
Learning in brain-computer interface control evidenced by joint 
decomposition of brain and behavior

Jennifer Stiso1,2, Marie-Constance Corsi3,4, Jean M. Vettel5,2,6, Javier Garcia5,2, Fabio 
Pasqualetti7, Fabrizio De Vico Fallani3,4, Timothy H. Lucas9, Danielle S. 
Bassett2,8,9,10,11,12,13

1Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA 19104, USA

2Department of Bioengineering, School of Engineering & Applied Science, University of 
Pennsylvania, Philadelphia, PA 19104, USA

3Inria Paris, Aramis project-team, F-75013, Paris, France

4Institut du Cerveau et de la Moelle Epinire, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne 
Universit, F-75013, Paris, France

5Human Research & Engineering Directorate, US CCDC Army Research Laboratory, Aberdeen, 
MD, USA

6Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA

7Department of Mechanical Engineering, University of California, Riverside, CA 92521

8Department of Electrical & Systems Engineering, School of Engineering & Applied Science, 
University of Pennsylvania, Philadelphia, PA 19104, USA

9Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA 19104, USA

10Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA 19104, USA

11Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, 
Philadelphia, PA 19104, USA

12The Santa Fe Institute, Santa Fe, NM 87501, USA

Abstract

Objective: Motor imagery-based brain-computer interfaces (BCIs) use an individual’s ability to 

volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe 

causal relations between brain activity and behavior. However, many individuals cannot learn to 

successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for 

basic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have 

offered initial evidence that coherent activity across spatially distributed and functionally diverse 

13To whom correspondence should be addressed: dsb@seas.upenn.edu. 

HHS Public Access
Author manuscript
J Neural Eng. Author manuscript; available in PMC 2021 July 24.

Published in final edited form as:
J Neural Eng. ; 17(4): 046018. doi:10.1088/1741-2552/ab9064.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. 

However, little is known about how these distributed networks interact through time to support 

learning.

Approach: Here, we address this gap in knowledge by constructing and applying a multimodal 

network approach to decipher brain-behavior relations in motor imagery-based brain-computer 

interface learning using magnetoencephalography. Specifically, we employ a minimally 

constrained matrix decomposition method – non-negative matrix factorization – to simultaneously 

identify regularized, covarying subgraphs of functional connectivity, to assess their similarity to 

task performance, and to detect their time-varying expression.

Main Results: We find that learning is marked by diffuse brain-behavior relations: good learners 

displayed many subgraphs whose temporal expression tracked performance. Individuals also 

displayed marked variation in the spatial properties of subgraphs such as the connectivity between 

the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the 

stage of learning at which they reached maximum expression. From these observations, we posit a 

conceptual model in which certain subgraphs support learning by modulating brain activity in 

sensors near regions important for sustaining attention. To test this model, we use tools that 

stipulate regional dynamics on a networked system (network control theory), and find that good 

learners display a single subgraph whose temporal expression tracked performance and whose 

architecture supports easy modulation of sensors located near brain regions important for 

attention.

Significance: The nature of our contribution to the neuroscience of BCI learning is therefore 

both computational and theoretical; we first use a minimally-constrained, individual specific 

method of identifying mesoscale structure in dynamic brain activity to show how global 

connectivity and interactions between distributed networks supports BCI learning, and then we use 

a formal network model of control to lend theoretical support to the hypothesis that these 

identified subgraphs are well suited to modulate attention.

INTRODUCTION

Both human and non-human animals can learn to volitionally modulate diverse aspects of 

their neural activity from the spiking of single neurons to the coherent activity of brain 

regions [36, 98, 99]. Such neural modulation is made possible by routing empirical 

measurements of the user’s neural activity to a screen or other external display device that 

they can directly observe [41, 75, 98]. Referred to as a brain-computer interface (BCI), this 

technology can be used not only to control these external devices, but also to causally probe 

the nature of specific cognitive processes [6, 81, 88], and offers great promise in the 

treatment of neural dysfunction [71, 89, 111]. However, translating that promise into a 

reality has proven difficult [1, 50, 103] due to the extensive training that is required and due 

to the fact that some individuals who undergo extensive training will only achieve moderate 

control [27, 56, 75]. A better understanding of the neural processes supporting BCI learning 

is an important first step towards the development of BCI therapies and the identification of 

specific individuals who are good candidates for treatment [27, 56].
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While BCIs vary widely in their nature, we focus on the common motor imagery based BCIs 

where subjects are instructed to imagine a particular movement to modulate activity in motor 

cortex. Performance on motor imagery based BCIs has been associated with a diverse array 

of neural features, demographic factors, and behavioral measures [3, 47, 52, 56, 62]. Neural 

features predicting performance are frequently identified in areas associated with either 

performing or imagining action; for example, better performance is associated with higher 

pre-task activity in supplementary motor areas [48] and larger grey matter volume in 

somatomotor regions [48]. Interestingly, performance has also been predicted by activity in a 

diverse range of other cognitive systems relevant for sustained attention, perhaps due to the 

high cognitive demands associated with BCI learning [56] Specifically, better performance 

is associated with greater parietal power suppression in the α band, midline power 

suppression in the β band, and frontal and occipital activation with motor power suppression 

in the γ band [3, 37, 43]. The role of sustained attention in BCI control is corroborated by 

the fact that personality and self-report measures of attention predict successful learning 

[51]. The heterogeneity of predictors suggests the possibility that individual differences in 

the interactions between cognitive systems necessary for action, action planning, and 

attention might explain the idiosyncratic nature of BCI control, although these interactions 

are challenging to quantify [6, 29].

Assessing the interactions between cognitive systems has historically been rather daunting, 

in part due to the lack of a common mathematical language in which to frame relevant 

hypotheses and formalize appropriate computational approaches. With the recent emergence 

and development of network science [79], and its application to neural systems [16], many 

efforts have begun to link features of brain networks to BCI learning specifically and to 

other types of learning more generally. In this formal modeling approach [9], network nodes 

represent brain regions or sensors and network edges represent statistical relations or so-

called functional connections between regional time series [30]. Recent studies have 

demonstrated that patterns of functional connections can provide clearer explanations of the 

learning process than activation alone [8], and changes in those functional connections can 

track changes in behavior [5]. During BCI tasks, functional connectivity reportedly increases 

within supplementary and primary motor areas [50] and decreases between motor and 

higher-order association areas as performance becomes more automatic [24] Data-driven 

methods to detect putative cognitive systems as modules in functional brain networks have 

been used to demonstrate that a particularly clear neural marker of learning is 

reconfiguration of the network’s functional modules [61, 68]. Better performance is 

accompanied by flexible switching of brain regions between distinct modules as task 

demands change [7, 40, 87].

While powerful, such methods for cognitive system detection are built upon an assumption 

that limits their conceptual relevance for the study of BCI learning. Specifically, they 

enforce the constraint that a brain region may only affiliate with one module at a time [60], 

in spite of the fact that many regions, comprised of heterogeneous neural populations, might 

participate in multiple neural processes. To address this limitation, recent efforts have begun 

to employ so-called soft-partitioning methods that detect coherent patterns in mesoscale 

neural activity and connectivity [19, 32, 60, 67]. Common examples of such methods are 

independent component analysis and principal component analysis, which impose pragmatic 
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but not biological constraints on the orthogonality or independence of partitions. An 

appealing alternative is non-negative matrix factorization (NMF), which achieves a soft 

partition by decomposing the data into the small set of sparse, overlapping, time-varying 

subgraphs that can best reconstruct the original data with no requirement of orthogonality or 

independence [66]. Previous applications of this method to neuroimaging data have 

demonstrated that the detected subgraphs can provide a description of time varying 

mesoscale activity that complements descriptions provided by more traditional approaches 

[60]. For example, some subgraphs identified with NMF during the resting state have similar 

spatial distributions to those found with typical module detection methods, while others span 

between modules [60]. As a minimally constrained method for obtaining a soft partition of 

neural activity, NMF is a promising candidate for revealing the time-varying neural networks 

that support BCI learning.

Here, we investigate the properties of dynamic functional connectivity supporting BCI 

learning. In individuals trained to control a BCI, we use a wavelet decomposition to 

calculate single trial phase-based connectivity in magnetoencephalography (MEG) data in 

three frequency bands with stereotyped behavior during motor imagery: α (7–14 Hz), β (15–

30 Hz), and γ (31–45 Hz) (Fig. 1, step 1). We construct multimodal brain-behavior time 

series of dynamic functional connectivity and performance, or configuration matrix (Fig. 1, 

step 2 and 3), and apply NMF to those time series to obtain a soft partition into additive 

subgraphs [66] (Fig. 1, step 4). We determine the degree to which a subgraph tracks 

performance by defining the performance loading as the similarity between each subgraph’s 

temporal expression and the time course of task accuracy (Fig. 1, step 5). We first identify 

subgraphs whose performance loading predicted the rate of learning and then we explore the 

spatial and temporal properties of subgraphs to identify common features across 

participants. We hypothesize that subgraphs predicting learning do so by being structured 

and situated in such a way as to easily modulate patterns of activity that support sustained 

attention, an important component of successful BCI control [56]. After demonstrating the 

suitability of this approach for our data (Fig. S1A-B), we test this hypothesis by capitalizing 

on recently developed tools in network control theory, which allowed us to operationalize 

the network’s ability to activate sensors located near regions involved in sustained attention 

as the energy required for network control [45]. Collectively, our efforts provide a network-

level description of neural correlates of BCI performance and learning rate, and a formal 

network control model that explains those descriptions.

METHODS

Participants

Written informed consent was obtained from twenty healthy, right-handed subjects (aged 

27.45 ± 4.01 years; 12 male), who participated in the study conducted in Paris, France. 

Subjects were enrolled in a longitudinal electroencephalography (EEG) based BCI training 

with simultaneous MEG recording over four sessions, spanning 2 weeks. All subjects were 

BCI-naive and none presented with medical or psychological disorders. The study was 

approved by the ethical committee CPP-IDF-VI of Paris.
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BCI task

Subjects were seated in a magnetically shielded room, at a distance of 90 cm from the 

display screen. Subjects’ arms were placed on arm rests to facilitate stability. BCI control 

features including EEG electrode and frequency were selected in a calibration phase at the 

beginning of each session, by instructing the subjects to perform motor imagery without any 

visual feedback.

The BCI task consisted of a standard 1 dimensional, two-target box task [110] in which the 

subjects modulated their EEG measured α [8-12 Hz] and/or β [14-29 Hz] activity over the 

left motor cortex to control the vertical position of a cursor moving with constant velocity 

from the left side of the screen to the right side of the screen. The specific sensor and 

frequency selected to control the BCI were based on brain activity recorded during a 

calibration phase before each day of recording. Here, subjects were instructed to perform the 

BCI task, but received no visual feedback; specifically, the target was present on the screen, 

but there was no ball moving towards the target. Each subject completed 5 consecutive runs 

of 32 trials each for the calibration phase. The EEG features (sensor and frequency) with the 

largest R-squared values for discriminating motor imagery conditions from rest conditions 

were used in the subsequent task.

Both cursor and target were presented using the software BCI 2000 [93]. To hit the target-

up, the subjects performed a sustained motor imagery of their right-hand grasping and to hit 

the target-down they remained at rest. Some subjects reported that they imagined grasping 

objects while others reported that they simply imagined clenching their hand to make a fist. 

Each trial lasted 7 s and consisted of a 1 s inter-stimulus interval, followed by 2 s of target 

presentation, 3 s of feedback, and 1 s of result presentation (Fig 2a). If the subject 

successfully reached the target, the target would change from grey to yellow during the 1 s 

result section. Otherwise it would remain grey. The feedback portion was the only part of the 

trial where subjects could observe the effects of their volitional modulation of motor region 

activity. Specifically, the subjects saw the vertical position of the cursor change based on 

their neural activity, as it moved towards the screen at a fixed velocity. Brain activity was 

updated every 28 ms. In the present study, we therefore restricted our analysis to the 

feedback portion of the motor imagery task because we were interested in the neural 

dynamics associated with learning to volitionally regulate brain activity rather than in the 

neural dynamics occurring at rest.

Subjects completed 4 sessions of this BCI task, where each session took place on a different 

day within two weeks. Each session consisted of 6 runs of 32 trials each. Each trial had 

either a target in the upper quadrant of the screen, indicating increased motor imagery was 

needed to reach it, or a target in lower quadrant of the screen, indicating no change in 

activity was needed to reach it. Only signals from the motor imagery trials were analyzed. 

This left us with, before trial rejection due to artifacts, 16 motor imagery trials × 6 runs × 4 

sessions, or 384 trials per subject. Each trial was 7 seconds in duration, leading to 3 minute 

long runs. Combined with the training phase, each session was 1–1.5 hours total.
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Neurophysiological Recordings Data

Recording—MEG and EEG data were simultaneously recorded with an Elekta Neuromag 

TRIUX machine (MEG) and a 74 EEG-channel system (EEG). While EEG and MEG data 

were recorded simultaneously, only MEG were analyzed because they are less spatially 

smeared than EEG signals, and therefore more appropriate for network analyses[26]. Signals 

were originally sampled at 1000 Hz. We also recorded electromyogram (EMG) signals from 

the left and right arm of subjects, electrooculograms, and electrocardiograms. EMG activity 

was manually inspected to ensure that subjects were not moving their forearms during the 

recording sessions. If subjects did move their arms, those trials were rejected from further 

analyses.

Preprocessing—As a preliminary step, temporal Signal Space Separation (tSSS) was 

performed using MaxFilter (Elekta Neuromag) to remove environmental noise from MEG 

activity. All signals were downsampled to 250 Hz and segmented into trials. ICA was used 

to remove blink and heartbeat artifacts. An FFT of the data from each subject was inspected 

for line noise, although none was found in the frequency bands studied here. We note that 

the frequency of the line noise (50 Hz) was outside of our frequency bands of interest. In the 

present study, we restricted our analyses to gradiometer sensors. Gradiometers sample from 

a smaller area than magnetometers, which is important for ensuring a separability of nodes 

by network models [17]. Furthermore, gradiometers are typically less susceptible to noise 

than magnetometers [39]. We combined data from 204 planar gradiometers in the voltage 

domain using the ‘sum’ method from Fieldtrip’s ft_combine_planar() function, resulting in 

102 gradiometers (http://www.fieldtriptoolbox.org/).

Connectivity Analysis—To estimate phase-based connectivity, we calculated the 

weighted phase-locking index (wPLI) [107]. The wPLI is an estimate of the extent to which 

one signal consistently leads or lags another, weighted by the imaginary component of the 

cross-spectrum of the two signals. Using phase leads or lags allows us to take zero phase lag 

signals induced by volume conduction and to reduce their contribution to the connectivity 

estimate, thereby ensuring that estimates of coupling are not artificially inflated [107]. By 

weighting the metric by the imaginary component of the cross spectrum, we enhance 

robustness to noise [107]. Formally, the wPLI between two time series x and y is given by

ϕ(x, y) = E{imag(Γxy)}
E{ imag(Γxy) } , (1)

where E{} denotes the expected value across estimates (here, centered at different samples), 

Γxy denotes the cross spectrum between signals x and y, and imag() selects the imaginary 

component.

We first segment MEG data from gradiometers into 3 second trials, sampled at 250 Hz. The 

cross spectrum is then estimated using wavelet coherence [65] in each of three frequency 

bands of interest (α 7–14 Hz, β 15–30 Hz, and γ 31–45 Hz), with wavelets centered on each 

timepoint. We chose to compute the wavelet coherence – rather than Welch’s method – it 

does not assume stationarity of the signal [65]. We implemented the procedure in the 

Fieldtrip package in MATLAB, with a packet width of 6 cycles and zero-padding up to the 
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next power of two (‘nextpow2’). We then calculate the wPLI as the mean of the imaginary 

component of the cross spectrum, divided by the imaginary component of the mean of the 

cross spectrum.

We then construct a network model of these statistical relationships where sensors (N = 102) 

are nodes, and the weight of the edge between node i and node j is given by the weighted 

phase-locking value. The graph, G, composed of these nodes and edges is a weighted, 

undirected graph that is encoded in an adjacency matrix A. By constructing this network 

model, we can use statistics from graph theory and computational approaches from control 

theory to quantify the structure of inter-sensor functional relations [6, 9].

Uniformly Phase Randomized Null Model—In order to ensure that our results are not 

due to choices in preprocessing, the time invariant cross-correlation of neural signals, or the 

autocorrelation of neural signals, we repeated all of the preprocessing and analysis steps 

with a uniformly phase randomized null model [53]. To enhance the simplicity and brevity 

of the exposition, we will also sometimes refer to this construct simply as the null model. 

Surrogate data time series from the null model were calculated using a custom function in 

MATLAB. Essentially, the FFT of the raw data is taken, the same random phase offset is 

added to every channel, and then the inverse FFT is taken to return the signal to the time 

domain [102]. Mathematically, this process is achieved by taking the discrete Fourier 

transform of a time series yv:

Y (u) = ∑
v = 0

V − 1
yvei2πuv/V , (2)

where V is the length of the time series, v indexes time, and u indexes frequencies. We then 

multiply the Fourier transform by phases chosen uniformly at random before transforming 

back to the time domain:

yv = 1
V ∑

v = 0

V − 1
eiau Y (u) e−i2πkv/V , (3)

where the phase at ∈ [0, 2π).

Construction of a Multimodal Configuration Matrix—In this work, we wished to use 

a data-driven matrix decomposition technique to identify time-varying subgraphs of 

functional connectivity that support learning. Specifically, for each subject and each 

frequency band, we created a multimodal configuration matrix of edge weights and BCI 

performance over time, prior to submitting this matrix to a decomposition algorithm that we 

describe in more detail below (Fig. 1, step 4). We made separate matrices for each frequency 

band rather than concatenating them into a single matrix because it is easier for the NMF 

algorithm to converge if there are more time points relative to the number of edges. To 

construct the matrix, we first vectorize the upper triangle (not including the diagonal) of 

each trial’s connectivity matrix, and then we concatenate all of the vectors and our one 

performance measure into an E×τ matrix, where τ is the number of trials (384, if no trials 
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were removed), and E is the number of edges (5151) plus the number of behavioral 

measures (1). This concatenation process results in a 5152 × 384 multimodal (brain-

behavior) matrix. In this task, each subject’s performance is recorded as their percentage of 

successful trials (out of 32) on each run. This measure includes both motor imagery trials, 

where the target was located in the upper quadrant of the screen, and rest trials where the 

target was located in the lower quadrant of the screen. Because this measure was averaged 

over trials but the connectivity was calculated on individual trials, we interpolate the 

performance time series to obtain a graded estimate of the percentage of correct trials that is 

τ time points long. The performance vector is then normalized to have the same mean as the 

other rows of the configuration matrix.

Non-negative Matrix Factorization

We used a data-driven matrix decomposition method – non-negative matrix factorization 

(NMF) – to identify time-varying groups of neural interactions and behavior during BCI 

learning [66]. Intuitively, NMF decomposes a matrix into a set of additive subgraphs with 

time-varying expression such that a linear combination of these subgraphs weighted by 

temporal expression will recreate the original matrix with minimal reconstruction error [60, 

66]. The NMF algorithm can also be thought of as a basis decomposition of the original 

matrix, where the subgraphs are a basis set and the temporal coefficients are basis weights. 

Unlike other graph clustering methods [80], NMF creates a soft partition of the original 

network, allowing single edges to be a part of multiple subgraphs. Additionally, unlike other 

basis decomposition methods [4, 23], NMF does not impose harsh constraints of 

orthogonality, or independence of the subgraphs; it simply finds the most accurate partition, 

given that the original matrix is non-negative. In many systems (including those whose 

edges reflect phase-locking), the non-negativity constraint is not difficult to satisfy; 

moreover, this constraint is particularly relevant to the study of physical systems, where the 

presence of a negative edge weight can be difficult to interpret.

Formally, the NMF algorithm will approximate an E × T configuration matrix Â by the 

multiplication of two matrices: W, the subgraph matrix with dimensions E × m, and H, with 

dimensions m × T. The matrices A, W, and H are shown in Fig. 1, steps 4 and 5. Here, E is 

the number of time varying processes (behavior and functional connections derived from 

MEG data), T is the number of time points, and m is the number of subgraphs. Details of 

how we solve for W and H, as well as parameter selection can be found in the Supplemental 

Materials.

Subgraph Inclusion—Most subgraphs are sparse, with distributions of temporal 

coefficients skewed towards zero (see Fig. S4). However, for every subject and every 

frequency band, one subgraph showed very little regularization (no edges were equal to 0) 

and had a uniform, rather than skewed distribution of temporal coefficients. These subgraphs 

are clear outliers from the others, and appear to be capturing global phase-locking across the 

entire brain, rather than any unique subsystem. To answer this question about the time 

varying interactions between neural systems, we were particularly interested in differences 

between the subgraphs that were spatially localized, having edges regularized to zero. 
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Because including these outlier subgraphs would obscure those differences, we removed 

these subgraphs from all further analyses.

Group Average Subgraphs

After applying NMF to the multimodal brain-behavior matrix, we next turned to a study of 

the nature of the detected subgraphs after ranking them by performance loading. 

Specifically, we were initially interested in determining which edges contributed to each 

ranked subgraph most consistently across the population. For this purpose, we used a 

consistency based approach to create a group representative subgraph for each ranked 

subgraph [92]. In this procedure, each subject’s subgraph was first thresholded to retain only 

the 25% strongest connections (see Fig. S5 for evidence that results are robust to variations 

in this choice). We then constructed an average N × N subgraph G, where N is the number of 

channels and where each element Gij quantifies how many subjects (out of 20) displayed an 

edge between region i and region j in their thresholded subgraph. In addition to visually 

depicting these group representative subgraphs, we also wished to summarize their content 

in spatial bins. It is important to note that without source reconstruction, meaningful 

inference about which anatomical regions correspond to which sensors is extremely difficult 

[82]. We therefore binned edges into 10 anatomically defined areas using montages obtained 

from BrainStorm [101] software (neuroimage.usc.edu/brainstorm/Tutorials/MontageEditor). 

For parsimony, and acknowledging the limits of anatomical inference from sensor data, we 

refer to each of these bins as a different lobe (frontal, motor, parietal, occipital, and 

temporal) in a given hemisphere (Fig. S9).

Optimal Control

Our final broad goal was to provide a theoretical explanation for why certain networks 

support BCI learning. We hypothesized that these regularized networks might have 

structures that make it easier for the brain to modulate the patterns of activity that are 

necessary for BCI control. This hypothesis motivated us to formulate and validate a model to 

explain how the sparse statistical relationships characteristic of each subgraph could support 

the production of brain activity patterns implicated in BCI learning [11, 44]. Additionally, 

this model should account for the brain’s ability to reach these patterns of activity in the 

context of the BCI task, where there is increased volitional modulation of the left motor 

cortex. Here, we use tools from network control theory to satisfy these conditions [84]. 

Specifically, we characterize the theoretical brain activity at each sensor as a vector x(t), and 

we use the adjacency matrix A of a subgraph to quantify the ease with which that activity 

can affect other regions. We then incorporate volitional input control as input into the brain 

(u(t)) at a specific region (given by B). Then, by stipulating

ẋ(t) = Ax(t) + Bu(t), (4)

we model the linear spread of activity along the connections in A in the context of input to 

regions given in B. We note that these dynamics are simple, and we do not expect them to 

fully capture the richness of observed signals; nevertheless, simple models have the notable 

advantages of interpretability and flexibility.

Stiso et al. Page 9

J Neural Eng. Author manuscript; available in PMC 2021 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://neuroimage.usc.edu/brainstorm/Tutorials/MontageEditor


With this model of network dynamics, optimal control trajectories can be formalized and 

identified by developing a cost function that seeks to minimize two terms: (i) the distance of 

the current state from the target state and (ii) the energy required for control. Specifically, we 

solve the following minimization problem:

min
u ∫

0

T
xT − x(t) T xT − x(t) + ρuκ(t)Tuκdt,

s . t . x⋅ = Ax(t) + Bu(t), x(0) = x0, and x(T) = xT ,
(5)

where ρ is a free parameter that weights the input constraint, xT is the target state, and T is 

the control horizon, which is a free parameter that defines the finite amount of time given to 

reach the target state. During BCI control, there is specific, targeted control to a specific area 

of the brain (here, the left motor cortex) in addition to other ongoing control and sensory 

processes. We wished for our selection of the input matrix B to reflect this richness and also 

allow for computationally tractable calculations of optimal control, which is difficult for 

sparse control sets. Therefore, we constructed the input matrix B so as to allow input that 

was dominated by the BCI control site, while maintaining minor contributions from other 

areas. More specifically, rather than being characterized by binary state values, channels 

other than the one located over left motor cortex were given the smallest non-zeros value 

that assured low error calculations, approximately 5 × 10−5 at their corresponding diagonal 

entry in B. See Supplement for the full derivation from [44].

It is important to note that in general the tools from linear controllability theory are not 

applicable to the functional networks commonly derived from neuroimaging data for two 

reasons. The first reason is that the model which the tools are built upon stipulates a time-

dependent propagation of activity along edges; such a propagation is physically true for 

structural connections derived from white matter, but is not generally true for other types of 

connections used in network models, such as morphometric similarity or most common 

functional connectivity measures. The second reason is that the model assumes that 

interactions between nodes ‘a’ and ‘c’ are not due to node ‘b’, an assumption that is violated 

by measures of statistical similarity such as the Pearson correlation coefficient which is the 

measure of functional connectivity most commonly employed in neuroimaging studies. 

Because we are using neither structural connectivity nor common measures of functional 

connectivity, it was necessary for us to first prove that the networks we are studying are 

consistent with our model. To address the first point regarding the propagation of activity 

along edges, we demonstrate that the structure of the subgraphs used have utility in 

predicting empirical brain state transitions, and that the relative contribution of each 

subgraph is related to its temporal expression (Fig. S1C-D). It is only in light of these 

validations that we are able to interpret our results as a potential model for driving brain 

activity. To address the second point regarding isolation of pairwise relations not due to third 

party effects, we note that the matrix A that we study reflects statistical similarity in phase 

after strict regularization that removes redundant statistical relationships (Fig. S1A-B).

Target state definition—A central hypothesis in this work is that certain regularized 

subgraphs are better suited to drive the brain to patterns of activity that are beneficial for 

BCI control than others. To test this hypothesis, we create target states that reflect these 
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beneficial patterns, based on previous literature. Target states for motor imagery and 

attention are obtained for each band individually from references [3, 37, 43], and can be 

briefly described as follows: α contralateral motor suppression for motor imagery and 

parietal suppression for attention, β contralateral motor suppression and ipsilateral motor 

activation for motor imagery and vertex suppression for attention, and γ contralateral motor 

activation for motor imagery and motor cortex suppression with frontal and occipital 

activation for attention (Fig. S10). While acknowledging the limits of anatomical inference 

from sensor data, we sought to approximate these true functional systems at the sensor level 

by dividing channels into lobes using standard montages provided by Brainstorm [101] 

software (neuroimage.usc.edu/brainstorm/Tutorials/MontageEditor). The target state of 

channels in brain regions where we did not have specific hypotheses for their activity were 

set to zero; the target state of channels with activation were set to 1 and that of channels with 

deactivation were set to −1. Initial states were set to 0 for all channels. We then calculate the 

optimal energy (using the optimal control equation described above) required to reach each 

of these target states to test the hypothesis that subgraphs that support learning will have 

lower energy requirements than those that do not.

Statistical Analyses

Much of our analyses involve testing differences in distributions across subjects for different 

subgraphs or sessions, both for phase-randomized and empirical data. We also compare 

these distributions to subject learning rate defined as the slope of performance over time. For 

the results displayed in Fig. 2 here in the main manuscript, we used a repeated measures 

ANOVA to test for the presence of a main effect across conditions given that the 

distributions of performances were normal (see Fig. S11). In Fig. 3 here in the main 

manuscript, we sought to associate learning rate with ranked performance loading. After 

plotting quantile-quantile plots (see Fig. S12-S14) for the learning rate, and each of the 

performance loadings, it became clear that the lowest loadings were not normally 

distributed. Therefore, we used a linear model combined with non-parametric testing 

utilizing 5000 permutations (lmPerm package in R https://cran.r-project.org/web/packages/

lmPerm). Standardized coefficients were calculated using the lm.beta package in R (https://

cran.r-project.org/web/packages/lm.beta/lm.beta.pdf). We use a Bonferroni correction to 

control false positive errors due to multiple comparisons across all 6 predictors (α = 0.008). 

To obtain an estimate of how sensitive our results are to our specific sample, we also plot 

summary statistics from 500 models obtained from bootstrapping a sample of equal size (N 
= 60, 3 band and 20 subjects). To examine differences in consistency (Fig. 4 here in the main 

manuscript), we use a linear model (consistency ~ band + dataType + rank) to test for a main 

effect of data type (null or empirical), band, and subgraph on consistency (see Fig. S15). We 

next sought to determine if different subgraphs had consistently different temporal 

expression for null and empirical data (Fig. 5 here in the main manuscript). We also used a 

repeated measures ANOVA to test for a main effect of subgraph across bands, and paired t-
tests to test for differences amongst individual subgraphs (Fig. S16). Lastly, for the results 

shown in Fig. 6 here in the main manuscript, we test the relationship between learning rate 

and optimal control energy differences for several different models. Pearson’s correlations 

were used, given that the data appears normally distributed and has few outliers (see Fig. 

S17-S20).
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Data and Code

Code for analyses unique to this manuscript are available at github.com/jastiso/netBCI. Code 

for the NMF algorithm and the NMF parameter selection is available at github.com/

akhambhati/Echobase/tree/master/Echobase/Network/Partitioning/Subgraph. Code for 

optimal control analyses is available at github.com/jastiso/NetworkControl. Data necessary 

to reproduce each figure will be made available upon request.

RESULTS

BCI Learning Performance

Broadly, our goal was to examine the properties of dynamic functional connectivity during 

BCI learning, and to offer a theoretical explanation for why a certain pattern of connectivity 

would support individual differences in learning performance. We hypothesized that 

decomposing dynamic functional connectivity into additive N × N subgraphs would reveal 

unique networks that are well suited to drive the brain to patterns of activity associated with 

successful BCI control. We use MEG data from 20 healthy adult individuals who learned to 

control a motor-imagery based BCI over four separate sessions spanning a two week period. 

Consistent with prior reports of this experiment [24], we find a significant improvement in 

performance across the four sessions (one-way ANOVA F (3, 57) = 13.8, p = 6.8−7) (Fig. 2). 

At the conclusion of training, subjects reached a mean performance of 68%, which is above 

chance (approximately 55 – 60%) level for this task [77].

Dynamic patterns of functional connectivity supporting performance

To better understand the neural basis of learning performance, we detected and studied the 

accompanying patterns of dynamic functional connectivity. First, we calculated single trial 

phase-based connectivity in MEG data in three frequency bands: α (7–14 Hz), β (15–25 

Hz), and γ (30–45 Hz). We then used non-negative matrix factorization (NMF) – a matrix 

decomposition method – to separate the time-varying functional connectivity into a soft 

partition of additive subgraphs. We found that the selected parameters led to an average of 

7.4 subgraphs, with a range of 6 to 9, and that all frequency bands had a decomposition error 

lower than 0.47 (mean α error = 0.352, mean β error = 0.379, mean γ error = 0.465) (Fig. 

S2). The error is the Frobenius norm of the squared difference between our observed and 

estimated connectivity matrices (with dimensions 5152 × 384) and takes values between 0 

and 1. For each band, the error value is low, giving us confidence that we have fairly 

accurately reconstructed relevant neural dynamics. To determine whether any properties of 

the identified subgraphs were trivially due to preprocessing choices, NMF parameters, or 

time-invariant autocorrelation in neural activity, we repeated the full decomposition process 

after permuting the phases of all time series uniformly at random. We found that the 

statistics of subgraph number and decomposition error were similar for the uniformly phase 

randomized data, indicating that any differences in subgraph and temporal expression 

between null and empirical data is not due to the NMF algorithm’s inability to find a good 

decomposition, but rather due to the structure of the chosen decomposition (Fig. S2).

We quantified the similarity between each subgraph’s temporal expression and the time 

course of performance, and we refer to this quantity as the subgraph’s performance loading 
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(Fig. 1). Here, performance is calculated as the percentage of accurate trials over a run of 32 

trials. We hypothesized that the ranked performance loading would be associated with task 

learning, as operationalized by the slope of performance over time. It is important to note the 

distinction between performance and learning: performance is defined as task accuracy and 

therefore varies over time, while learning is defined as the linear rate of change in that 

performance over the course of the experiment (384 trials over 4 days). We tested whether 

learning was correlated with the performance loading of subgraphs. Because the minimum 

number of subgraphs in a given subject was 6, we decided to investigate the top four highest 

performance loading subgraphs, and the smallest and second smallest nonzero loading 

subgraphs. We found a general trend that the performance loading from high loading 

subgraphs was negatively associated with learning rate, and the performance loading from 

low loading subgraphs was positively associated with learning rate (Fig. 3AB). We assessed 

the statistical significance of these trends and found that only the third highest loading 

subgraph displayed a performance loading that was significantly correlated with learning 

rate after Bonferroni correction for multiple comparisons (linear model with permutation 

tests slope ~ loading3 + band : p = 0.005). Performance loading from uniformly phase 

randomized surrogate data for this subgraph was not associated with learning rate (p = 

0.292). The direction of the observed effect in the empirical data is notable; subjects with 

lower loading onto high loading subgraphs learned the task better, suggesting that learning is 

facilitated by a dynamic interplay between several subnetworks. It is also notable that the 

highest loading subgraphs do not have the strongest associations with learning, indicating 

that the subgraphs that most closely track performance are not the same as the subgraphs 

that track changes in performance.

Spatial properties of dynamic patterns of functional connectivity

Next we sought to better understand why the third highest loading subgraph was most 

robustly associated with learning. We hypothesized that because of this subgraph’s strong 

association across subjects, it might recruit sensors near consistent brain regions and reflect 

the involvement of specific cognitive systems across subjects. To evaluate this hypothesis, 

we began by investigating the shared spatial properties of this subgraph in comparison to the 

others. To identify shared spatial features we grouped subgraphs together by their ranked 

performance loading, and then quantified how consistent edges were across participants [92] 

(see Methods). We found that the average consistency varied by frequency band, and 

differed between the empirical and surrogate data, but not across ranked subgraphs (linear 

model consistency ~ band + rank + data : Fband(2, 17) = 90.36, pband = 9.00 × 10−10, Fdata(1, 

17) = 41.8, pdata = 5.78 × 10−6). The α band had the most consistent edges, followed by the 

γ band, and then the β band (tαβ = −12.68, pαβ = 4.3 × 10−10, tαγ = −10.41, pαγ = 1.2 × 10−8). 

In the uniformly phase randomized surrogate data, we observed less consistent subgraphs 

than those observed in the empirical data (t = −6.47, p = 5.78 × 10−6). These observations 

support the conclusion that across the population, despite heterogeneous performance, 

similar regions interact to support performance and learning to varying degrees.

In order to approximate system-level activation with sensor level data, we used lobe 

montages provided by Brainstorm (see Methods). Spatially, subgraphs were dominated by 

connectivity in the frontal lobe sensors, with subtle differences in the pattern of connections 
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from the frontal lobe sensors to sensors located in other areas of the brain (Fig. 4). To 

determine which functional edges were most consistent in each subgraph and frequency 

band, we calculated the average consistency over each lobe and motor cortex in both 

hemispheres (for the same analysis in surrogate data, see Fig. S6). In the α band, the most 

consistent edges on average were located in the left frontal lobe in the highest performance 

loading subgraph, in the left occipital lobe in the second highest performance loading 

subgraph, between right frontal and right motor in the third highest performance loading 

subgraph, and between left frontal lobe and right parietal lobe in the lowest performance 

loading subgraph. In the β band, the most consistent edges were located between right and 

left frontal lobe for the highest and second highest performance loading subgraph, between 

left frontal lobe and right motor for the third highest performance loading subgraph, and 

between left and right frontal lobe for the lowest performance loading subgraph. In the γ 
band, the most consistent edges were located in the left frontal and right frontal lobes for the 

highest performance loading subgraph, in the left frontal lobe and right motor for the second 

highest performance loading subgraph, and in left frontal and right frontal lobe for the third 

highest and lowest performance loading subgraphs. We wished to demonstrate that the 

consistent involvement of more frontal sensors across subgraphs was not due to the presence 

of electro-oculogram (EOG) artifacts that persisted after removal of eye blinks with ICA. We 

therefore calculated the weighted phase-locking index between both vertical and horizontal 

EOG sensors and all neural sensors. Qualitatively, we did not observe any consistently 

strong connectivity between EOG channels and more frontal sensors, indicating that the 

frontal connectivity identified in our analysis is likely not due to residual artifacts from eye 

movements (Fig. S7). We also note that the most consistent individual edges for each 

subgraph are still only present in 10–12 individuals, indicating a high amount of individual 

variability. Collectively, these observations suggest widespread individual variability in the 

spatial composition of ranked subgraphs, with the most consistent connectivity being located 

in the frontal lobe during BCI learning.

Temporal properties of dynamic patterns of functional connectivity

Importantly, subgraphs can be characterized not only by their spatial properties, but also by 

their temporal expression. We therefore next examined the temporal properties of each 

subgraph to better understand why the third highest performance loading subgraph was most 

robustly associated with learning. As a summary marker of temporal expression, we 

calculated the total energy of the time series operationalized as the sum of squared values, as 

well as the time of the peak value of the time series. Across frequency bands, we found no 

significant dependence between energy and subgraph ranking. We did find a significant 

effect of rank for the peak time of temporal expression obtained from the empirical data 

(repeated measures ANOVA peak rank + band :Frank(3, 215) = 6.67, prank = 2.53 × 10−4

but not from the uniformly phase randomized surrogate data (Frank(3, 215) = 1.28, p = 

0.282). Overall, peak times are widely distributed across individuals. However we find that 

across bands, the highest performance loading subgraph has a later peak, which is intuitive 

since performance is generally increasing over time and these subgraphs most strongly track 

performance.
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We then performed post-hoc paired t-tests corrected for multiple comparisons (Bonferroni 

correction α = 0.006) between the highest performance loading subgraph and all other 

ranked subgraphs in each band. In the α band, the highest performance loading subgraph 

only peaked significantly later than the lowest (paired t-test N = 20, tlow = 8.06, plow = 1.49 

× 10−7) after Bonferroni correction (α = 0.006). In the β band, the highest performance 

loading subgraph peaked significantly later than all others (paired t-test N = 20, t2H = 10.9, 

p2H = 1.39 × 10−9; t3H = 7.56, p3H = 3.57 × 10−7; tlow = 8.07, plow = 1.49−7). In the γ band, 

the highest performance loading subgraph peaked significantly later than the second highest, 

and lowest loading subgraphs (paired t-test N = 20, t2H = 4.50, p2H = 2.46 × 10−4; tlow = 

8.06, plow = 1.49 × 10−7). (Fig. 5). Finally, we asked whether the time of the peak in the 

third highest performance loading subgraph was associated with learning. We did not find a 

relationship between peak time and learning in any frequency band (Pearson’s correlation: 

α:r = 0.005, p = 0.98, β:r = 0.047, p = 0.84, γ:r = − 0.21, p = 0.037). To summarize these 

findings, we note that across participants and especially in the β band, subgraphs that 

support performance are highly expressed late in learning, when performance tends to be 

highest. However, subgraphs that support learning do not have consistent peaks across 

subjects, and each individual’s peak does not relate to their learning rate, indicating that 

some other feature of these subgraphs must explain their role in learning.

Explaining dynamic patterns of functional connectivity supporting BCI learning via 
network control theory

Lastly we asked how the third highest loading subgraph could facilitate successful BCI 

performance, as shown in Fig. 3. Here, we considered an edge – extracted under penalties of 

spatial and temporal sparsity – as a potential path for a brain region to affect a change in the 

activity of another brain region [35, 109]. Assuming the true connectivity structure is sparse, 

the regularization applied in the NMF algorithm can remove large statistical relationships 

between regions that are not directly connected, but might receive common input from a 

third region [28] (see Methods for addition discussion, and see Fig. S1A-B for the effect of 

regularization on the prevalence of triangles). We hypothesized that the pattern of edges in 

this subgraph would facilitate brain states, or patterns of activity, that were predictive of BCI 

literacy. Specifically, we expected that when the brain mirrored the connectivity of the third 

subgraph, the brain could more easily reach states of sustained motor imagery or sustained 

attention than when the brain mirrored the connectivity of the lowest performance loading 

subgraph. To operationalize these hypotheses from sensor level data, we identified sensors 

near motor and attention areas with montages from Brainstorm and set those as targets (see 

Methods). We also hypothesized that the magnitude of this difference would be associated 

with each subject’s learning rate. To test these hypotheses, we used mathematical models 

from network control theory to quantitatively estimate the ease with which the brain can 

reach a desired pattern of activity given a pattern of connectivity (see Methods and Fig. S1C-

D for analyses demonstrating the efficacy of the regularized subgraphs in linearly predicting 

changes in activity). Specifically we calculated the optimal control energy required to reach 

a target state (either sustained motor imagery or sustained attention) from an initial state 

when input is applied primarily to the left motor cortex, which was the site of BCI control 

(Fig. 6A-B).
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We tested whether the third highest performance loading subgraph supported the transition 

to states of sustained motor imagery or sustained attention with smaller energy requirements 

than other subgraphs that did not support learning in the same way. We chose the lowest 

performance loading subgraph for comparison because it was the only subgraph with a large 

positive standardized regression coefficient for fitting learning, which contrasts sharply with 

the large negative coefficient for the third subgraph. For both states (motor imagery and 

attention), we found no population level differences in energy requirements by the two 

subgraphs (paired t-test N = 20, motor imagery: 

tα = − 0.005, pα = 0.565, tβ = 1.38, pβ = 0.184, tγ = − 1.00, pγ = 0.329. attention: 

tα = − 1.35, pα = 0.193, tβ = − 0.344, pβ = 0.735, tγ = − 0.937, pγ = 0.360). We next tested 

whether the magnitude of the difference in energy required by the two subgraphs to reach a 

given state tracked with learning rate. In the β band, we observed a significant correlation 

between the magnitude of the energy difference to reach attentional states and learning rate 

over subjects (Pearson’s correlation coefficient r = 0.560, p = 0.0103, Bonferroni corrected 

for multiple comparisons across frequency bands; Fig. 6). Notably, the relationship remained 

significant when controlling for subgraph density (linear model 

slope energy_difference + density_difference: tenergy = 2.68, penergy = 0.0158, tdensity =
− 0.266, pdensity = 0.794

. 

When using subgraphs derived from the uniformly phase randomized surrogate data, the 

relationship was not observed (Pearson’s correlation r = −0.0568, p = 0.819). We next asked 

which subgraph contributed most to this effect. We found no significant relationship 

between learning rate and the energy required to reach the attentional state by the third 

highest performance loading subgraph (Pearson’s correlation r = −0.389, p = 0.702) or by 

the lowest performance loading subgraph (Pearson’s correlation r = 0.227, p = 0.335). This 

finding suggests that learning rate depends on the relative differences between subgraphs, 

rather than the energy conserving architecture of one alone. As a final test of specificity, we 

assessed whether this difference was selective to the third highest and lowest performance 

loading subgraph. We found no significant relationship when testing the difference of the 

highest with the third highest performance loading subgraph (Pearson’s correlation r = 

−0.554, p = 0.586), the highest with the lowest performance loading subgraph (Pearson’s 

correlation r = 0.40, p = 0.077), the second highest with the third highest performance 

loading subgraph (Pearson’s correlation r = 0.266, p = 0.257), or the second highest with the 

lowest performance loading subgraph (Pearson’s correlation r = −0.072, p = 0.764). This 

pattern of null results underscores the specificity of our finding.

Reliability and specificity of inferences from network control theory

Collectively, our findings are consistent with the hypothesis that during BCI learning, one 

subnetwork of neural activity arises, separates from other ongoing processes, and facilitates 

sustained attention. An alternative hypothesis is that our results are due to trivial factors 

related to the magnitude of the attentional state, or could have just as easily been found if we 

had placed input to a randomly chosen region of the brain, rather than to the left motor 

cortex which was the actual site of the BCI control. To determine whether these less 

interesting factors could explain our results, we performed the same network control 

calculation but with a spatially non-overlapping target state, and then – in a separate 

simulation – with a mirrored input region (right motor cortex rather than left motor cortex). 
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We performed the spatial shifting by ordering the nodes anatomically (to preserve spatial 

contiguity), and then circular shifting the attention target state by a random number between 

1 and N – 1. For 500 circularly shifted states, only 3 (0.6%) had a correlation value equal to 

or stronger than the one observed (Fig. S8). Furthermore, we found no significant 

relationship between learning rate and the difference in energy required by the two 

subgraphs to reach the true attention state when input was applied to the right motor cortex 

instead of the left motor cortex (Pearson’s correlation t = 0.711, p = 0.313). Together, these 

two findings suggest that the relationship identified is specific to BCI control.

Finally, we assessed the robustness of our results to choices in modeling parameters. First 

we performed the computational modeling with two different sets of control parameter 

values (see Supplement). In both cases, the significant relationship remained between 

learning rate and the difference in energy required by the two subgraphs to reach the 

attentional state (set one Pearson’s correlation coefficient r = 0.476, p = 0.0338; set two 

Pearson’s correlation coefficient r = 0.514, p = 0.0204). Second, since our target states were 

defined from prior literature, there was some flexibility in stipulating features of those states. 

To ensure that our results were not unduly influenced by these choices, we tested whether 

ideologically similar states would provide similar results. Namely, we assessed (i) the impact 

of varying the magnitude of (de)activation by changing (−)1 to (−)2, (ii) the impact of the 

neutral state by changing 0 to 1, and (iii) the impact of negative states by changing −1, 0 and 

1 to 1, 2, and 3. We found a consistent relationship between learning rate and the difference 

in energy required by the two subgraphs to reach the attentional state when we changed the 

magnitude of activation/deactivation (Pearson’s correlation coefficient r = 0.560, p = 

0.0103), as well as when we changed the neutral state (Pearson’s correlation coefficient r = 

0.520, p = 0.0188). However, we found no significant relationship when removing negative 

states (Pearson’s correlation coefficient r = 0.350, p = 0.130), indicating that this result is 

dependent on our choice to operationalize deactivation as a negative state value. After 

performing these robustness checks, we conclude that a selective separation of the third 

highest and lowest performance loading subgraphs impacts their ability to drive the brain to 

patterns of sustained attention in the β band in the context of BCI control. This result is 

robust to most of our parameter choices, is selective for biologically observed states, and is 

not observed in surrogate data.

DISCUSSION

In this work, we use a minimally constrained decomposition of dynamic functional 

connectivity during BCI learning to investigate which groups of phase locked brain regions 

(subgraphs) support BCI control. The performance loading onto these subgraphs favors the 

theory that dynamic involvement of several subgraphs during learning supports successful 

control, rather than extremely strong expression of a single subgraph. Additionally, we find a 

unique association for the third highest loading subgraph with learning at the population 

level. This result shows that learning is not simply explained by the subset of edges that has 

the most similar temporal expression to behavior, but rather that a subnetwork with a 

middling range of similarity has the strongest relationship with performance improvement. 

While the spatiotemporal distribution of this subgraph was variable across individuals, we 
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did observe some consistencies at the group level. Spatially, the third highest loading 

subgraph showed strong edges between left frontal and right motor cortices for low 

frequencies, and left frontal and left motor cortices for the γ band. Lower frequencies 

showed stronger connectivity to the ipsilateral (to imagined movement) motor cortex, 

suggesting a possible role in suppression for selective control. This subgraph also showed 

the highest expression earlier than the other ranked subgraphs we investigated, perhaps 

linking it to the transition from volitional to automatic control.

We next wished to posit a theory of how these subgraphs fit with previously identified neural 

processes important for learning, despite their heterogeneity across subjects. After 

quantifying the extent to which NMF regularization removed potentially redundant 

relationships between regions (Fig. S1A-B), we suggested that the regularized pattern of 

statistical relationships identified in this subgraph could comprise an avenue through which 

brain activity could be modulated via cognitive control or external input. We then 

hypothesized that these networks would be better suited to modulate activity in either 

regions implicated in attention or in motor imagery than other subgraphs, and further that 

individuals whose networks better modulated activity in these regions would display greater 

task learning [56]. We chose to operationalize the “ease of modulation” with a metric from 

network control theory called optimal control energy. Optimal control energy quantifies the 

minimum input needed to drive the brain from an initial pattern of activity to a final pattern 

of activity, while also assuring that the pattern of activity stays close to the target state at 

every point in time. This last constraint ensures that we are unlikely to pass through 

biologically unfeasible patterns of activity. The notion of optimal control energy that we use 

here assumes a particular linear model of how neural dynamics change given potential 

avenues of communication between regions. Importantly, in the supplement (Fig. S1C-D) 

we show that our subgraphs predict empirical brain state changes according to this model, 

and that the contribution of each subgraph to empirical changes in brain state is related to its 

temporal expression. Using this model, we did not find any population differences in optimal 

control energy when the simulation was enacted on the third highest performance loading 

subgraph compared to the lowest performance loading subgraph. However, we did find that 

the magnitude of this difference was associated with learning in individual subjects. This 

result was specific to the β band and to brain regions implicated in attention. Critically, the 

relation to learning could not be explained by the energy of either subgraph alone, was not 

present in surrogate data derived from a uniformly phase randomize null model, and was 

robust to parameter choices. Overall, the observations support our hypothesis that in the β 
band the subgraphs we identified that support learning are well suited to modulate activity in 

brain regions associated with attention.

A delicate balance of interactions is required for BCI learning—Our initial 

analysis explored the relationship between performance loading and learning. It is important 

to note the behavioral difference between performance and learning: we use the term 

performance to refer to task accuracy over time, whereas we use the term learning to refer to 

how well a subject is able to increase that accuracy. With that distinction in mind, we aimed 

to better understand how subgraphs that vary similarly to performance (those with high 

performance loading) relate to learning. We found that the subgraph with the third highest 
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performance loading was most strongly associated with learning and that a narrow 

distribution of performance loading across all subgraphs was associated with better learning. 

Together, these two observations are in line with previous research in motor and spatial 

learning, which shows that some brain structures display differential activity during learning 

that is independent of performance [86, 95]. Our work adds to this literature by 

demonstrating that in addition to targeted differences in individual brain regions or 

networks, a minimally constrained decomposition of dynamic functional connectivity across 

the whole brain reveals that separable processes are most associated with performance and 

with learning.

Additionally, we find that BCI learning is not explained simply by the processes most 

strongly associated with performance and learning individually, but by a distributed loading 

across many different subgraphs. This notion is supported by the sign of beta value for 

ranked subgraphs. Generally, subgraphs with higher ranked loading were negative betas, 

while subgraphs with lower ranked loading were positive betas. A wealth of whole brain 

connectivity analyses have similarly shown that the interaction between systems is an 

important component of skill learning specifically, and other domains of learning more 

generally [2, 8]. While we observed marked interactions between many regions, the majority 

were located in the frontal lobe for all frequency bands. Even for α and β frequencies in the 

highest loading subgraph, we see involvment of frontal regions and heterogeneity across 

individuals. This suggests that the NMF method did not extract a network that was trivially 

related to the deterministic mapping between brain activity and cursor location determined 

by the BCI2000 software. Previous work has also demonstrated changes in frontal-motor 

[59] and fronto-parietal [69] connectivity during motor skill learning. In BCI learning 

specifically, the strength of white matter connectivity between frontal and occipital regions 

predicts control of motor imagery based BCIs [97]. Additionally, analyses of this same 

experiment have shown task related changes in functional connectivity were spatially 

diffuse, and found in frontal, temporal, and occipital regions in the α band [24], and were 

strongest in frontal, motor, central, and parietal regions in the β band. Our results add to 

these findings by demonstrating that the most consistent regions that covary in their 

functional connectivity are interactions between the frontal lobe and other regions. Our work 

shows that broad motifs like the dynamic integration of multiple systems (including 

cognitive systems involving the frontal lobe) found in other types of learning are also 

important for BCI learning. Additionally, we add to previous work on BCI learning 

specifically by quantifying the structure of covarying subgraphs of connectivity.

BCI learning is heterogenous across individuals—We find population level 

consistencies in spatial and temporal properties of ranked subgraphs despite having no 

constraint to assure consistency across individuals. However, we also note that there is a 

high degree of variability in both of these measures. The variability is mirrored in the 

subjects’ performance, with final performances varying from 38.1 % to 89.3 %. Our 

observations are in line with previous literature demonstrating variability in subjects’ 

performance and learning for psychological, cognitive, and neurological predictors [49, 56]. 

Such pervasive and marked individual differences present a challenge for the use of BCIs 

clinically [14]. To address this challenge, researchers have explored ways to optimize BCI 
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features and algorithms for neurofeedback itself [64, 106] and to identify selection criteria 

for BCI based therapies [49, 57]. The results of our study support the idea that different 

individuals will have slightly different neural correlates of both performance and learning 

based on a variety of features such as demographics [94], spatial manipulation skills [108], 

relationship with the technology [13], and attention span [42, 43]. Our findings also 

highlight the importance of studying models fit to each individual when searching for 

selection criteria for BCI therapies. Here, despite temporal and edge level heterogeneity, our 

minimally constrained, individual specific method of brain connectivity decomposition 

revealed a robust association with learning with a theoretical role that aligns well with 

previous literature. Further development and expansion of this model to incorporate resting 

state neuroimaging data and other physiological predictors could be a promising direction 

for selection of candidates for BCI therapies before training.

Role of beta oscillations in BCI learning—Prominent theories describing the neural 

processes that give rise to cognition and shape our behavior often involve integration of 

complex multimodal information using a combination of top-down predictions (built from 

prior experience) and bottom-up, sensory-driven representations of the dynamic world 

around us [63, 100? ]. These generalized frameworks, in turn, require the precise 

coordination of ensemble neural activity both within and between brain regions. Several 

theoretical approaches have examined how these two scales of functional activity may 

harmonize to produce the desired behavior [91], and empirical research has shown that there 

is consistent cross-talk between these scales [90]. Within human neuroimaging work, 

synchronous oscillations have been critical to understanding this complex coordination, 

where cortico-cortical propagation delays and membrane potentials give rise to observed 

oscillatory activity in the brain [10, 96]. Here, we study the time varying connectivity within 

α, β, and γ bands. Much like how specialized functions arise from different brain regions, 

different narrowband oscillations have been implicated in diverse but specialized processes, 

where some generalizable theories suggest a role for α in disengagement of task irrelevant 

areas or a lack of sensory processing [83], β in sustaining the current cognitive state [34] and 

γ in task active local cortical computation [38]. Specifically in the context of motor imagery 

based BCIs, α and β bands have prominent signatures in motor imagery [74]. Our results 

show that only the β band’s functional connectivity is well suited to modulate patterns of 

activity that support sustained attention (not motor imagery), which is a critical process for 

BCI control. While our results are in line with generalized theories on the role of oscillations 

in cognition, the specificity of the β band in our results extends classic studies that discuss 

the role of this oscillation in attention [85] and in maintaining the current cognitive state 

[34]. Our results suggest that this maintenance, a consistent control (or attention to) 

internally generated activity, may play a crucial role in longterm BCI use.

Methodological Considerations

NMF: Non-negative matrix factorization is a machine learning technique for separating, in 

our case, a multimodal configuration matrix into a soft-partition of subgraphs with time-

varying expression. This process has several advantages, such as being able to link 

behavioral and neural data, and creating a quantification of mesoscale structure where brain 

regions can participate in multiple functional groups. Nevertheless, the method also faces 
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several limitations that are common to other large-scale machine learning techniques. NMF 

yields a low rank approximation of a large configuration matrix, and can sometimes be rank 

deficient for large number of subgraphs, for very large datasets, or for datasets with high 

covariance. Because of this sensitivity, we were not able to test our data against 

independently phase randomized null models.

MEG Functional Connectivity: We chose to complete our analyses in sensor, rather than 

source space. Ultimately, this choice was motivated by the fact that if any of our findings 

could be applicable to clinicians monitoring learning during real-time BCI learning they 

would need to be obtained in the sensor space. However, this choice has two major 

methodological consequences: (1) it limits the anatomical resolution of our data, and 

therefore the specificity of the claims that we can make about the spatial distribution of the 

regions involved and (2) it does not protect as well against false positive connectivity 

estimates[82, 114]. We were not interested in the finer anatomical resolution of the identified 

subgraphs, but more in the process of identifying them, in validating the hypothesis that 

features of these subgraphs are associated with learning, and in their theoretical functions. 

We used montages provided by Brainstorm to approximate lobes and systems at the sensor 

level; however, we acknowledge that even claims made about specific systems (motor, and 

attention) at the source level are best interpreted in light of controls. Our use of spatial 

permutation tests is thus particularly important, because they demonstrate that similar 

contiguous states do not show the same relationship between energy and learning. 

Additionally, we cannot fully eliminate the possibility that parts of our data are due to false 

positive interaction from signal spread, and our conclusions should be interpreted in light of 

this fact. That being said, we have taken several steps to reduce the influence of false 

positives in our connectivity estimates. First, we use a connectivity estimate that does not 

include zero-phase lag contributions that could arise from signal spread [107]. However 

removing zero-phase lag contributions on its own is not enough to prevent against false 

positive from source spread from true connections[82]. While source reconstruction partially 

addresses this problem, it does not eliminate it entirely[82], and it additionally requires 

many parameter choices and has potentially confounding effects on estimates of functional 

connectivity [12, 22, 54]. Secondly, all results of interest are compared to a phase-

randomized null model with the same static covariance structure as the original data, which 

should lessen the effect of spurious connectivity estimates.

Optimal Control: We chose to use tools from network control theory to quantify the ease 

with which each network can modulate brain activity. Network control theory relies on 

several assumptions that should be considered when interpreting these results [105]. First, 

the model of dynamics that we employ is linear and noise free, unlike the brain [46], but has 

proven useful in gaining intuitions about the behavior of nonlinear systems [55, 76]. 

However, we still sought to quantify the ability of this linear model to explain empirical 

changes in brain state. Specifically, we asked two questions: (1) do the regularized 

subgraphs used in our analyses have the ability to predict state transitions, and do they do so 

better than randomly rewired networks, and (2) is the contribution of each subgraph to 

explaining a given state transition proportional to its temporal expression, and is it more 

proportional than a different subgraph’s temporal expression? To evaluate these questions, 
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we generated brain states for every trial (band specific power at each channel) and simulated 

Eq. 5 (see Supplement). Regarding the similarity of predicted and empirical state transitions, 

we find modest correlation values (mean Pearson’s r = 0.25) that are significantly greater 

than the correlations observed from randomized networks. Similarly for our second 

question, we found small but positive correlations between the contribution of each subgraph 

to a given transition and its temporal expression (mean Pearson’s r = 0.03), which was also 

significantly greater than correlations to temporal expression from mismatched subgraphs. 

While it is unsurprising that our linear model did not fully capture neural dynamics across a 

three second trial, it is worth considering extensions that can maximize this similarity for 

future analyses investigating how connections between regions facilitate changes to activity. 

One option is to use effective connectivity [70, 78] – that solve for a network of connections 

that best predicts the evolution of brain states in time. However, effective connectivity 

matrices are often sparse, and therefore not well suited to the NMF matrix decomposition 

used in the present work. Alternatively, one could use non-linear models of dynamics [58] 

and non-linear control theory [112] to capture a wider range of dynamic behaviors, although 

non-linear control does not currently support the same scope of tools available for linear 

control theory. Lastly, future work could use functional approximation [15] in order to 

identify a set of simple basis functions that well approximate the data. If a sparse 

approximation can be found, it supports the idea that the underlying non-linear dynamics 

can be captured with linear combinations of these basis functions, and therefore are suitable 

to be modeled with simplified linear models.

Additionally, network control is typically applied to time invariant, structural connections 

that have a clear role as an avenue along which brain activity can propagate. Here we used 

functional connectivity (weighted phase locking) which is a statistical relationship that (1) 

does not imply the presence of a physical connection and (2) is not time invariant. Due to 

(1), our original functional connectivity matrix can have large values between two regions 

that are not directly connected, but might both connect to the same region. This situation 

would lead to a triangle composed of three connections in a functional connectivity matrix 

where in reality there are only two connections. However, the regularization applied by the 

NMF algorithm mitigates this concern in a manner that is similar to the regularization 

applied in effective connectivity metrics [28, 70]. We also explicitly quantify the effect of 

regularization on triangles in our subgraphs and find a dramatic reduction from the original 

functional connectivity (Fig. S1A-B). This quantification, along with the two validations 

discussed above, show that our model is a suitable way to evaluate the role of regularized 

subgraphs in modulating different patterns of activity. In relation to (2), we note that 

functional connectivity in not time-invariant, unlike the state matrix more commonly 

employed in linear control models. However, it is important to note that NMF identifies 

subgraphs that are separable from their temporal expression, and that we expect that the 

hypothesized role in control would only be prominent when the subgraph was highly 

expressed.

Conclusion and Future Directions—Future research that builds on this work could 

explore ways to increase sensitivity to an individual’s learning rate. Given that EEG and 

MEG sensors capture some unique information [72] and provide increased discriminability 
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in clinical applications including BCIs [21, 25], it would be interesting to investigate 

whether the concurrently collected EEG data in this study better captures relevant neural 

dynamics for performance and learning, respectively. Such an effort, combined with source 

reconstruction, would be a useful next step in basic scientific inquiries directed towards 

characterizing these separable networks involved in learning. However, combining EEG and 

MEG sources would greatly increase the number of variables relative to the number of 

observations in the connection matrix to be decomposed, and would make the NMF 

algorithm less likely to converge. It may thus be necessary to use connectivity estimates 

from smaller time windows. Clinical utility could potentially be achieved if similar methods 

could be applied to resting state data to identify network properties that separate individuals 

by their learning rate, thereby eliminating the need for any BCI training. Finally, 

confirmatory studies with a larger sample of individuals would both validate the current 

results, and provide a better assessment of potential clinical utility.

In conclusion, we use a minimally constrained method of matrix decomposition that is 

specific to each human participant to investigate the dynamic neural networks that support 

BCI learning. We find that the subgraphs that most tightly mirror performance are not the 

same subgraphs that most strongly support learning. Additionally, we find that the 

interaction between many different neural processes is important for BCI learning. While the 

subgraphs identified are heterogeneous (as is subject performance), we find consistent 

involvement of frontal and motor cortices in subgraphs that support learning. We also 

observe differential temporal expression amongst subgraphs, and perhaps most notably that 

the subgraphs that vary more similarly with performance reach their highest expression later 

in learning. Lastly, we test the hypothesis that subgraphs that support learning are better 

suited to modulate activity in brain regions important for attention than other subgraphs. We 

find evidence to support this hypothesis in the β band specifically, ultimately suggesting that 

the separation of processes for maintaining attention is important for successful BCI 

learning. Our results align with prior work from dynamic functional connectivity in other 

types of skill learning, and also highlight a method for identifying individual predictors of 

successful BCI control with theoretical support.

Citation Diversity Statement

Recent work in neuroscience and other fields has identified a bias in citation practices such 

that papers from women and other minorities are under-cited relative to the number of such 

papers in the field [18, 20, 31, 33, 73, 104]. Here we sought to proactively consider choosing 

references that reflect the diversity of the field in thought, form of contribution, gender, and 

other factors. We used automatic classification of gender based on the first names of the first 

and last authors [33, 113], with possible combinations including male/male, male/female, 

female/male, and female/female. Excluding self-citations to the senior authors of our current 

paper, the references contain 55.2% male/male, 11.5% male/female, 21.9% female/male, 

11.5% female/female, and 1.0% unknown categorization. We look forward to future work 

that could help us to better understand how to support equitable practices in science.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Schematic of non-negative matrix factorization.
(1) MEG data recorded from 102 gradiometers is segmented into windows (t1, t2, t3, t4, ... tn) 

that each correspond to the feedback portion of a single BCI trial. (2) A Morlet wavelet 
decomposition is used to separate the signal into α (7–14 Hz), β (15–30 Hz), and γ (31–45 

Hz) components. (3) In each window, and for each band, functional connectivity is estimated 

as the weighted phase-locking index between sensor time series. Only one band is shown for 

simplicity. The subject’s performance on each trial is also recorded. (3) The lower diagonal 

of each trial (highlighted in grey in panel (3)) is reshaped into a vector, and vectors from all 

trials are concatenated to form a single configuration matrix. The subject’s time-varying 

performance forms an additional row in this configuration matrix. This matrix corresponds 

to A in the NMF cost function. (5) The NMF algorithm decomposes the configuration 

matrix (composed of neural and behavioral data) into m subgraphs with a performance 
loading (where m is a free parameter), with three types of information: (i) the weight of each 

edge in each subgraph, also referred to as the connection loading (viridis color scale), (ii) the 

performance loading (purple color scale) and (iii) the time varying expression of each 

subgraph (black line graphs). The performance loading indicates how similar the time-

varying performance is to each subgraph’s expression. The connections and performance 

loadings together comprise W in the NMF cost function, and the temporal expression 
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comprises H. (6) Across bands and subjects, we then group subgraphs by their ranked 

performance loading for further analysis.
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FIG. 2. BCI task and performance.
(A) Schematic of the BCI task. First the target, a grey bar in the upper or lower portion of 

the screen, was displayed for 1 s. Next, the subjects have a 3 s feedback period, where the 

vertical position of the cursor is determined by their neural activity while it moves 

horizontally at a fixed velocity. This portion corresponds to the analysis window, indicated 

with a grey bar in the figure. The result is then displayed for 1 s. If the subject reached the 

target, it will turn yellow; otherwise it will remain grey. There is a 1 s intertrial interval (ITI) 

between trials where nothing is displayed on the screen. This sequence is repeated 32 times 

per run, with 6 runs per session. (B) Each subject’s average performance across four days 

within two weeks. BCI Score is the percentage of correct trials during that session.
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FIG. 3. Performance loading is associated with learning.
(A) Here we show the p-values for empirical (green) and uniformly phase randomized (grey) 

data for linear models relating the slope of performance with ranked performance loading 

from each frequency band. The black line corresponds to p = 0.05, while the red dashed line 

corresponds to the Bonferroni corrected α = 0.008. Error bars show the standard error and 

median of p-values from 500 models with bootstrapped samples. (B) The standardized 

regression coefficients for the same models. Error bars show the standard error and mean of 

coefficients from 500 models with bootstrapped samples.
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FIG. 4. Spatial distribution of subgraph edges that are consistent across participants.
Consistent edges for each frequency band and for each ranked subgraph. Left images show 

individual edges plotted on a topographical map of the brain. Right images show the mean 

edge weight over sensors for a given region. We studied 10 regions, including the frontal 

lobe, temporal lobe, parietal lobe, occipital lobe, and motor cortex in both hemispheres. The 

weight of the edge corresponds to the number of individual participants for whom the edge 

was among the 25% strongest for that subgraph.
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FIG. 5. Temporal expression of ranked subgraphs.
The peak temporal expression for every subject (black data point), for each frequency band 

(indicated by color) and for each subgraph (ordered vertically). Violin plots show the density 

distribution of all subjects’ peaks. The median is marked with a solid line through the violin 

plot.
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FIG. 6. Separation of the ability to modulate attention is associated with learning.
Different patterns of connections will facilitate transitions to different patterns of brain 

activity. We hypothesize that the ease with which connections in certain regularized 

subgraphs facilitate transitions to patterns of activity that support either motor imagery (A) 
or attention (B) will be associated with learning rate. We use network control theory to test 

this hypothesis. We model how much energy (u(t)) is required to navigate through state 

space from some initial pattern of activity x(0) to a final pattern of activity x(T). Some 

networks (e.g., the brown network in panel A) will require very little energy (schematized 

here with a smaller, solid colored arrow) to reach patterns that support motor imagery, while 

other networks (e.g., the pink network in panel B) will have small energy requirement to 

reach patterns of activity that support attention. (C) The relationship between learning rate 

and the difference in energy required to reach the attention state when the underlying 

network takes the form of the lowest versus third highest performance loading subgraphs for 

empirical data (green) and uniformly phase randomized surrogate data (grey). (D) The 

relationship between the learning rate and the energy required to reach the attention state 

when the underlying network takes the form of the lowest performance loading subgraph, or 

when the underlying network takes the form of the third highest performance loading 

subgraph.
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	In this work, we use a minimally constrained decomposition of dynamic functional connectivity during BCI learning to investigate which groups of phase locked brain regions (subgraphs) support BCI control. The performance loading onto these subgraphs favors the theory that dynamic involvement of several subgraphs during learning supports successful control, rather than extremely strong expression of a single subgraph. Additionally, we find a unique association for the third highest loading subgraph with learning at the population level. This result shows that learning is not simply explained by the subset of edges that has the most similar temporal expression to behavior, but rather that a subnetwork with a middling range of similarity has the strongest relationship with performance improvement. While the spatiotemporal distribution of this subgraph was variable across individuals, we did observe some consistencies at the group level. Spatially, the third highest loading subgraph showed strong edges between left frontal and right motor cortices for low frequencies, and left frontal and left motor cortices for the γ band. Lower frequencies showed stronger connectivity to the ipsilateral (to imagined movement) motor cortex, suggesting a possible role in suppression for selective control. This subgraph also showed the highest expression earlier than the other ranked subgraphs we investigated, perhaps linking it to the transition from volitional to automatic control.We next wished to posit a theory of how these subgraphs fit with previously identified neural processes important for learning, despite their heterogeneity across subjects. After quantifying the extent to which NMF regularization removed potentially redundant relationships between regions (Fig. S1A-B), we suggested that the regularized pattern of statistical relationships identified in this subgraph could comprise an avenue through which brain activity could be modulated via cognitive control or external input. We then hypothesized that these networks would be better suited to modulate activity in either regions implicated in attention or in motor imagery than other subgraphs, and further that individuals whose networks better modulated activity in these regions would display greater task learning [56]. We chose to operationalize the “ease of modulation” with a metric from network control theory called optimal control energy. Optimal control energy quantifies the minimum input needed to drive the brain from an initial pattern of activity to a final pattern of activity, while also assuring that the pattern of activity stays close to the target state at every point in time. This last constraint ensures that we are unlikely to pass through biologically unfeasible patterns of activity. The notion of optimal control energy that we use here assumes a particular linear model of how neural dynamics change given potential avenues of communication between regions. Importantly, in the supplement (Fig. S1C-D) we show that our subgraphs predict empirical brain state changes according to this model, and that the contribution of each subgraph to empirical changes in brain state is related to its temporal expression. Using this model, we did not find any population differences in optimal control energy when the simulation was enacted on the third highest performance loading subgraph compared to the lowest performance loading subgraph. However, we did find that the magnitude of this difference was associated with learning in individual subjects. This result was specific to the β band and to brain regions implicated in attention. Critically, the relation to learning could not be explained by the energy of either subgraph alone, was not present in surrogate data derived from a uniformly phase randomize null model, and was robust to parameter choices. Overall, the observations support our hypothesis that in the β band the subgraphs we identified that support learning are well suited to modulate activity in brain regions associated with attention.A delicate balance of interactions is required for BCI learning—Our initial analysis explored the relationship between performance loading and learning. It is important to note the behavioral difference between performance and learning: we use the term performance to refer to task accuracy over time, whereas we use the term learning to refer to how well a subject is able to increase that accuracy. With that distinction in mind, we aimed to better understand how subgraphs that vary similarly to performance (those with high performance loading) relate to learning. We found that the subgraph with the third highest performance loading was most strongly associated with learning and that a narrow distribution of performance loading across all subgraphs was associated with better learning. Together, these two observations are in line with previous research in motor and spatial learning, which shows that some brain structures display differential activity during learning that is independent of performance [86, 95]. Our work adds to this literature by demonstrating that in addition to targeted differences in individual brain regions or networks, a minimally constrained decomposition of dynamic functional connectivity across the whole brain reveals that separable processes are most associated with performance and with learning.Additionally, we find that BCI learning is not explained simply by the processes most strongly associated with performance and learning individually, but by a distributed loading across many different subgraphs. This notion is supported by the sign of beta value for ranked subgraphs. Generally, subgraphs with higher ranked loading were negative betas, while subgraphs with lower ranked loading were positive betas. A wealth of whole brain connectivity analyses have similarly shown that the interaction between systems is an important component of skill learning specifically, and other domains of learning more generally [2, 8]. While we observed marked interactions between many regions, the majority were located in the frontal lobe for all frequency bands. Even for α and β frequencies in the highest loading subgraph, we see involvment of frontal regions and heterogeneity across individuals. This suggests that the NMF method did not extract a network that was trivially related to the deterministic mapping between brain activity and cursor location determined by the BCI2000 software. Previous work has also demonstrated changes in frontal-motor [59] and fronto-parietal [69] connectivity during motor skill learning. In BCI learning specifically, the strength of white matter connectivity between frontal and occipital regions predicts control of motor imagery based BCIs [97]. Additionally, analyses of this same experiment have shown task related changes in functional connectivity were spatially diffuse, and found in frontal, temporal, and occipital regions in the α band [24], and were strongest in frontal, motor, central, and parietal regions in the β band. Our results add to these findings by demonstrating that the most consistent regions that covary in their functional connectivity are interactions between the frontal lobe and other regions. Our work shows that broad motifs like the dynamic integration of multiple systems (including cognitive systems involving the frontal lobe) found in other types of learning are also important for BCI learning. Additionally, we add to previous work on BCI learning specifically by quantifying the structure of covarying subgraphs of connectivity.BCI learning is heterogenous across individuals—We find population level consistencies in spatial and temporal properties of ranked subgraphs despite having no constraint to assure consistency across individuals. However, we also note that there is a high degree of variability in both of these measures. The variability is mirrored in the subjects’ performance, with final performances varying from 38.1 % to 89.3 %. Our observations are in line with previous literature demonstrating variability in subjects’ performance and learning for psychological, cognitive, and neurological predictors [49, 56]. Such pervasive and marked individual differences present a challenge for the use of BCIs clinically [14]. To address this challenge, researchers have explored ways to optimize BCI features and algorithms for neurofeedback itself [64, 106] and to identify selection criteria for BCI based therapies [49, 57]. The results of our study support the idea that different individuals will have slightly different neural correlates of both performance and learning based on a variety of features such as demographics [94], spatial manipulation skills [108], relationship with the technology [13], and attention span [42, 43]. Our findings also highlight the importance of studying models fit to each individual when searching for selection criteria for BCI therapies. Here, despite temporal and edge level heterogeneity, our minimally constrained, individual specific method of brain connectivity decomposition revealed a robust association with learning with a theoretical role that aligns well with previous literature. Further development and expansion of this model to incorporate resting state neuroimaging data and other physiological predictors could be a promising direction for selection of candidates for BCI therapies before training.Role of beta oscillations in BCI learning—Prominent theories describing the neural processes that give rise to cognition and shape our behavior often involve integration of complex multimodal information using a combination of top-down predictions (built from prior experience) and bottom-up, sensory-driven representations of the dynamic world around us [63, 100? ]. These generalized frameworks, in turn, require the precise coordination of ensemble neural activity both within and between brain regions. Several theoretical approaches have examined how these two scales of functional activity may harmonize to produce the desired behavior [91], and empirical research has shown that there is consistent cross-talk between these scales [90]. Within human neuroimaging work, synchronous oscillations have been critical to understanding this complex coordination, where cortico-cortical propagation delays and membrane potentials give rise to observed oscillatory activity in the brain [10, 96]. Here, we study the time varying connectivity within α, β, and γ bands. Much like how specialized functions arise from different brain regions, different narrowband oscillations have been implicated in diverse but specialized processes, where some generalizable theories suggest a role for α in disengagement of task irrelevant areas or a lack of sensory processing [83], β in sustaining the current cognitive state [34] and γ in task active local cortical computation [38]. Specifically in the context of motor imagery based BCIs, α and β bands have prominent signatures in motor imagery [74]. Our results show that only the β band’s functional connectivity is well suited to modulate patterns of activity that support sustained attention (not motor imagery), which is a critical process for BCI control. While our results are in line with generalized theories on the role of oscillations in cognition, the specificity of the β band in our results extends classic studies that discuss the role of this oscillation in attention [85] and in maintaining the current cognitive state [34]. Our results suggest that this maintenance, a consistent control (or attention to) internally generated activity, may play a crucial role in longterm BCI use.Methodological ConsiderationsNMF: Non-negative matrix factorization is a machine learning technique for separating, in our case, a multimodal configuration matrix into a soft-partition of subgraphs with time-varying expression. This process has several advantages, such as being able to link behavioral and neural data, and creating a quantification of mesoscale structure where brain regions can participate in multiple functional groups. Nevertheless, the method also faces several limitations that are common to other large-scale machine learning techniques. NMF yields a low rank approximation of a large configuration matrix, and can sometimes be rank deficient for large number of subgraphs, for very large datasets, or for datasets with high covariance. Because of this sensitivity, we were not able to test our data against independently phase randomized null models.MEG Functional Connectivity: We chose to complete our analyses in sensor, rather than source space. Ultimately, this choice was motivated by the fact that if any of our findings could be applicable to clinicians monitoring learning during real-time BCI learning they would need to be obtained in the sensor space. However, this choice has two major methodological consequences: (1) it limits the anatomical resolution of our data, and therefore the specificity of the claims that we can make about the spatial distribution of the regions involved and (2) it does not protect as well against false positive connectivity estimates[82, 114]. We were not interested in the finer anatomical resolution of the identified subgraphs, but more in the process of identifying them, in validating the hypothesis that features of these subgraphs are associated with learning, and in their theoretical functions. We used montages provided by Brainstorm to approximate lobes and systems at the sensor level; however, we acknowledge that even claims made about specific systems (motor, and attention) at the source level are best interpreted in light of controls. Our use of spatial permutation tests is thus particularly important, because they demonstrate that similar contiguous states do not show the same relationship between energy and learning. Additionally, we cannot fully eliminate the possibility that parts of our data are due to false positive interaction from signal spread, and our conclusions should be interpreted in light of this fact. That being said, we have taken several steps to reduce the influence of false positives in our connectivity estimates. First, we use a connectivity estimate that does not include zero-phase lag contributions that could arise from signal spread [107]. However removing zero-phase lag contributions on its own is not enough to prevent against false positive from source spread from true connections[82]. While source reconstruction partially addresses this problem, it does not eliminate it entirely[82], and it additionally requires many parameter choices and has potentially confounding effects on estimates of functional connectivity [12, 22, 54]. Secondly, all results of interest are compared to a phase-randomized null model with the same static covariance structure as the original data, which should lessen the effect of spurious connectivity estimates.Optimal Control: We chose to use tools from network control theory to quantify the ease with which each network can modulate brain activity. Network control theory relies on several assumptions that should be considered when interpreting these results [105]. First, the model of dynamics that we employ is linear and noise free, unlike the brain [46], but has proven useful in gaining intuitions about the behavior of nonlinear systems [55, 76]. However, we still sought to quantify the ability of this linear model to explain empirical changes in brain state. Specifically, we asked two questions: (1) do the regularized subgraphs used in our analyses have the ability to predict state transitions, and do they do so better than randomly rewired networks, and (2) is the contribution of each subgraph to explaining a given state transition proportional to its temporal expression, and is it more proportional than a different subgraph’s temporal expression? To evaluate these questions, we generated brain states for every trial (band specific power at each channel) and simulated Eq. 5 (see Supplement). Regarding the similarity of predicted and empirical state transitions, we find modest correlation values (mean Pearson’s r = 0.25) that are significantly greater than the correlations observed from randomized networks. Similarly for our second question, we found small but positive correlations between the contribution of each subgraph to a given transition and its temporal expression (mean Pearson’s r = 0.03), which was also significantly greater than correlations to temporal expression from mismatched subgraphs. While it is unsurprising that our linear model did not fully capture neural dynamics across a three second trial, it is worth considering extensions that can maximize this similarity for future analyses investigating how connections between regions facilitate changes to activity. One option is to use effective connectivity [70, 78] – that solve for a network of connections that best predicts the evolution of brain states in time. However, effective connectivity matrices are often sparse, and therefore not well suited to the NMF matrix decomposition used in the present work. Alternatively, one could use non-linear models of dynamics [58] and non-linear control theory [112] to capture a wider range of dynamic behaviors, although non-linear control does not currently support the same scope of tools available for linear control theory. Lastly, future work could use functional approximation [15] in order to identify a set of simple basis functions that well approximate the data. If a sparse approximation can be found, it supports the idea that the underlying non-linear dynamics can be captured with linear combinations of these basis functions, and therefore are suitable to be modeled with simplified linear models.Additionally, network control is typically applied to time invariant, structural connections that have a clear role as an avenue along which brain activity can propagate. Here we used functional connectivity (weighted phase locking) which is a statistical relationship that (1) does not imply the presence of a physical connection and (2) is not time invariant. Due to (1), our original functional connectivity matrix can have large values between two regions that are not directly connected, but might both connect to the same region. This situation would lead to a triangle composed of three connections in a functional connectivity matrix where in reality there are only two connections. However, the regularization applied by the NMF algorithm mitigates this concern in a manner that is similar to the regularization applied in effective connectivity metrics [28, 70]. We also explicitly quantify the effect of regularization on triangles in our subgraphs and find a dramatic reduction from the original functional connectivity (Fig. S1A-B). This quantification, along with the two validations discussed above, show that our model is a suitable way to evaluate the role of regularized subgraphs in modulating different patterns of activity. In relation to (2), we note that functional connectivity in not time-invariant, unlike the state matrix more commonly employed in linear control models. However, it is important to note that NMF identifies subgraphs that are separable from their temporal expression, and that we expect that the hypothesized role in control would only be prominent when the subgraph was highly expressed.Conclusion and Future Directions—Future research that builds on this work could explore ways to increase sensitivity to an individual’s learning rate. Given that EEG and MEG sensors capture some unique information [72] and provide increased discriminability in clinical applications including BCIs [21, 25], it would be interesting to investigate whether the concurrently collected EEG data in this study better captures relevant neural dynamics for performance and learning, respectively. Such an effort, combined with source reconstruction, would be a useful next step in basic scientific inquiries directed towards characterizing these separable networks involved in learning. However, combining EEG and MEG sources would greatly increase the number of variables relative to the number of observations in the connection matrix to be decomposed, and would make the NMF algorithm less likely to converge. It may thus be necessary to use connectivity estimates from smaller time windows. Clinical utility could potentially be achieved if similar methods could be applied to resting state data to identify network properties that separate individuals by their learning rate, thereby eliminating the need for any BCI training. Finally, confirmatory studies with a larger sample of individuals would both validate the current results, and provide a better assessment of potential clinical utility.In conclusion, we use a minimally constrained method of matrix decomposition that is specific to each human participant to investigate the dynamic neural networks that support BCI learning. We find that the subgraphs that most tightly mirror performance are not the same subgraphs that most strongly support learning. Additionally, we find that the interaction between many different neural processes is important for BCI learning. While the subgraphs identified are heterogeneous (as is subject performance), we find consistent involvement of frontal and motor cortices in subgraphs that support learning. We also observe differential temporal expression amongst subgraphs, and perhaps most notably that the subgraphs that vary more similarly with performance reach their highest expression later in learning. Lastly, we test the hypothesis that subgraphs that support learning are better suited to modulate activity in brain regions important for attention than other subgraphs. We find evidence to support this hypothesis in the β band specifically, ultimately suggesting that the separation of processes for maintaining attention is important for successful BCI learning. Our results align with prior work from dynamic functional connectivity in other types of skill learning, and also highlight a method for identifying individual predictors of successful BCI control with theoretical support.
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