested in creative, emerging DL methods for design,

we include papers that lack experimental validation, and many

of these have in silico tests that help gauge validity. In addition,

we make a special note of recent studies that present experi-

mental validation of designs.

Direct Design of Sequence
Approaches that attempt to design for sequences parallel work

in the field of NLP, where an auto-regressive framework is com-

mon, most notably, the RNN. In language processing, an RNN



Table 4. Generative Models to Identify Sequence from Function (Design for Function)

Model Architecture Output Dataset N_train Performance Citation

– WGAN +

AM

DNA chromosome 1

of human hg 38

4.6M ~4 times stronger than training

data in predicted TF binding

Killoran et al.181

– VAE AA 5 protein families – natural mutation probability

prediction rho = 0.58

Sinai et al.93

– LSTM AA ADAM, APD,

DADP

1,554 predicted antimicrobial property

0.79 ± 0.25 (random: 0.63 ± 0.26)

M€uller et al, 201855

PepCVAE CVAE AA – 15K labeled,

1.7M unlabeled

generate predicted AMP with 83%

(random, 28%; length, 30)

Das et al.64

FBGAN WGAN DNA UniProt (res., 50) 3,655 predicted antimicrobial property

over 0.9 after 60 epochs

Gupta et al.182

DeepSequence VAE AA mutational

scan data

41 scans aimed for mutation effect prediction,

outperformed previous models

Riesselman et al.94

DbAS-VAE VAE+AS DNA simulated data – predicted protein expression

surpassed FB-GAN/VAE

Brookes et al.183

– LSTM musical

scores

– 56 betas +

38 alphas

generated proteins capture the

secondary structure feature

Yu et al.184

BioSeqVAE VAE AA UniProt 200,000 83.7% reconstruction

accuracy,70.6% EC accuracy

Costello et al.185

– WGAN AA antibiotic

resistance

determinants

6,023 29% similar to training sequence

(BLASTp)

Chhibbar et al.186

PEVAE VAE AA 3 protein

families

31,062 latent space captures phylogenetic,

ancestral relationship, and stability

Ding et al.92

– ResNet AA mutation

data + Ilama

immune repertoire

1.2M (nano) predicted mutation effect reached

state-of-the-art, built a library of

CDR3 seq

Riesselman et al.187

Vampire VAE AA immuneACCESS – generated sequences predicted to

be similar to real CDR3 sequences

Davidson et al, 2019188

ProGAN CGAN AA eSol 2,833 solubility prediction R2 improved

from 0.41 to 0.45

Han et al, 2019189

ProteinGAN GAN AA MDH from

UniProt

16,706 60 sequences were tested in vitro,

19 soluble, 13 with catalytic activity

Repecka et al.190

CbAS-VAE VAE+AS AA protein

fluorescence

dataset

5,000 predicted protein fluorescence

surpassed FB-VAE/DbAS

Brookes et al.183

AA, amino acid sequence; AM, activation maximization; AS, adaptive sampling; CGAN, conditional generative adversarial network; CVAE, conditional

variational autoencoder; DNA, DNA sequence; EC, enzyme commission.
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model is able to take the beginning of a sentence and predict the

next word in that sentence. Likewise, given a starting amino acid

residue or a sequence of residues, a protein design model can

output a categorical distribution for each of the 20 amino acid

residues for the next position in the sequence. The next residue

in the sequence is sampled from this categorical distribution,

which in turn is used as the input to predict the following one.

Following this approach, new sequences, sampled from the dis-

tribution of the training data, are generated, with the goal of hav-

ing properties similar to those in the training set. M€uller et al.55

first applied an LSTM RNN framework to learn sequence pat-

terns of antimicrobial peptides (AMPs),204 a highly specialized

sequence space of cationic, amphipathic helices. The same

group then applied this framework to designmembranolytic anti-

cancer peptides.205 Twelve of the generated peptides were syn-

thesized and six of them killed MCF7 human breast adenocarci-

noma cells with at least 3-fold selectivity against human

erythrocytes. In another application, instead of traditional
RNNs, Riesselman et al.187 used a residual causal dilated

CNN206 in an auto-regressive way and generated a functional

single-domain antibody library conditioned on the naive immune

repertoires from llamas; although experimental validation was

not presented. Such applications could potentially speed up

and simplify the task of generating sequence libraries in the lab.

Another approach to sequence generation is mapping the

latent space to the sequence space, and common strategies

to train such a mapping include AEs and GANs. As mentioned

earlier, AEs are trained to learn a bidirectional mapping between

a discrete design space (sequence) and a continuous real-

valued space (latent space). Thus, many applications of AEs

use the learnt latent representation to capture the sequence dis-

tribution of a specific class of proteins, and subsequently, to pre-

dict the effect of variations in sequence (or mutations) on protein

function.92–94 The utility of this learned latent space, however, is

more than that. A well trained real-valued latent space can be

used to interpolate between two training samples, or even
PATTER 1, December 11, 2020 13



Table 5. Generative Models for Protein Structure Design

Model Architecture Representation Dataset N_train Performance Citation

– DCGAN Ca-Ca

distances

PDB (16-, 64-,

128-residue

fragments)

115,850 meaningful secondary structure,

reasonable Ramachandran plot

Anand et al.24

RamaNet GAN torsion angles ideal helical

structures from

PDB

607 generated torsions are concentrated

around helical region

Sabban et al.191

– DCGAN backbone

distance

PDB (64-residue

fragment)

800,000 smooth interpolations; recover from

sequence design and folding

Anand et al.68

Ig-VAE VAE coordinates

and backbone

distance

AbDb (antibody

structure)

10,768 sampled 5,000 Igs screened for

SARS-CoV2 Binder

Eguchi et al.192

– CNN

(input

design)

same as

trRosetta

– – 27 out of 129 sequence-structure

pairs experimentally validated

Anishchenko et al.193

CNN, convolutional neural network; DCGAN, deep convolutional generative adversarial network; GAN, generative adversarial network; VAE, varia-

tional autoencoder.
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extrapolate beyond the training data to yield novel sequences.

One such example is the PepCVAE model.64 Following a semi-

supervised learning approach, Das et al.64 trained a VAE model

on an unlabeled dataset of 1:73106 sequences and then refined

the model for the AMP subspace using a 15,000 sequence-

labeled dataset. By concatenating a conditional code indicating

if a peptide is antimicrobial, the CVAE framework allows efficient

sampling of AMPs selectively from the broader peptide space.

More than 82% of the generated peptides were predicted to

exhibit antimicrobial properties according to a state-of-the-art

AMP classifier.

Unlike AEs, GANs focus on learning the unidirectional map-

ping from a continuous real-valued space to the design space.

In an early example, Killoran et al.’s181 developed a model that

combines a standardGAN and activationmaximization to design

DNA sequences that bind to a specific protein. Repecka et al.190

trained ProteinGAN on the bacterial enzyme malate dehydroge-

nase (MDH) to generate new enzyme sequences that were active

and soluble in vitro, some with over 100 mutations, with a 24%

success rate. Another interesting GAN-based framework is

Gupta and Zou’s207 FeedBack GAN (FBGAN) that learns to

generate cDNA sequences for peptides. They add a feedback-

loop architecture to optimize the synthetic gene sequences for

desired properties using an oracle (an external function

analyzer). At every epoch, they update the positive training

data for the discriminator with high-scoring sequences from

the generator so that the score of generated sequences in-

creases gradually. They demonstrated the efficacy of their model

by successfully biasing generated sequences toward antimicro-

bial activity and a desired secondary structure.

Design with Structure as Intermediate
Within the fold-before-function scheme, for design one first

picks a protein fold or topology according to certain desirable

properties, then determines the amino acid sequence that could

fold into that structure (function / structure /sequence). Un-

der the supervised learning setting, most efforts use the native

sequences as the ground truth and recovery rate of native se-

quences (i.e., the percentage of sequence that matches the
14 PATTER 1, December 11, 2020
native one) as a success metric. To compare, Kuhlman and

Baker208 reported sequence recovery rates of 51% for core res-

idues and 27% for all amino acid residues using traditional de

novo design approaches. Because the mapping from sequence

to structure is not unique (within a neighborhood of each struc-

ture), it is not clear that higher sequence recovery rates would

be meaningful.

A class of efforts, pioneered by the SPIN model,209 inputs a

five-residue sliding window to predict the amino acid probabil-

ities for the center position to generate sequences compatible

with a desired structure. The features in such models include 4

and c dihedrals, a sequence profile of a five-residue fragment

derived from similar structures, and a rotamer-based energy

profile of the target residue using the DFIRE potential.

SPIN209 reached a 30.7% sequence recovery rate and Wang

et al.194 and O’Connell et al.’s25 SPIN2 further improved it to

34%. Another class of efforts inputs the voxelized local envi-

ronment of an amino acid residue. In Zhang et al.’s197,198 and

Shroff et al.’s197,198 models, voxelized local environment was

fed into a 3D CNN framework to predict the most stable residue

type at the center of a region. Shroff et al.198 reported a 70%

recovery rate and the mutation sites were validated experimen-

tally. Anand et al.202 trained a similar model to design

sequences for a given backbone. Their protocol involves itera-

tively sampling from predicted conditional distributions, and it

recovered from 33% to 87% of native sequence identities.

They tested their model by designing sequences for five pro-

teins, including a de novo TIM barrel. The designed sequences

were 30%–40% identical to native sequences and predicted

structures were 2–5 Å root-mean-square deviation from the

native conformation.

Other approaches generate full sequences conditioned by a

target structure. Greener et al.195 trained a CVAE model to

generate sequences conditioned on protein topology repre-

sented in a string.99 The resulting sequence was verified to be

stable with molecular simulation. Karimi et al.210 developed

gcWGAN that combined a CGAN and a guidance strategy to

bias the generated sequences toward a desired structure.

They used a fast structure prediction algorithm211 as an ‘‘oracle’’



Table 6. Generative Models to Identify Sequence from Structure (Protein Design)

Model Architecture Input Dataset N_train Performance Citation

SPIN MLP sliding window

with 136 features

PISCES 1,532 sequence recovery of 30.7%

on 1,532 proteins (CV)

Li et al.100

SPIN2 MLP sliding window

with 190 features

PISCES 1,532 sequence recovery of 34.4%

on 1,532 proteins (CV)

O’Connell et al.25

– MLP target residue and

its neighbor as pairs

PDB 10,173 sequence recovery of 34%

on 10,173 proteins

Wang et al.194

– CVAE string encoded

structure or metal

PDB,

MetalPDB

3,785 verified with structure prediction

and dynamic simulation

Greener et al.195

SPROF Bi-LSTM + 2D

ResNet

112 1-D features +

Ca distance map

PDB 11,200 sequence recovery of 39.8%

on protein

Chen et al.196

ProDCoNN 3D CNN gridded atomic

coordinates

PDB 17,044 sequence recovery of 42.2%

on 5,041 proteins

Zhang et al.197

– 3D CNN gridded atomic

coordinates

PDB-REDO 19,436 sequence recovery 70%,

experimental validation of

mutation

Shroff et al.198

ProteinSolver Graph NN partial sequence,

adjacency matrix

UniParc 723106

residues

sequence recovery of 35%,

folding and MD test with

4 proteins

Strokach

et al, 2019199

gcWGAN CGAN random noise +

structure

SCOPe 20,125 diversity and TM score of

prediction from designed

sequence RcVAE

Karimi et al.200

– Graph

Transformer

backbone structure

in graph

CATH based 18,025 perplexity: 6.56 (rigid), 11.13

(flexible) (random: 20.00)

Ingraham et al.23

DenseCPD ResNet gridded backbone

atomic density

PISCES 2:63106

residues

sequence recovery of 54.45%

on 500 proteins

Qi et al.201

– 3D CNN gridded atomic

coordinates

PDB 21,147 sequence recovery from 33%

to 87%, test with folding of

TIM barrel

Anand et al.202

– CNN (input

design)

Same as trRosetta – – Norn et al.203

Bi-LSTM, bidirectional long short-term memory; CV, cross-validation; MLP, multi-layer perceptron.
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to assess the output sequence and provide feedback to refine

the model. They examined the model for six folds using Ro-

setta-based structure prediction, and gcWGAN had higher TM

score distributions and more diverse sequence profiles than

CVAE.195 Another notable experiment is Ingraham et al.’s23

graph transformer model that inputs a structure, represented

as a graph, and outputs the sequence profile. They treat the

sequence design problem similar to a machine translation prob-

lem, i.e., a translation from structure to sequence. Like the orig-

inal transformer model,57 they adopted an encoder-decoder

framework with self-attention mechanisms to dynamically learn

the relationship between information in two neighbor layers.

They measured their results by perplexity, a widely used metric

in speech recognition,212 and the per-residue perplexity (lower

is better) for single chains was 9.15, lower than the perplexity

for SPIN2 (12.86). Norn et al. treated the protein design problem

as that of maximizing the probability of a sequence given a struc-

ture. They back-propagate through the trRosetta structure pre-

diction network103 to find a sequence that minimizes the dis-

tance between predicted structure and a desired structure.203

Norn et al. validate their designs computationally by showing

the generated sequences have deep wells in their modeled en-

ergy landscapes. Strokach et al. treated the design of protein
sequence given a target structure as a constraint satisfaction

problem. They optimized their GNN architecture on the related

problem of filling in a Sudoku puzzle followed by training on mil-

lions of protein sequences corresponding to thousands of struc-

tural folds. They were able to validate designed sequences in sil-

ico and demonstrate that some designs folded to their target

structures in vitro.213

An ambitious design goal is to generate new structureswithout

specifying the target structure. Anand and Huang were the first

to generate new structures using DL. They tested various repre-

sentations (e.g., full atom, torsion-only) with a deep convolu-

tional GAN (DCGAN) framework that generates sequence-

agnostic, fixed-length short protein structural fragments.24

They found that the distance map of Ca atoms gives the most

meaningful protein structures, although the asymmetry of c

and 4 torsion angles214 was only recovered with torsion-based

representations. Later they extended this work to all atoms in

the backbone and combined with a recovery network to avoid

the time-consuming structure reconstruction process.68 They

showed that some of the designed folds are stable in molecular

simulation. In a more narrowly focused study, Eguchi et al.192

trained a VAE model with the structures of immunoglobulin (Ig)

proteins, called Ig-VAE. By sampling the latent space, they
PATTER 1, December 11, 2020 15
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generated 5,000 new Ig structures (sequence-agnostic) and then

screened them with computational docking to identify putative

binders to SARS-CoV2-RBD.

Another approach exploits a DL structure prediction algorithm

and a Markov Chain MC (MCMC) search to find sequences that

fold into novel compact structures. Anishchenko et al.193 iterated

sequences through the DL network, trRosetta,103 to ‘‘halluci-

nate’’215 mutually compatible sequence-structure pairs in a

manner similar to ‘‘input design’’.183 By maximizing the contrast

between the distance distributions predicted by trRosetta and a

background network trained on noise, they obtained new se-

quences with geometric maps with sharp geometric features.

Impressively, 27 of the127 hallucinated sequences were experi-

mentally validated to fold into monomeric, highly stable, proteins

with circular dichroism spectra compatible with the predicted

structure.

OUTLOOK AND CONCLUSION

In this review, we have summarized the current state-of-the-art

DL techniques applied to the problem of protein structure pre-

diction and design. As in many other areas, DL shows the poten-

tial to revolutionize the field of protein modeling. While DL origi-

nated from computer vision, NLP and machine learning, its fast

development combined with knowledge from operations

research,216 game theory,65 and variational inference32 among

other fields, has resulted in many new and powerful frameworks

to solve increasingly complex problems. The application of DL

for biomolecular structure has just begun, and we expect to

see more efforts on methodology development and applications

in protein modeling and design.

We observed several trends.

Experimental Validation
An important gap in current DL work in protein modeling, espe-

cially protein design (with few notable exceptions),205,190,198,193

is the lack of experimental validation. Past blind challenges,

e.g., CASP and CAPRI, and design claims have shown that

experimental validation in this field is of paramount importance,

where computational models are still prone to error. A key next

stage for this field is to engage collaborations between machine

learning experts and experimental protein engineers to test and

validate these emerging approaches.

Importance of Benchmarking
In other fields of machine learning, standardized benchmarks

have triggered rapid progress.217–219 CASP is a great example

that provides a standardized platform for benchmarking diverse

algorithms, including emerging DL-based approaches. A well-

defined question and proper evaluation (especially experimental)

would lead to more open competition among a broader range of

groups and, eventually, the innovation of more diverse and

powerful algorithms.

Imposing a Physics-Based Prior
One common topic among the machine learning community is

how to utilize existing domain knowledge to reduce the effort

during training. Unlike certain classical ML problems, such as im-

age classification, in protein modeling, a wide range of biophys-
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ical principles restrict the range of plausible solutions. Some ex-

amples in related fields include imposing a physics-basedmodel

prior,220,221 adding a regularization term with physical mean-

ing,222 and adopting a specific formula to conserve physical

symmetry.223,224 Similarly, in protein modeling, well-established

empirical observations can help restrict the solution space, such

as the Ramanchandran distribution of backbone torsion an-

gles214 and the Dunbrack or Richardsons library of side-chain

conformations.225,226

Closed-Loop Design
The performance of DL methodologies relies heavily on the

quality of data, but the publicly available datasets may not

cover important sample space because of experimental

accessibility at the time of experiments. Furthermore, the da-

taset may contain harmful noise from non-uniform experi-

mental protocols and conditions. A possible solution may

be to combine model training with experimental data gener-

ation. For instance, one may devise a closed-loop strategy

to generate experimental data, on-the-fly, for queries (or

model inputs) that are most likely to improve the model,

and update the training dataset with the newly generated

data.227–230 For such a strategy to be feasible, automated

synthesis and characterization is necessary. As high-

throughput synthesis and testing of protein (or DNA and

RNA) can be carried out in parallel, automation is possible.

While such a strategy may seem far-fetched, automated plat-

forms such as those from Ginkgo Bioworks or Transcriptic

are already on the market.

Reinforcement Learning
Another approach to overcome the limitation of data availabil-

ity is reinforcement learning (RL). Biologically meaningful data

may be generated on-the-fly in simulated environments, such

as the Foldit game. In the most famous application of RL, Al-

phaGo Zero,21 an RL agent (network) was able to learn and

master the game by learning from the game environment

alone. There are already some examples of RL in the field of

chemistry and electric engineering to optimize organic mole-

cules or computational chips.231–233 One suitable protein

modeling problem for an RL algorithm would be training an

artificial intelligence (AI) agent to make a series of ‘‘moves’’

to fold a protein, similar to the Foldit game.234,235 Such studies

are still rare and previous attempts have focused on folding

the 2D hydrophobic-polar model of proteins.236,237 Although

the results did not yet beat conventional methods, Gao238

recently explored using policy and reward networks in an RL

scheme to fold 3D protein structures de novo by guiding the

selection of MC moves in Rosetta. Angermueller et al.239

applied a model-based RL framework to designing sequences

of AMPs and transcription factor binding sites.

Model Interpretability
One should keep in mind that a neural network represents

nothing more (and nothing less) than a powerful and flexible

regression model. In addition, due to their highly recursive na-

ture, neural networks tend to be regarded as ‘‘black-boxes’’,

i.e., too complicated for practitioners to understand the resulting

parameters and functions. Although model interpretability in ML
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is a rapidly developing field, many popular approaches, such as

saliency analysis240–242 for image classification models, are far

from satisfactory.243 Although other approaches244,245 offer

more reliable interpretations, their application to DL model inter-

pretation has been largely missing in protein modeling. As a

result, current DLmodels offer limited understanding of the com-

plex patterns they learn.

Beyond Proteins
DL-based methods are general and so, with appropriate repre-

sentation and sufficient training data, they canbe applied to other

molecules. Likeproteins, nucleic acids, carbohydrates, and lipids

are also polymers, composed of nucleotides, monosaccharides,

and aliphatic subunits and head groups, respectively. Many ap-

proaches developed for learning protein sequence and structural

information can be extended to these other classes of biomole-

cules.246,247 Finally, biology often conjugates these molecules,

e.g., for glycoproteins. DL approaches that build up from basic

chemistry, such as those being developed for small molecule

drugs,248–251 may inspire methods to treat these biomolecules

that do not fall into a strict polymer type.

The ‘‘Sequence / Structure / Function’’ Paradigm
We know from molecular biophysics that a sequence translates

into function through the physical intermediary of a 3Dmolecular

structure. Allosteric proteins,252 for instance, may exhibit

different structural conformations under different physiological

conditions (e.g., pH) or environmental stimuli (e.g., small mole-

cules, inhibitors), reminding us that context is as important as

protein sequence. That is, despite Anfinsen’s42 hypothesis,

sequence alone does not always fully determine the structure.

Some proteins require chaperones to fold to their native struc-

ture, meaning that a sequence could result in non-native confor-

mations when the kinetics of folding to the native structure may

be unfavorable in the absence of a chaperone. Because many

powerful DL algorithms in NLP operate on sequential data, it

may seem reasonable to use protein sequences alone for

training DL models. In principle, with a suitable framework and

training, DL could disentangle the underlying relationships be-

tween sequence and structural elements. However, a careful se-

lection of DL frameworks that are structure or mechanism-aware

will accelerate learning and improve predictive power. Indeed,

many successful DL frameworks applied so far (e.g., CNNs or

graph CNNs) factor in the importance of learning on structural in-

formation.

Finally, with the hope of gaining insight into the fundamental

science of biomolecules, there is a desire to link AI approaches

to the underlying biochemical and biophysical principles that

drive biomolecular function. For more practical purposes, a

deeper understanding of underlying principles and hidden pat-

terns that lead to pathology is important in the development of

therapeutics. Thus, while efforts strictly limited to sequences

are abundant, we believe that models with structural insights

will play a more critical role in the future.
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tiis, G., Noé, F., and Clementi, C. (2019). Machine learning of coarse-
grained molecular dynamics force fields. ACS Cent. Sci. 5, 755–767.
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lightning-fast iterative protein sequence searching by HMM-HMM align-
ment. Nat. Methods 9, 173–175.

157. Fariselli, P., Olmea, O., Valencia, A., and Casadio, R. (2001). Prediction of
contact maps with neural networks and correlated mutations. Protein
Eng. 14, 835–843.

158. Horner, D.S., Pirovano,W., and Pesole, G. (2007). Correlated substitution
analysis and the prediction of amino acid structural contacts. Brief. Bio-
inform. 9, 46–56.

159. Monastyrskyy, B., d’Andrea, D., Fidelis, K., Tramontano, A., and Kryshta-
fovych, A. (2014). Evaluation of residue–residue contact prediction in
CASP10. Proteins 82, 138–153.

160. Xu, J., and Wang, S. (2019). Analysis of distance-based protein structure
prediction by deep learning in CASP13. Proteins 87, 1069–1081.

161. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., and Tramontano, A.
(2018). Critical assessment of methods of protein structure prediction
(CASP)—Round XII. Proteins 86, 7–15.

162. Wang, S., Li, W., Liu, S., and Xu, J. (2016). RaptorX-Property: a web
server for protein structure property prediction. Nucleic Acids Res. 44,
W430–W435.

163. Gao, Y., Wang, S., Deng, M., and Xu, J. (2018). RaptorX-Angle: real-value
prediction of protein backbone dihedral angles through a hybrid method
of clustering and deep learning. BMC Bioinformatics 19, 100.
164. AlQuraishi, M. (2019). AlphaFold at CASP13. Bioinformatics 35,
4862–4865.

165. Zemla, A., Venclovas, �C., Moult, J., and Fidelis, K. (1999). Processing and
analysis of CASP3 protein structure predictions. Proteins 37, 22–29.

166. Kingma, D.P., Mohamed, S., Rezende, D.J., and Welling, M. (2014).
Semi-supervised learning with deep generative models. Adv. Neural
Inf. Process. Syst. 3581–3589.

167. Desmet, J., De Maeyer, M., Hazes, B., and Lasters, I. (1992). The dead-
end elimination theorem and its use in protein side-chain positioning. Na-
ture 356, 539–542.

168. Krivov, G.G., Shapovalov, M.V., and Dunbrack, R.L. (2009). Improved
prediction of protein side-chain conformations with SCWRL4. Proteins
77, 778–795.

169. Liu, K., Sun, X., Ma, J., Zhou, Z., Dong, Q., Peng, S., Wu, J., Tan, S., Blo-
bel, G., and Fan, J. (2017). Prediction of amino acid side chain conforma-
tion using a deep neural network. arXiv 1707, 08381.

170. Du, Y., Meier, J., Ma, J., Fergus, R., and Rives, A. (2020). Energy-based
models for atomic-resolution protein conformations. arXiv 2004, 13167.

171. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. (2006). A
Tutorial on Energy-Based Learning (Predicting Structured Data), p. 1.

172. Zeng, H., Wang, S., Zhou, T., Zhao, F., Li, X., Wu, Q., and Xu, J. (2018).
ComplexContact: a web server for inter-protein contact prediction using
deep learning. Nucleic Acids Res. 46, W432–W437.

173. Wang, S., Li, Z., Yu, Y., and Xu, J. (2017). Folding membrane proteins by
deep transfer learning. Cell Syst. 5, 202–211.e3.

174. Tsirigos, K.D., Peters, C., Shu, N., K€all, L., and Elofsson, A. (2015). The
TOPCONSweb server for consensus prediction of membrane protein to-
pology and signal peptides. Nucleic Acids Res. 43, W401–W407.

175. Alford, R.F., and Gray, J.J. (2020). Big data from sparse data: diverse sci-
entific benchmarks reveal optimization imperatives for implicit mem-
brane energy functions. Biophys. J. 118, 361a.

176. Stein, A., and Kortemme, T. (2013). Improvements to robotics-inspired
conformational sampling in Rosetta. PLoS One 8, e63090.

177. Ruffolo, J.A., Guerra, C., Mahajan, S.P., Sulam, J., and Gray, J.J. (2020).
Geometric potentials from deep learning improve prediction of CDR H3
loop structures. Bioinformatics 36, i268–i275.

178. Nguyen, S.P., Li, Z., Xu, D., and Shang, Y. (2017). New deep learning
methods for protein loop modeling. IEEE/ACM Trans. Comput. Biol. Bio-
inform. 16, 596–606.

179. Li, Z.; Nguyen, S.P.; Xu, D.; Shang, Y. Protein loop modeling using deep
generative adversarial network. Proceedings—International Conference
on Tools with Artificial Intelligence, ICTAI. 2018; pp 1085–1091.

180. Porebski, B.T., and Buckle, A.M. (2016). Consensus protein design. Pro-
tein Eng. Des. Select. 29, 245–251.

181. Killoran, N., Lee, L.J., Delong, A., Duvenaud, D., and Frey, B.J. (2017).
Generating and designing DNA with deep generative models. arXiv
1712, 06148.

182. Gupta, A., and Zou, J. (2018). Feedback GAN FBGAN for DNA: a novel
feedback-loop architecture for optimizing protein functions. arXiv
1804, 01694.

183. Brookes, D.H., Park, H., and Listgarten, J. (2019). Conditioning by adap-
tive sampling for robust design. arXiv 1901, 10060.

184. Yu, C.-H., Qin, Z., Martin-Martinez, F.J., and Buehler, M.J. (2019). A self-
consistent sonification method to translate amino acid sequences into
musical compositions and application in protein design using artificial in-
telligence. ACS Nano 13, 7471–7482.

185. Costello, Z., and Martin, H.G. (2019). How to hallucinate functional pro-
teins. arXiv 1903, 00458.

186. Chhibbar, P., and Joshi, A. (2019). Generating protein sequences from
antibiotic resistance genes data using generative adversarial networks.
arXiv 1904, 13240.
PATTER 1, December 11, 2020 21

http://refhub.elsevier.com/S2666-3899(20)30190-2/sref235
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref235
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref235
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref152
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref152
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref152
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref143
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref143
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref143
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref147
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref147
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref147
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref147
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref153
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref153
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref236
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref236
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref236
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref237
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref237
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref237
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref237
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref238
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref238
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref238
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref239
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref239
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref239
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref240
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref240
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref240
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref241
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref241
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref241
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref141
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref141
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref141
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref142
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref142
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref142
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref144
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref144
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref144
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref145
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref145
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref145
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref146
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref146
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref146
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref148
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref148
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref148
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref149
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref149
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref150
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref150
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref150
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref151
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref151
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref151
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref154
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref154
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref154
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref155
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref155
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref156
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref156
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref156
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref157
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref157
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref157
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref158
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref158
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref158
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref159
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref159
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref159
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref160
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref160
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref160
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref161
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref161
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref162
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref162
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref163
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref163
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref163
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref164
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref164
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref165
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref165
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref165
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref165
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref166
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref166
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref166
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref167
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref167
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref168
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref168
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref168
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref169
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref169
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref169
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref171
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref171
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref176
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref176
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref176
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref242
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref242
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref242
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref195
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref195
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref243
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref243
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref243
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref243
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref244
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref244
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref245
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref245
http://refhub.elsevier.com/S2666-3899(20)30190-2/sref245


ll
OPEN ACCESS Review
187. Riesselman, A.J., Shin, J.-E., Kollasch, A.W., McMahon, C., Simon, E.,
Sander, C., Manglik, A., Kruse, A.C., and Marks, D.S. (2019). Acceler-
ating protein design using autoregressive generative models. bioRxiv,
757252.

188. Davidsen, K., Olson, B.J., DeWitt, W.S., III, Feng, J., Harkins, E., Bradley,
P., andMatsen IV, F.A. (2019). Deep generative models for T cell receptor
protein sequences. eLife 8, https://doi.org/10.7554/eLife.46935.

189. Han, X., Zhang, L., Zhou, K., and Wang, X. (2019). ProGAN: protein sol-
ubility generative adversarial nets for data augmentation in DNN frame-
work. Comput. Chem. Eng. 131, 106533.

190. Repecka, D., Jauniskis, V., Karpus, L., Rembeza, E., Zrimec, J., Povilo-
niene, S., et al. (2019). Expanding functional protein sequence space us-
ing generative adversarial networks. bioRxiv, 789719, https://doi.org/10.
1101/789719. https://www.biorxiv.org/content/10.1101/789719v2.

191. Sabban, S., andMarkovsky,M. (2020). RamaNet: computational de novo
helical protein backbone design using a long short-term memory gener-
ative neural network. F1000Research 9, 298.

192. Eguchi, R.R., Anand, N., Choe, C.A., and Huang, P.-S. (2020). Ig-VAE:
generative modeling of immunoglobulin proteins by direct 3D coordinate
generation. bioRxiv, 242347. https://www.biorxiv.org/content/10.1101/
2020.08.07.242347v1.

193. Anishchenko, I., Chidyausiku, T.M., Ovchinnikov, S., Pellock, S.J., Baker,
D., and Harvard, J. (2020). De novo protein design by deep network hallu-
cination. bioRxiv, 211482. https://www.biorxiv.org/content/10.1101/
2020.07.22.211482v1.

194. Wang, J., Cao, H., Zhang, J.Z., and Qi, Y. (2018). Computational protein
design with deep learning neural networks. Sci. Rep. 8, 6349.

195. Greener, J.G., Moffat, L., and Jones, D.T. (2018). Design of metallopro-
teins and novel protein folds using variational autoencoders. Sci. Rep.
8, 1–12.

196. Chen, S., Sun, Z., Lin, L., Liu, Z., Liu, X., Chong, Y., Lu, Y., Zhao, H., and
Yang, Y. (2019). To improve protein sequence profile prediction through
image captioning on pairwise residue distance map. J. Chem. Inf. Model.
60, 391–399.

197. Zhang, Y., Chen, Y., Wang, C., Lo, C.-C., Liu, X., Wu, W., and Zhang, J.
(2019). ProDCoNN: protein design using a convolutional neural network.
Proteins 88, 819–829.

198. Shroff, R., Cole, A.W., Morrow, B.R., Diaz, D.J., Donnell, I., Gollihar, J.,
Ellington, A.D., and Thyer, R. (2019). A structure-based deep learning
framework for protein engineering. bioRxiv, 833905.

199. Strokach, A., Becerra, D., Corbi-Verge, C., Perez-Riba, A., and Kim, P.M.
(2019). Designing real novel proteins using deep graph neural networks.
bioRxiv, 868935.

200. Karimi, M., Zhu, S., Cao, Y., and Shen, Y. (2019). De novo protein design
for novel folds using guided conditional Wasserstein generative adversa-
rial networks gcWGAN. bioRxiv, 769919.

201. Qi, Y., and Zhang, J.Z. (2020). DenseCPD: improving the accuracy of
neural-network-based computational protein sequence design with Den-
seNet. J. Chem. Inf. Model. 60, 1245–1252.

202. Anand, N., Eguchi, R.R., Derry, A., Altman, R.B., and Huang, P. (2020).
Protein sequence design with a learned potential. bioRxiv, 895466.

203. Norn, C., Wicky, B.I., Juergens, D., Liu, S., Kim, D., Koepnick, B., et al.
(2020). Protein sequence design by explicit energy landscape optimiza-
tion. bioRxiv, 218917, https://doi.org/10.1101/2020.07.23.218917.
https://www.biorxiv.org/content/10.1101/2020.07.23.218917v1.full.

204. Waghu, F.H., Gopi, L., Barai, R.S., Ramteke, P., Nizami, B., and Idicula-
Thomas, S. (2014). CAMP: collection of sequences and structures of anti-
microbial peptides. Nucleic Acids Res. 42, D1154–D1158.

205. Grisoni, F., Neuhaus, C.S., Gabernet, G., M€uller, A.T., Hiss, J.A., and
Schneider, G. (2018). Designing anticancer peptides by constructive ma-
chine learning. ChemMedChem 13, 1300–1302.

206. Yu, F., and Koltun, V. (2015). Multi-scale context aggregation by dilated
convolutions. arXiv 1511, 07122.
22 PATTER 1, December 11, 2020
207. Gupta, A., and Zou, J. (2019). Feedback GAN for DNA optimizes protein
functions. Nat. Machine Intelligence 1, 105–111.

208. Kuhlman, B., and Baker, D. (2000). Native protein sequences are close to
optimal for their structures. Proc. Natl. Acad. Sci. U SA 97, 10383–10388.

209. Li, Z., Yang, Y., Faraggi, E., Zhan, J., and Zhou, Y. (2014). Direct predic-
tion of profiles of sequences compatible with a protein structure by neural
networks with fragment-based local and energy-based nonlocal profiles.
Proteins 82, 2565–2573.

210. Karimi, M., Zhu, S., Cao, Y., and Shen, Y. (2020). De novo protein design
for novel folds using guided conditional Wasserstein generative adversa-
rial networks. J. Chem. Inf. Model. https://doi.org/10.1021/acs.jcim.
0c00593.

211. Hou, J., Adhikari, B., and Cheng, J. (2017). DeepSF: deep convolutional
neural network for mapping protein sequences to folds. Bioinformatics
34, 1295–1303.

212. Jelinek, F., Mercer, R.L., Bahl, L.R., and Baker, J.K. (1977). Perplexity—a
measure of the difficulty of speech recognition tasks. J. Acoust. Soc. Am.
62, S63.

213. Strokach, A., Becerra, D., Corbi-Verge, C., Perez-Riba, A., and Kim, P.
(2019). Fast and flexible design of novel proteins using graph neural net-
works. bioRxiv, 868935.

214. Ramachandran, G.N. (1963). Stereochemistry of polypeptide chain con-
figurations. J. Mol. Biol. 7, 95–99.

215. (2015). https://research.googleblog.com/2015/06/Uinceptionism-going-
deeper-into-neural.html.

216. Sutton, R.S., and Barto, A.G. (2018). Reinforcement Learning: An Intro-
duction (MIT press).

217. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A
large-scale hierarchical image database. 2009 IEEEConference onCom-
puter Vision and Pattern Recognition 2009, 248–255.

218. Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2016). Deep-
Tox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80.

219. Brown, N., Fiscato, M., Segler, M.H., and Vaucher, A.C. (2019). Guaca-
Mol: benchmarking models for de novo molecular design. J. Chem. Inf.
Model. 59, 1096–1108.

220. Lutter, M., Ritter, C., and Peters, J. (2019). Deep Lagrangian networks:
using physics as model prior for deep learning. arXiv 1907, 04490.

221. Greydanus, S., Dzamba, M., and Yosinski, J. (2019). Hamiltonian neural
networks. Adv. Neural Inf. Process. Syst. 15379–15389.

222. Raissi, M., Perdikaris, P., and Karniadakis, G.E. (2019). Physics-informed
neural networks: a deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential equations.
J. Comput. Phys. 378, 686–707.
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