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Abstract

The network organization of the human brain varies across individuals, changes with development 

and aging, and differs in disease. Discovering the major dimensions along which this variability is 

* dsb@seas.upenn.edu.
AUTHOR CONTRIBUTIONS
This study was designed, carried out, and written by RFB. DSB secured funding for the work. MAB processed and provided HCP 
MRI and behavioral data. EMG, CG, NUFD processed and provided MSC MRI data. All authors contributed to the direction of the 
research and edited the paper.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2020 December 14.

Published in final edited form as:
Neuroimage. 2019 November 15; 202: 115990. doi:10.1016/j.neuroimage.2019.07.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



displayed remains a central goal of both neuroscience and clinical medicine. Such efforts can be 

usefully framed within the context of the brain’s modular network organization, which can be 

assessed quantitatively using powerful computational techniques and extended for the purposes of 

multi-scale analysis, dimensionality reduction, and biomarker generation. Though the concept of 

modularity and its utility in describing brain network organization is clear, principled methods for 

comparing multi-scale communities across individuals and time are surprisingly lacking. Here, we 

present a method that uses multi-layer networks to simultaneously discover the modular structure 

of many subjects at once. This method builds upon the well-known multi-layer modularity 
maximization technique, and provides a viable and principled tool for studying differences in 

network communities across individuals and within individuals across time. We test this method 

on two datasets and identify consistent patterns of inter-subject community variability, 

demonstrating that this variability – which would be undetectable using past approaches – is 

associated with measures of cognitive performance. In general, the multi-layer, multi-subject 

framework proposed here represents an advancement over current approaches by straighforwardly 

mapping community assignments across subjects and holds promise for future investigations of 

inter-subject community variation in clinical populations or as a result of task constraints.

INTRODUCTION

The human brain is a complex network of functionally interconnected brain areas. Its 

architecture is strikingly non-random across a spectrum of scales, ranging from the local 

scale of individual brain areas to the global scale of the entire brain [1, 2]. Situated between 

these two extremes is the meso-scale comprised of sub-networks of topologically-related 

neural elements referred to as “communities” or modules [3, 4]. The brain’s community 

structure reflects regularities in its wiring diagram, delineating groups of brain areas with 

shared functionality [5, 6]. Critically, the brain’s community structure spans multiple 

organizational scales, ranging from small communities associated with functionally-

specialized areas (the scale measurable with MRI) to larger communities associated with 

more general brain and cognitive functions [2].

Increasingly, the brain’s community structure has become the focus of many investigations. 

By characterizing the variability of community structure across individuals or between 

clinical populations, recent studies seek a deeper understanding of neuropsychiatric 

disorders [7, 8], development and aging [9–11], and diverse cognitive processes [12]. 

Despite such broad interest, there remains a paucity of principled methods for detecting and 

comparing communities across individuals, and little consensus on which approach 

maximizes advantages and minimizes disadvantages in the context of neuroscientific 

inquiry. Virtually all extant community detection methods rely on heuristics or make strong 

assumptions about the number and size of communities, the consistency of communities 

across individuals, and the nature of community identity as one maps community structure 

from one subject to another. Although these assumptions are made in order to facilitate 

further analyses, they can also entail unwanted biases, thereby limiting inference.

Broadly, existing approaches for comparing community structure across individuals exhibit 

both striking benefits and marked limitations. Consider, as an example, the popular 
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consensus approach, in which group-level communities are imposed uniformly across all 

subjects1. This approach confers two notable advantages. First, the uniformity of 

communities permits straightforward comparisons across individuals. Second, because the 

communities are defined at the group level, they are likely less susceptible to overfitting. 

Yet, a notable disadvantage of the approach is that it precludes the possibility that 

communities vary across individuals. While this assumption of conservation of community 

structure across individuals might be reasonable in certain analyses of neurotypical cohorts 

(although even this assumption may be too strong; see [15]), it becomes increasingly 

problematic in clinical populations where heterogeneity in pathology leads to patient-

specific disruptions in neuroanatomy and physiology.

Other approaches can overcome these specific issues, but are limited in different ways. Data-

driven community detection methods [16, 17] naturally accommodate inter-individual 

community variability, but can overfit noisy network data or result in situations where the 

mapping of communities across individuals is ambiguous or even impossible. This latter 

issue can be partially mitigated using template-matching techiques, such as those that 

register detected communities to a common set of “canonical” communities [15]. However, 

template-matching requires users to specify a set of template communities, restricting 

investigation to a single topological scale, and precluding hierarchical or multi-scale 

community analysis [2, 18, 19]. Moreover, template communities are oftentimes established 

based on resting-state data whose relationship with task-evoked community structure 

remains unclear [12].

Here, we propose a framework that flexibly accommodates multi-scale community analysis 

while unambiguously mapping communities from one subject to another. This framework 

builds on the well-known technique of modularity maximization [16], which algorithmically 

decomposes networks into internally cohesive communities and has recently been extended 

to be compatible with multi-layer networks [20]. Past applications of multi-layer modularity 

maximization have been largely restricted to so-called time-varying networks, where each 

layer represents a snapshot of a functional brain network localized to a particular window in 

time [21–23]. We present a modification in which network layers represent connectivity data 

from single subjects that are then made interdependent upon one another through the 

addition of inter-layer couplings.

Here, we apply multi-layer, multi-subject modularity maximization to functional 

connectivity data acquired as part of the Human Connectome Project (HCP) [24] and the 

“Midnight Scan Club” (MSC) [25]. First, we show that this approach naturally resolves 

ambiguities related to the mapping of communities across subjects while simultaneously 

recapitulating the topography of known resting-state and intrinsic connectivity networks. 

Next, we show that community structure varies across subjects along “modes” that are 

aligned with distinct organizational scales. Importantly, we show that the association of 

cognitive performance measures with community variability is also scale-dependent, 

emphasizing the necessity of detecting and analyzing community structure at multiple 

1Group-level community labels can be obtained in a number of ways, including data-driven methods such as community detection 
[13] or system labels taken from canonical brain atlases [5, 14]
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topological scales. Finally, using MSC data, we replicate modes of inter-subject community 

variability, but show that these modes differ from those associated with intra-subject 

community variability, reaffirming recent findings that variability of network organization 

within individuals is unique and may be a powerful source of behavioral variation. Our 

findings showcase the relevance of multi-scale community analysis and present 

methodology that will reduce the ambiguity typically associated with mapping and 

comparing communities across cohorts of individuals.

RESULTS

The brain’s community structure reflects cohesive groups of functionally related brain areas 

and spans multiple organizational scales. inter-subject variability in the community 

assignments of particular brain areas has been associated with an individual’s disease, 

developmental, and cognitive state [7–11]. Current methods for studying this variability 

suffer from performance issues and tradeoffs that limit their utility. Here, we present an 

extension of the multi-layer modularity maximization framework to accommodate multi-

subject datasets. This extension addresses many of the existing shortcomings associated with 

current methods and seamlessly maps communities across individuals and scales. In this 

section, we present the results of applying the multi-layer, multi-subject modularity 

maximization framework to functional connectivity data taken from the Human Connectome 

Project (HCP) [24] and the “Midnight Scan Club” (MSC) [25].

Detecting multi-layer, multi-subject community structure in the HCP dataset

Basic analysis—Characterizing inter-subject variability in community structure can 

provide valuable behavioral and clinical insight. Here, we examine patterns of inter-subject 

community variability using a novel community detection approach, which we apply to 

functional connectivity (FC) data made available as part of the HCP dataset. Specifically, we 

analyze “discovery” and “replication” cohorts each composed of T = 80 subjects (see 

Materials and Methods for preprocessing and cohort definition details). Our proposed 

community detection approach is based on a multi-layer variant [20] of the well-known 

modularity maximization framework [16]. In this approach, we treat subject’s connectivity 

matrices as “layers” that are consolidated in a unified multi-layer network, which serves as 

input to the community detection algorithm. By applying modularity maximization to a 

single multi-layer network object, we can detect communities in all layers (i.e. subjects) 

simultaneously. Critically, this allows us to preserve community identity across subjects. 

That is, two brain areas with the same community label are treated as members of the same 

community, irrespective of whether they correspond to different parts of the brain or appear 

in unique subjects. This feature of multi-layer modularity maximization allows us to trivially 

map community assignments from one subject to another (Fig. 1).

Multi-layer modularity maximization depends upon two free parameters. The structural 

resolution parameter, γ, determines the size of communities: smaller or larger values of γ 
result in correspondingly larger or smaller communities. The inter-subject coupling 

parameter, ω, determines the consistency of communities across layers, which in our case 

represent subjects: smaller or larger values of ω emphasize community organization that is 
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either unique to individual subjects or shared by the entire cohort. Usually, applications 

using multi-layer modularity maximization focus on a restricted subset of the {γ, ω} 

parameter space, resulting in communities of characteristic size and variability. Here, 

however, we develop a procedure to efficiently sample a much larger region of {γ, ω} 

parameter space (see Materials and Methods for details). In addition, this procedure 

estimates the boundaries of a subspace of {γ, ω} parameter space in which detected 

partitions result in more than 1 community but fewer than N communities and in which 

intersubject variability is non-extreme, meaning that there exists at least one detected 

community that is shared across subjects. As a result, the effective parameter spaced 

sampled by this procedure is non-rectangular. See, for example, Fig. 2a.

Using this procedure, we generated 40000 samples of multi-subject community structure, 

i.e. simultaneous estimates of each brain area’s community assignment for each subject in 

the cohort. We first aimed to benchmark the sampling procedure to confirm that it was 

capable of detecting meaningful community structure at different topological scales. To this 

end, we examined subdivisions of parameter space where the algorithm detected consensus 

partitions of the brain into 2, 5, 8, 11, 14, and 17 communities (note: these numbers 

excluded singleton communities; Fig. 2a). For each community within a consensus partition, 

we calculated its homogeneity with respect to the 13 systems identified by [26]. That is, a 

community comprised only of nodes assigned to the Auditory system would have greater 

homogeneity than a community comprised of nodes belonging to both the Auditory and 

Salience systems. In Fig. 2b and c we show examples of detected communities. Each 

community and its constituent nodes are colored as the weighted sum of those nodes’ 

systems’ RGB triplets. As expected, the homogeneity increased with the number of 

communities, and the detected communities approximated the systems from [26].

We further characterized each sampled partition by measuring the variability of brain area i’s 

community assignment across subjects as the normalized entropy, hi. Intuitively, the value of 

hi is equal to zero when i has the same community assignment across individuals and is 

close to 1 when i’s assignment is less consistent. The N ×1 vector H = {hi}, therefore, 

encodes the pattern of community variability across the entire brain. Accordingly, the 

average normalized entropy, H = 1
N ∑i = 1

N ℎi, served as an index of community variability 

across brain areas and individuals.

As expected, we found that the number of communities varied monotonically with γ, the 

structural resolution parameter that shifts the scale at which communities are detected (Fig. 

3a). Smaller values of γ generally resulted in larger communities while larger values of γ 
resulted in smaller communities. We also found that the number of non-singleton 

communities peaked at an intermediate value of γ ≈ 1.1 (Fig. 3b), so that the number of 

singleton communities increased with γ. In addition, we observed that the mean normalized 

entropy varied considerably over the full parameter space, and was greatest when both the 

inter-subject coupling and structural resolution parameters, ω and γ, were small (Fig. 3c).

Our community detection approach was designed to uncover communities of different sizes 

and with varying inter-subject consistency. However, some hypotheses may be easier to test 

by focusing on communities with a more restricted set of characteristics and statistics, such 
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as a given number or size or a given level of inter-subject variability. Our approach naturally 

allows us to test these more focused hypotheses. As an example, we could specify the set of 

all partitions resulting in six communities (Fig. 3d; blue points) or the set of all partitions 

resulting in a particular level of inter-subject variability (average normalized entropy 

between 0.2 and 0.25) (Fig. 3d; red points). These partitions, or even their intersection (Fig. 

3d; yellow points), could be extracted for additional analyses, allowing for a more detailed 

and nuanced exploration of community structure across subjects. As an example, we show 

detected communities and community entropies in Fig. 3e,f corresponding to one of the 

yellow points in Fig. 3d.

Collectively, these observations illustrate the mechanisms by which modularity 

maximization can be used to generate estimates of multi-subject community structure. Due 

to the two free parameters in the optimization, the method has marked utility in detecting 

communities at different organizational scales and with varying levels of consistency across 

subjects, motivating further characterization of community structure across the γ, ω plane.

Principal component analysis and modes of inter-subject variation—The 

sampling procedure described in the previous section generated 40000 estimates of multi-

scale, multi-subject community structure. For each sample, we characterized the inter-

subject variability of communities as a normalized entropy vector, H. An important practical 

question is whether these patterns of variability are themselves variable, and if so, whether 

that variability is structured in some meaningful way. If, for example, community structure 

varies across subjects differently depending upon the size and the number of detected 

communities, such variability could have profound implications for any study of 

community-level correlates of behavioral measures or clinical scores. To address this 

possibility, we stored the full set of entropy vectors in a 333 × 40000 matrix (each column 

corresponds to a single sample). We column-normalized this matrix and then performed a 

principal component analysis (PCA), generating 332 orthonormal vectors (principal 

component scores) and their relative contribution to each of the 40000 entropy estimates 

(principal component coefficient). That is, PC scores generate brain maps while PC 

coefficients are defined in the parameter space. Intuitively, these can be thought of as 

“modes” by which communities varied across subjects.

To test whether the PC scores generated here were meaningful, both practically and 

statistically, we performed two confirmatory analyses. First, we compared PCs calculated 

from discovery and replication datasets. In general, we found excellent correspondence 

across cohorts, with strong one-to-one PC score correlations persisting over, at least, the first 

twenty PCs (See Fig. S1a). Second, we compared the cumulative variance explained by PCs 

in the discovery cohort with the cumulative variance explained under a null model in which 

elements of the entropy matrix were permuted randomly and independently within columns. 

We found that the variance explained by the observed data was greater than that of the null 

model for up to thirteen components (p ≈ 0 based on 100 repetitions of a null model in 

which the elements of entropy vectors were uniformly and randomly permuted; See Fig. 

S1b,c). We also note that, in general, the first few principal components explain a large 

fraction of the variance in community structure, suggesting that inter-subject variability, 

although taking place along multiple modes, is nonetheless relatively low-dimensional. 
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Collectively, these findings indicate that PC scores were largely replicable across two non-

overlapping groups of human participants and that the total variance explained by the first 

few PCs exceeded that of a chance model.

Next, we characterized PC properties including their localization in parameter space and 

cortical topography. First, we observed that the PCs were highly localized, both in terms of 

their location in parameter space as well as their cortical topography. Focusing on the first 

four components collectively explaining ≈ 78% variance, we found that PC coefficients were 

largely non-overlapping, tiling the parameter space and varying as a function of the 

structural resolution parameter, γ (Fig. 4a,d,g,j). This tiling phenomenon indicates that the 

“modes” by which communities vary across subjects are scale-dependent, varying with the 

number and size of detected communities.

Next, we focused on the topographic distribution of PCs across the cortical surface. We 

found that the first component, PC1, which corresponded to relatively small values of γ 
where communities were large and few in number, implicated areas that make up the default 

mode (DMN), cingulo-parietal (CP), and salience systems (Fig. 4b,c). In particular, the PC 

scores of regions within the DMN were low (high consistency across individuals) while the 

PC scores of regions within the CP and SAL were high (low consistency and high variability 

across individuals). Across the first four principal components, different patterns of inter-

subject variability were apparent. For example, in the case of PC3, we observed that the 

community assignments of the retrosplenial-temporal system (RT) were highly variable 

across individuals, while the dorsal attention (DAN), fronto-parietal (FP), and somatomotor 

(SMhand; SMmouth) systems were particularly stable (Fig. 4e,f). In the case of PC4, on the 

other hand, variability in virtually all primary sensory systems tended to be low, including 

auditory (AUD), somatomotor (SMhand; SMmouth), and visual (VIS), while the variability 

in community assignments across higher-order systems tended to be high (Fig. 4k,l). Details 

concerning additional components can be found in Fig. S2. Notably, we find similar patterns 

of variability using a different parcellation of the brain into N = 200 regions [19] (Fig. S3).

To better understand the origins of each PC, we performed additional characterizations. 

Whereas the previous analysis described PCs in terms of canonical systems from [26], this 

additional analysis contextualized PCs with respect to detected communities themselves. 

Briefly, we focused only on the sub-region of parameter space for which ω < 10−2, as 

virtually all inter-subject variation occurred as a function of γ within this regime. We then 

partitioned this space into four segments according to the “dominant component,” i.e. the PC 

with the greatest z-scored average coefficient (Fig. 5a). Separately and within each regime, 

we calculated the co-assignment probability for every pair of nodes and derived consensus 

communities (Fig. 5b-i).

Each segment corresponds to a different PC. Our aim was to describe, in greater detail, the 

typical community structure within each segment and to understand the differences between 

segments. The first segment, which corresponded to the smallest values of γ and PC1, was 

composed of four communities: the first two were large and divided the cerebral cortex 

broadly along the association-sensory dimension. The first community was comprised of 

default (DMN) and fronto-parietal (FP) networks, while the second community consisted of 
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auditory (AUD), motor (SMhand; SMmouth), and visual plus cingulo-opercular (CO) and 

dorsal attention (DAN) systems (Fig. 5j). The smaller communities consisted of cingulo-

parietal (CP) and salience (SAL) networks, which were also among the most variable across 

subjects (Fig. 5n), suggesting that inter-subject variability at this coarse scale may be driven 

by differences in aligning this small community within the two larger communities across 

subjects.

The next three segments involved progressive refinement of these two larger communities as 

they sub-divide into smaller clusters. In the second segment, which corresponds to PC3, the 

sensory network fragments, with the dorsal attention (DAN) and cingulo-opercular (CO) 

networks merging with the cingulo-parietal (CP) network, leaving the auditory (AUD), 

somatomotor (SMhand; SMmouth), and visual (VIS) networks as a community of their own 

(Fig. 5k). This sensory network is further refined within the third segment, corresponding to 

PC2, in which the visual network breaks away to form its own community. In the same 

segment, the default (DMN) and fronto-parietal (FP) community, which had to this point 

remained largely intact since the first segment, divided into separate communities (Fig. 5l). 

In the final segment, which corresponded to PC4, the cingulo-opercular (CO) and dorsal 

attention (DAN) systems sub-divide into distinct clusters (Fig. 5m). Each step in this 

progression is also accompanied by changes in inter-subject community variability, 

beginning with a stable default mode (DMN), (Fig. 5n) and terminating with stable sensory 

systems (Fig. 5q), suggesting that γ-dependent misalignment of subjects to specific 

communities within each consensus partition may drive distinct modes of variability.

Taken together, these findings suggest that inter-subject community variability is not well-

summarized by a single spatial pattern nor is it localized to a particular cognitive or 

functional system. Rather, the variability of community assignments across subjects depends 

on topological scale, as operationalized by the number and size of identified communities. 

This point is important, as the number and size of detected communities is usually 

determined by a user-defined resolution parameter [27, 28], implying that the pattern of 

inter-subject variability in communities can effectively be tuned by the user. This fact has 

important implications for applications in which one wishes to understand the relation 

between some aspect of network community structure and a clinical or cognitive outcome. 

In particular, these findings suggest that patterns of inter-subject variability can be 

modulated by a resolution parameter, which in principle could result in different patterns of 

community-behavior correlations. We explore this possibility in greater detail in the next 

section.

Brain-behavior correlations are scale dependent—One approach for relating brain 

network architecture to behavior involves associating measures of community structure with 

a behavioral, cognitive, or clinical measure of interest. In the previous section, we 

demonstrated that community structure varies across subjects along distinct scale-dependent 

modes, suggesting that brain-behavior associations could exhibit similar dependencies. This 

observation has important practical implications; if brain-behavior correlations are multi-

scale, then any study focusing on a single organizational scale may fail to fully characterize 

all relevant patterns of brain-behavior correlations.
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In principle, the very fact that we observe scale-specific modes of community variation 

indicates that any comparison of community structure with behavioral or psychometric data 

would also exhibit scale specificity. To show that this is indeed the case, we calculated a 

subject-level analog of the normalized entropy measure, hir. This score measured for each 

node, i, and for each subject, r, the fraction of all other subjects in which i’s community 

assignment differed at a given point in parameter space (see Materials and Methods). 

Intuitively, this measure assesses the similarity of that node’s community assignment to its 

assignment in other subjects. We calculated this measure for each subject and assessed 

whether its variability across subjects was correlated with any of four behavioral indices 

related to social (SOC) or relational cognition (REL), language (LANG), or working 

memory (WM) task performance. Note that the derivation of these indices has been 

described elsewhere [29, 30] and are also briefly summarized in Materials and Methods.

In this section we aim to assess whether there exists evidence that brain-behavior 

correlations are scale-dependent. That is, we aim to address the question of whether our 

choice of community detection parameters γ and ω influences the brain-wide pattern of 

correlations between community structure and behavioral measures. Whereas the goal of 

many neuroimaging analyses is to identify strong associations between community structure 

and a particular behavioral variable of interest, we aim simply to show that the correlation 

pattern varies as a function of γ and ω. In this particular example, we are not necessarily 

seeking strong correlations, nor are we emphasizing a particular behavioral variable more 

than any other. In fact, three of the four measures that we study are strongly correlated with 

one another, implying that if we were to observe a scale-dependent effect in one of these 

measures, it is likely that we would find a similar effect in the remaining two (see Fig. S8). 

Our aim is simply to assess whether correlation patterns vary across the parameter space.

To assess whether this was the case, we identified the points in parameter space where PC 

coefficients were greatest for the first four PCs (Fig. 6a). Separately for each PC, we 

computed the average correlation of inter-individual community variability with behavioral 

indices for each node We illustrate this procedure more clearly in Fig. S4. The result of this 

procedure was a series of sixteen vectors of length [333 × 1]. The ith element of a given 

vector represented the correlation of brain region i’s inter-individual community variability 

with one of four behavioral measures, assayed separately for each of four PCs. To assess the 

spatial similarity of these brain-wide correlation patterns across PCs and behavioral 

measures, we computed their spatial similarity as a 16 × 16 correlation matrix (Fig. 6b). In 

general, we observed that the cortical topography of these correlation patterns varied both 

across behavioral indices and across the different PCs (Fig. 6b). To further illustrate this 

observation, we show examples of brain-wide correlation patterns of subject-level 

normalized entropy with the working memory (WM) behavioral index (Fig. 6c-j; the results 

for other behavioral indices are included in Supplementary Figs. S5 and S7). In general, the 

correlation pattern varied across parameter space, although most variation occurred as a 

function of γ. Depending upon where in the (γ, ω) parameter space the correlations were 

computed, the correlation magnitude was largest within different brain systems. For 

example, examining correlation patterns at parameter values with strong loadings onto PC1, 

we find evidence of system-level correlations within cingulo-opercular (CO) and visual 

(VIS) systems, and anti-correlations in default mode (DMN) and both dorsal/ventral 
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attention (DAN/VAN) systems (Fig. 6e). These correlation patterns are contrasted with those 

observed at PC4, which are dominated by a strong positive correlation in the somatomotor 

(SMhand) system. Together, these findings demonstrate that not only does the brain’s 

modular architecture vary across individuals in a scale specific manner, but that associations 

of this variability with behavior also vary in a scale-specific manner. This observation 

motivates the re-exploration of previously analyzed data, wherein multi-scale associations 

might have been overlooked, and should spur the collection and analysis of datasets 

designed to tease apart scale-specific effects.

Finally, we note that, here, we deliberately resist detailed interpretation of reported brain-

behavior correlations. Further, we report unthresholded correlation maps, retaining all 

correlations irrespective of their statistical significance. In general, valid statistical testing is 

essential in any study attempting to link neuroimaging and behavioral data (and we show the 

results of statistical tests in Fig. S6). However, we note that in the present study, our aim was 

not to identify particular brain areas whose modular structures were robustly and 

significantly associated with behavior, but to demonstrate the level of subjectivity that enters 

into module detection and how it propagates to later analyses where those modules are 

linked to behavior.

Detecting multi-layer, multi-subject community structure in the Midnight Scan Club dataset

In the previous sections we used multi-layer modularity maximization to detect and 

characterize patterns of inter-subject community variability in multi-subject cohorts. While 

network organization certainly varies across individuals, networks also vary within an 

individual over successive scans separated by hours, days, or weeks [25, 31–33]. Within-

subject variability along different dimensions of network organization has proven useful for 

explaining variation in task state [34], level of attention [35], and affective state [23].

Here, we repeated our previous analyses using the recently published “Midnight Scan Club” 

(MSC) dataset in which ten participants underwent repeated fMRI scans (10 times per 

subject). Using these data we aimed to compare patterns of inter- and intra-subject 

variability in the modular organization of functional brain networks. To accomplish this aim, 

we performed two rounds of multi-layer modularity maximization. For each subject, we first 

generated an average connectivity matrix by aggregating usable fMRI BOLD time series 

data from across all resting scan sessions, and then we calculated the inter-areal correlation 

matrix. This procedure resulted in ten connectivity matrices (one per subject) that were 

treated as the layers of a multi-layer network model. As part of our second analysis, we 

focused on individual scan sessions from the six subjects (MSC01, MSC02, MSC03, 

MSC05, MSC06, and MSC07) with at least 300 low-motion frames in each of their ten scan 

sessions. We then estimated session-specific connectivity matrices for each subject and 

constructed their respective multi-layer network model whose t-th layer represented a 

subject’s connectivity pattern on the t-th scan session. As with the HCP dataset, we used our 

multi-scale sampling procedure to sample values for the structural and inter-layer coupling 

parameters detect communities at those points in parameter space. As before, we calculated 

normalized entropy measures to characterize patterns of variability across layers (either 

subjects or scan sessions) and to decompose these patterns into principal component scores 
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and coefficients using SVD. By comparing the PCs generated from the inter-subject analysis 

with those generated by the intra-subject analysis, we could effectively identify differences 

in patterns of inter- versus intra-subject community variability.

To do so, we first assessed patterns of inter-subject variability by examining the multi-layer 

network where each layer corresponded to the session-averaged connectivity matrix for a 

different subject. Interestingly, despite the fact that these data were independently acquired 

and processed using a different pipeline, we found similar patterns of inter-subject 

variability in the MSC dataset as in the HCP dataset. We focus, in particular, on the first 

three PCs, which we denote MSC PC1, MSC PC2, and MSC PC3. As with HCP PC1, the 

brain areas in MSC PC1 associated with the lowest inter-subject variability were 

concentrated in the DMN (Fig. 7a). This similarity is further illustrated by computing the 

system-averaged correlation of MSC PC1 scores and HCP PC1 scores; we observed that the 

two variables exhibit a strong positive correlation (r = 0.79, p < 0.05; Fig. 7d). We find 

analogous relations by pairing MSC PC2 with HCP PC2 (Fig. 7b,e), and by pairing MSC 

PC3 with HCP PC4 (Fig. 7c,f). Note that we obtain similar results using Spearman rank 

correlations: ρHCPPC1,MSCPC1 = 0.89, ρHCPPC2,MSCPC2 = 0.47, and ρHCPPC4,MSCPC3 = 0.86. 

Also similar to the HCP dataset, we observed a clear dependence of the PCs on the γ 
parameter. In Fig. S9 we show this dependence by projecting the PCs back into the {γ, ω} 

parameter space.

Next, we performed a series of analyses to characterize intra-subject variability in 

community structure. As noted earlier, this process entailed constructing multi-layer 

networks for the six MSC subjects with greater than 300 frames of low-motion data in each 

of their ten scan sessions. In these multi-layer networks, layers corresponded to functional 

connectivity estimated for single sessions. We aggregated these patterns of intra-subject 

variability with the previously obtained patterns of inter-subject variability and performed a 

joint PCA, the results of which we visualized in two-dimensions in a low-dimensional space 

defined using the first two principal components. If the patterns of community variability 

observed within subjects were similar to those observed between subjects, then we would 

expect these projected intra- and inter-subject variability patterns to overlap in this low-

dimensional space. However, we found that this was not the case. In Fig. 7g and Fig. 7h, we 

show two-dimensional histograms for patterns of inter-subject and intra-subject community 

variability, respectively. Though similar, we find that when we perform an element-wise 

subtraction of the distributions, there remain distinct portions of parameter space occupied 

by one or the other modality of variability, suggesting that inter- and intra-subject variability 

patterns are distinct from one another. One possible explanation is that the day-to-day 

variability in subject-level communities is driven by personalized factors such as sleep 

duration, sleep quality, affective state, or level of arousal [23, 35], whereas inter-subject 

community variability may be driven by temporally stable anatomical factors.

These findings consider the modes of inter-subject variability reported in the HCP data and 

reproduce them in an independently acquired dataset. Our results also build upon recent 

work characterizing intra-subject variability in functional network organization [25, 34], 

confirming that the patterns by which community structure varies within individuals is 

largely distinct from inter-subject patterns of variation. These observations suggest that the 
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detected modes are not easily dismissed as artifacts of a particular acquisition strategy, 

scanner, or processing pipeline. Rather, these results suggest that communities reconfigure 

across individuals and datasets in a robust, general, and multi-scale manner [2], motivating 

the exploration of techniques designed to detect communities at different organizational 

levels.

DISCUSSION

In this paper we adapted the popular multi-layer modularity maximization framework so that 

each layer represented the functional connectivity network of a single subject or scan 

session. This conceptual alteration facilitated unambiguous comparisons of community 

structure across subjects and time, permitted the straightforward calculation of consensus 

communities, and helped us to localize patterns of inter- and intra-subject variability. These 

advances made it possible for us to detect robust “modes” or (brain patterns) of inter-subject 

variation in community structure, which we showed were distinct from intra-subject 

variability. In summary, our findings offer new insight into the multi-scale community 

structure of functional brain networks and how that structure varies across different putative 

cognitive systems. The methodological advances presented here enable future studies to 

investigate variation in community structure across subjects from different clinical cohorts, 

behavioral states, and (as has already been investigated) time points.

Advantages over current methodology

Here we propose an extension of multi-layer modularity maximization for studying how 

community structure varies across subjects. Our approach, which has been suggested before 

but never realized [36, 37], offers distinct advantages over existing methods. First, because 

community assignments are determined simultaneously for all subjects and because 

community labels are preserved across layers, we avoid the use of heuristics for mapping 

community assignments from one subject to another. This facilitates straightforward 

comparisons of community structure across individuals and allows us to easily obtain 

consensus communities [38]. Whereas recent work has focused on generating subject-

specific community or system assignments by matching to predefined systems [15, 33] using 

statistical models based on shared covariance structure [39], our approach is grounded in 

methodology from network science, beginning with the representation of FC as a fully-

weighted and signed graph, and ending with the application of modularity maximization to 

detect community structure [3, 13, 16].

Our use of the multi-layer modularity maximization approach for community detection is 

not without precedent. Past studies have leveraged this same technique to uncover the 

evolving community structure in time-varying FC [21–23, 40–43], across tasks [12], and 

motor behaviors [44]. In recasting single-subject FC matrices as individual layers and 

moving the problem of community detection from the level of single subjects to that of the 

cohort, we highlight the flexibility and generalizability of the multi-layer modularity 

maximization framework. It is not difficult to imagine further extensions of these methods in 

which network layers correspond to different connection modalities, such as structural 

connectivity or gene coexpression, for example [45, 46].
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Multi-scale community structure and modes of variability

In this study we characterized how communities varied across individuals and time. We 

found that patterns of variability could be decomposed into a series of “modes,” 

stereotypical and orthogonal patterns of community variability whose expression was 

correlated with different numbers and sizes of communities. This observation is in line with 

the hypothesis that brain networks, both structural and functional, exhibit community 

structure that spans multiple organizational scales, ranging from coarse divisions into a few 

large communities (e.g. the division of the resting brain into task-positive and task-negative 

networks [47]) to much finer divisions reflecting increased functional specialization [48]. 

The multi-scale and hierarchical structure of communities has a strong theoretical basis: this 

type of organization facilitates separation of dynamic timescales [49], efficient spatial 

embedding [50], evolutionary adaptability [51], and robustness to perturbations [52]. There 

is also considerable empirical evidence demonstrating that brain networks exhibit multi-

scale modular structure [53–55] that reconfigures adaptively to support goal-directed 

cognitive processes [43] and during passive viewing of naturalistic movies [56].

Here, we interpret these modes of variation as evidence of multi-scale topology. An 

alternative interpretation is that variation in community size and number reflect distinct 

dynamic regimes. Due to the mechanics of modularity maximization [16] and the use of 

Pearson correlations to define connection weights [57], the smallest communities reflect 

collections of nodes that are extremely strongly connected to one another across time (by 

definition). Large communities, on the other hand, are more diffuse and composed of areas 

whose activity is correlated with one another, albeit more weakly [58]. Whereas the 

strongest correlations are also least variable across time [59–61], weaker time-averaged 

correlations can occur for multiple reasons, e.g. transient periods of strong coupling 

interspersed with periods of decoupling. Thus, the variation in community structure across 

topological scales is inextricably linked to variation in network structure across time [62]. 

Future work could be fruitfully directed towards an investigation into the relationship of time 

and topology in greater detail.

Implications for analysis of inter-subject community variability

The observation that communities vary across subjects along distinct modes has important 

implications for future work. Generally, these types of studies calculate community structure 

at a single scale. That is, single-layer modularity maximization is performed with the 

structural resolution parameter set uniformly across subjects to a particular value (although 

this is not always the case [63, 64]). Then, variability in the detected communities is 

associated with some clinical score or behavioral measure. While this approach has 

oftentimes proven fruitful, our findings suggest that it is also limiting. Studies that focus 

exclusively on inter-subject variability at a single scale will fail to characterize variability in 

communities at other scales. Here, we demonstrated that patterns of brain-behavior 

correlations depend on the scale at which communities are detected. It follows, then, that 

any single-scale analysis of the association between community structure and clinical or 

behavioral measures will result in only one correlation pattern, failing to fully characterize 

brain-behavior associations at other scales.
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Notably, our observations do not detract from these past efforts. Rather, they suggest the 

possibility that past studies have only scratched the surface in terms of characterizing inter-

subject variability in community structure, and that there likely exists a wealth of unexplored 

brain-behavior associations. This notion dovetails nicely with the missions of recent data-

collection and data-sharing projects in the MRI community that have made large-scale 

datasets and statistical maps freely available to any researcher [65–67]. These datasets, some 

of which have already been studied through the lens of community structure [68, 69], in 

principle could be reanalyzed in future studies with an increased focus on characterizing 

multi-scale patterns of variability.

Our findings suggest that it is important to consider a range of topological scales in any 

analysis of brain network community structure. From a practical standpoint, however, this 

can prove challenging. Repeatedly optimizing modularity while varying γ and ω incurs a 

massive computational burden, especially as the number of nodes in a network or subjects in 

a cohort increases [13]. In turn, this computational burden limits the utility of our approach. 

Fortunately, under some contexts this burden can be lessened. Our findings suggest that 

much of the inter-subject variation in community structure occurs as a function of γ and that 

while ω may change the baseline magnitude of intersubject variability, the overall pattern, 

i.e. the brain regions that vary in community assignments across subjects, tends to stay the 

same. This observation suggests that it may be more important to explore variation as a 

function of γ rather than variation as a function of ω. Additionally, new software packages 

such as CHAMP (https://github.com/wweir827/champ) [70] show promise in reducing the 

size of the parameter space to be explored. In summary, although the approach used here has 

some computational limits, these limits can be partially circumvented, making multi-subject 

modularity maximization a viable tool for studying inter-subject variation in community 

structure even in large cohorts.

Here we use the multi-scale, multi-subject modularity maximization approach to detect 

different patterns of community variability and to show that those patterns, which are 

sensitive to community detection parameters, correspond to different associations of 

community structure with measures of behavior. In doing so we focused on associations at 

the level of brain regions. In general, however, there are other possible strategies for linking 

community structure to behavioral measures. Another possible approach involves assessing 

the relationship between inter-subject similarity matrices – one that measures the similarity 

of subjects’ partitions to one another and another that measures the similarity of their 

behavioral profiles. We could then ask whether the elements of these matrices are correlated 

with one another, which would suggest that the geometry of behavior is represented in 

subjects’ community structures (analogous, in some ways, to the popular representational 

similarity analysis framework [71]). We note that the behavioral similarity matrix could be 

replaced by matrices that encode inter-subject similarity along other dimensions, including 

genes [72, 73], structural connectivity [74], white-matter microstructure [75], or 

morphometric data [76]. We also note that here we did not pursue this alternative strategy, 

but that it could be explored further in future work.

Finally, while our findings show that brain-behavior correlations are sensitive to user-defined 

parameters, we intentionally do not interpret the correlation patterns in detail. Rather, our 
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aim was simply to show that these patterns can be manipulated to some extent by a user’s 

decision to select particular combinations of community detection parameters. In future 

work, more focused analysis should investigate the behavioral and cognitive consequences 

of the findings reported here.

Limitations

Here, we extended the modularity maximization approach to be compatible with multi-

subject cohorts. Though this approach has clear advantages, it also suffers from some 

limitations. First, as with single-layer and other multi-layer formulations of modularity 

maximization, the composition of detected communities depends on the free parameters, γ 
and ω. In our application we aimed to explore the space defined by these parameters. In fact, 

our findings suggest that this exploration may be necessary, as brain-behavior correlations 

vary across parameter space. Nonetheless, it may be advantageous in some applications to 

focus on a particular region of parameter space. In general, choosing the “correct” values of 

γ and ω is difficult, although many heuristics exist. This includes, for example, selecting the 

parameter values that result in consistently similar partitions [69] or identifying partitions 

that maximally differ from an appropriate null model [77, 78]. Finally, it is also worth noting 

that the modularity maximization framework could be extended much further than we did 

here. For instance, we fixed the values of γ and ω to be uniform across all layers. It would 

be interesting and potentially informative to devise heuristics for determining the values of 

these parameters in a meaningful and subject-specific way, allowing for finer control over 

the character of detected communities.

Though modularity maximization facilitates our multi-subject analysis, it also serves to limit 

the scope of our findings. Modularity maximization implicitly assumes that a network’s 

community structure is uniformly assortative. This means that the communities detected 

using this method will be internally dense and externally sparse. While assortative 

communities are well-suited for segregated information processing, networks can exhibit 

more general classes of community structure, including core-periphery and disassortative 

organization [3, 79]. These communities emphasize integrative information processing and 

cross-community interactions. Modularity maximization, however, will fail to detect 

communities of this type. Other methods, such as stochastic blockmodels [80], can detect 

more general classes of communities. Future work could build on recent applications of 

blockmodeling to brain network data [81, 82] while taking advantage of multi-layer 

formulations to study multi-subject cohorts [83–85]. In addition, the modularity 

maximization framework is subject to socalled resolution limits [86, 87] that, for a given set 

of parameters, {γ, ω}, render it incapable of resolving communities below some 

characteristic size. This limitation, in addition to the aforementioned assumptions about 

partition composition, motivates the continued exploration of alternative community 

detection methods.

Another potential limitation concerns the procedure for associating variability at the 

community level with cognitive measures. Here, we assessed that relationship using 

community variability measures derived from many distinct partitions. Although this 

approach enabled us to uncover brainwide patterns of correlations, it comes with the 
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statistical cost of multiple comparisons. A potential strategy for mitigating this issue is to 

generate for each mode of variability (PC) a single representative consensus partition [38]. 

Rather than computing and averaging multiple correlations, generating a consensus partition 

would allow for the computation of one correlation pattern. Although appealing, the 

consensus partition strategy has some downsides. In particular, the effectiveness of 

consensus partitions is limited when they are not representative of the partitions they are 

intended to represent. In the present study, the principal components identify partitions with 

correlated patterns of intersubject variability but whose baseline or mean intersubject 

variability may vary considerable. This feature of the data exists because each principal 

component is restricted to a narrow range of γ values, ensuring similar numbers of partitions 

within a given layer, but spans orders of magnitude in terms of ω. Future work could focus 

on more principled statistical frameworks for dealing with the large numbers of partitions 

generated by the multi-layer modularity maximization framework.

An additional limitation concerns the manner in which brain network nodes (parcels) are 

defined. Here, we imposed an identical parcellation across all individuals, which implicitly 

assumes that brain areas’ locations are consistent across subjects. Recent studies, however, 

have shown that areas vary in their locations across individuals [88]. Consequently, it 

remains a possibility that inter-subject community variability could be explained by 

systematic differences in the locations of brain areas. Here, we use group-defined parcels as 

this approach remains the field standard. Future work should investigate these issues more 

directly, for example, by exploring the effect of subject-specific parcellations on inter-

subject community variability [25, 31, 33, 34].

Another limitation is related the use of the a priori system labels defined by [26]. Among 

these systems is a group labeled “None,” which collects brain regions with no clear modular 

assignment, characterized by poor signal to noise, and located in areas of the brain 

susceptible to artifact and dropout. Here, because we use a data-driven approach to assign 

nodes to modules and because we tried to avoid manual interventions, nodes with the 

“None” label were always grouped into communities, though usually not collectively. 

Rather, the “None” system was broken up and incorporated into distinct communities across 

the brain. Here, we did not assess the effect of excluding “None” nodes from our analysis. 

Future work could investigate their impact in greater detail.

A final consideration concerns the scalability of the multi-layer approach. Here, we studied 

cohorts that included (at most) 80 subjects and connectivity data from 333 brain areas. The 

flattened modularity tensor associated with these data had dimensions 26640 × 26640 (333 × 

80). The Louvain algorithm used to maximize Q(γ, ω) was quite fast, which enabled us to 

sample community structure from many points in the γ, ω parameter space. However, for 

much larger matrices, corresponding to greater numbers of subjects or finer parcellations, it 

becomes more difficult to efficiently sample such large numbers of parameters. In such 

cases, one may wish to consider principled methods for constructing sparse representations 

of the full data matrices, or for efficiently clustering large networks [89, 90].
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CONCLUSION

Here, we studied inter-subject variability in community structure by extending the well-

known modularity maximization framework to multiple subjects. We find, surprisingly, that 

communities vary across individuals along distinct “modes” and that these modes 

correspond to different organizational scales, ranging from a few large communities to many 

small communities. Interestingly, when we compare the variation of community structure 

with different measures of cognitive performance, we find that the correlation patterns are 

scale-dependent. This observation demonstrates that analyses that calculate brain-behavior 

correlations based on community structure detected at a single organizational scale may fail 

to uncover interesting and behaviorally relevant associations. Finally, using a second dataset, 

we reproduce our previously observed modes of inter-subject community variability, and 

also show that communities vary within subjects but along different dimensions.

MATERIALS AND METHODS

Datasets

We analyzed functional connectivity data from two independent datasets processed using 

different pipelines.

Human Connectome Project—We analyzed data from the Human Connectome Project 

(HCP), a multi-site consortia that collected extensive MRI, behavioral, and demographic 

data from a large cohort of subjects (>1000) [24]. As part of the HCP protocol, subjects 

underwent two separate resting state scans. All functional connectivity data analyzed in this 

report came from these scans and was part of the HCP S1200 release [24]. Only subjects that 

completed both resting-state scans were analyzed. We utilized a cortical parcellation that 

maximizes the similarity of functional connectivity within each parcel (N = 333 parcels) 

[26].

We preprocessed resting-state data using the following pipeline. Our analyses were based on 

the ICA-FIX resting-state data provided by the Human Connectome Project, which used 

ICA to remove nuisance and motion signals [91]. We removed the mean global signal and 

bandpass filtered the time series from 0.009 to 0.08 Hz. To reduce artifacts related to in-

scanner head motion, frames with greater than 0.2 millimeters of framewise displacement or 

a derivative root mean square above 75 were removed [92]. Subjects whose scans resulted in 

fewer than 50% of the total frames left were not analyzed further; a total of 827 subjects met 

this criteria for all resting-state scans.

For all scans, the MSMAII registration was used, and the mean time series of vertices on the 

cortical surface (fsL32K) in each of the N = 333 parcels was calculated [26]. We used this 

particular parcellation as it has high functional connectivity homogeneity within each parcel 

and the number of nodes is consistent with other analyses. The functional connectivity 

matrix for each subject was calculated as the pairwise Pearson correlation coefficient 

(subsequently Fisher z-transformed) between times series of all nodes. Both left-right and 

right-left phase encoding directions scans were used, and the mean functional connectivity 

matrix across the four resting-state scans was calculated.
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In-scanner head motion is known to induce spurious correlations in resting state FC [92]. To 

reduce the impact of head motion on detected communities, we focused our analyses onto 

smaller, more exclusive subsets of subjects. Specifically, we divided the full HCP dataset 

into smaller discovery and validation datasets comprising 80 subjects each. We chose this 

number of subjects to ensure that dataset size was comparable to what is reported in the 

typical fMRI study. The test cohort included the 1st, 3rd, 5th ...and 159th subjects, in 

ascending order of mean framewise displacement . The validation cohort was defined as the 

2nd, 4th, 6th, ...160th subjects, ordered according to the same criterion. Note, because this 

procedure generated datasets with low head motion, it is possible that related subjects appear 

together in the same cohort.

We also analyzed HCP behavioral data. For the Working Memory task, our measure of task 

performance was given by the mean accuracy across all conditions (WM_Task_Acc). For the 

Relational task, our measure of task performance was given by the mean accuracy across all 

conditions (Relational_Task_Acc). For the Language task, our measure of task performance 

was given by the highest level reached in either the Language or Math conditions (maximum 

of Language_Task_Story_Avg_Difficulty_Level and 

Language_Task_Math_Avg_Difficulty_Level). For the Social task, our measure of task 

performance was given by the mean across the random and theory of mind conditions (mean 

of Social_Task_TOM_Perc_TOM and Social_Task_Random_Perc_Random).

Midnight Scan Club—Data were collected from ten healthy, right-handed, young adult 

subjects (5 females; age: 24–34). One of the subjects is an author (NUFD), and the 

remaining subjects were recruited from the Washington University community. Informed 

consent was obtained from all participants. The study was approved by the Washington 

University School of Medicine Human Studies Committee and Institutional Review Board. 

This dataset was previously reported in [15, 34] and is publicly available at https://

openneuro.org/datasets/ds000224/versions/00002. Imaging for each subject was performed 

on a Siemens TRIO 3T MRI scanner over the course of 12 sessions conducted on separate 

days, each beginning at midnight. In total, four T1-weighted images, four T2-weighted 

images, and 5 hours of resting-state BOLD fMRI were collected from each subject. For 

further details regarding data acquisition parameters, see [15].

MRI data were preprocessed and sampled to the surface as described in [15] and with shared 

code available at https://github.com/MidnightScanClub. The steps are summarized briefly 

below. The high-resolution structural MRI data were averaged together, and the average T1 

images were used to generate hand-edited cortical surfaces using Freesurfer [93]. The 

resulting surfaces were registered into fs_LR_32k surface space as described in [91]. 

Separately, an average native T1-to-Talaraich [94] volumetric atlas transform was calculated. 

That transform was applied to the fs_LR_32k surfaces to put them into Talaraich volumetric 

space.

All fMRI data first underwent pre-processing (in the volume) to correct for artifacts and 

align data, including slice-timing correction, frame-to-frame alignment to correct for motion, 

and intensity normalization to mode 1000. Functional data were then registered to the T2 

image, which was registered to the high-resolution T1 anatomical image, which in turn had 
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been previously registered to the template space. Finally, functional data underwent 

distortion correction [15]. Registration, atlas transformation, resampling to 3 mm isotropic 

resolution, and distortion correction were all combined and applied in a single 

transformation step [95]. Subsequent steps were all completed on the atlas transformed and 

resampled data.

Processing steps specific to functional connectivity were undertaken to reduce the influence 

of artifacts on functional network data. These steps are described in detail in [96], and 

include (1) demeaning and de-trending of the data, (2) nuisance regression of signals from 

white matter, cerebrospinal fluid, and the global signal, (3) removal of high motion frames 

(with framewise displacement (FD) > 0.2 mm; see [15]) and their interpolation using power-

spectral matched data, and (4) bandpass filtering (0.009 Hz to 0.08 Hz). After this 

volumetric pre-processing, functional data were sampled to the cortical surface and 

combined with volumetric subcortical and cerebellar data into the CIFTI data format using 

the Connectome Workbench [97]. Finally, data were smoothed (Gaussian kernel, σ = 2.55 

mm) with 2-D geodesic smoothing on the surface and 3-D Euclidean smoothing for 

subcortical volumetric data.

Modularity maximization

A critical step in any modularity analysis is to determine the community assignments of 

brain areas. Because real-world networks are too complex to identify communities from 

visual inspection alone, their nodes’ community assignments must be determined 

algorithmically through a process known as community detection [13]. There are many 

different ways to define a network’s communities and equally many algorithms for detecting 

them. Of these, modularity maximization is likely the most popular [16].

Intuitively, modularity maximization operates according to a simple principle: communities 

correspond to groups of nodes that are more strongly connected to one another than would 

be expected by chance alone. The detection of these communities, in practice, is 

accomplished by optimizing a modularity objective function:

Q = ∑
ij

Bijδ(σiσj) . (1)

In this expression, Bij = Wij − Pij, where Wij and Pij are the observed and expected weight of 

the connection between nodes i and j. The full matrix, B = {Bij}, is referred to as the 

modularity matrix whose elements encode the difference between observed and expected 

connection weights. The variable σi ∈ {1,...,K} indicates to which of the K communities 

node i is assigned. The Kronecker delta function, δ(x, y), takes on a value of 1 when x = y 
and 0 when x ≠ y. Finally, Q is the modularity quality function to be maximized. Effectively, 

Q is the sum over within-community elements of the modularity matrix. In general, larger 

values of Q are taken to indicate higher quality partitions and correspond to internally dense 

and externally sparse communities.

The modularity function suffers from a “resolution limit,” meaning that communities below 

a characteristic scale are undetectable [87]. To circumvent this issue, some applications 
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introduce a tunable structural resolution parameter, γ, which scales the relative importance 

of the null connectivity model:

Q(γ) = ∑
ij

[Aij − γPij]δ(σiσj) . (2)

The effect of this parameterization is that optimizing Q(γ) for large values of γ results in the 

detection of many small communities, whereas optimizing Q(γ) for small values of γ results 

in a few large communities.

The modularity function has been expanded further so that it is compatible with multi-layer 

networks composed of distinct layers corresponding to different connection modalities (e.g., 

structural and functional connectivity) or estimates of network structure at different time 

points [20]. In the multi-layer analog of the modularity function, nodes are linked to 

themselves across layers by an inter-layer coupling parameter, ω. This parameter determines 

the similarity of communities detected across layers, with larger values of ω resulting in 

increased homogeneity of communities across layers. The multi-layer expression for 

modularity is given by:

Q(γ, ω) = ∑
ijsr

[(W ijs − γPijs)δsr + ωδ(ij)]δ(σisσjr) . (3)

The multi-layer, multi-scale modularity, Q(γ, ω), operates on the same principle as the 

single-layer version. Communities are defined by placing stronger-than-expected 

connections within communities. The main difference between the single- and multi-layer 

modularity functions is that, by adding interlayer connections of weight ω, it can be 

advantageous from the perspective of optimizing Q(γ, ω) to assign nodes in different layers 

to the same community.

Multi-layer, multi-subject modularity

Our approach builds directly upon the canonical multi-layer modularity framework. It differs 

in two important ways, the first is conceptual while the second is methodological. 

Conceptually, rather than letting layers represent different connection modalities [45, 46], 

frequency bands [98, 99], or network estimates at different time points [21], we let layers 

represent functional connectivity matrices corresponding to single subjects. Effectively, this 

choice allows us to obtain estimates of community assignments simultaneously for all 

subjects. Importantly, this approach also preserves community labels across subjects 

(provided ω > 0), making the process of comparing communities across subjects trivially 

easy. Methodologically, our approach differs from the general case in that we let Pijs = 1 for 

all i, j, s. This choice is in line with best practices for modularity maximization when the 

networks correspond to correlation matrices [58, 100, 101]. In our past work we have shown 

that this decision results in communities with broadly recognizable topographic features [60, 

102].

As with the canonical version of multi-layer modularity maximization, the multi-subject 

version depends upon two free parameters, γ and ω. The value of γ determines the scale of 

detected communities, as reflected in their number and size. As before, smaller values of γ 
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result in a few large communities while larger values result in many small communities. 

Similarly, the value of ω emphasizes the consistency of communities across individuals. 

Larger values of ω emphasize network features and communities that are common across 

subjects, whereas small values of ω emphasize the uniqueness of individuals’ community 

structures. The parameter space defined by γ and ω contains partitions of the network into 

communities ranging from single nodes to the whole network, that are entirely unique to 

individuals or perfectly consistent across individuals. Note, that while ω influences the 

consistency of communities across subjects, it is implemented globally and its influence is 

exerted over all subjects equally.

Sampling multi-scale, multi-consistency community structure—Though many 

studies fix the values of γ and ω in order to focus on partitions of networks into roughly the 

same number of communities across subjects, we aimed to explore the full range of 

partitions, both in terms of community size but also in terms of the consistency of 

community structure across individuals. In general, however, the relevant ranges of γ and ω 
are unknown ahead of time. In our application, we are interested in characterizing variability 

in community structure across individuals, and therefore wish to avoid extreme partitions; 

that is, combinations of γ and ω that result in:

1. singleton communities (each node is its own community),

2. whole-network partitions (all nodes are assigned to the same community),

3. partitions that are identical across all subjects, or

4. partitions that are maximally dissimilar across all subjects.

To sample community structure, we employed a novel two-stage procedure. The first stage 

allowed us to bipartition the parameter space defined by γ and ω into two sub-spaces, one 

where the above-defined criteria were true and another where the above-defined criteria 

were false. In the second stage we sampled parameter pairs from within this sub-space to 

generate a distribution of possible partitions that spanned all organizational scales and levels 

of consistency.

The first stage is initialized with the user defining the boundaries of a rectangular parameter 

space, forcing γ and ω to fall within [γmin, γmax] and [ωmin, ωmax], respectively. Here, we 

set γmin = minijs Wijs, γmax = maxijs Wijs, ωmin = 0 and ωmax = 1. Next, we sampled 

parameter pairs uniformly and at random from within this sub-space. To identify regions of 

this sub-space in which the above-defined four criteria hold, we optimized Q(γ, ω) for each 

pair of parameter samples using a generalization of the so-called Louvain algorithm [103, 

104]. This optimization resulted in a multi-layer partition for which we computed the mean 

number of communities per layer and the mean consistency of communities across layers 

(see the next section). Intuitively, if the average number of communities was fewer than 2 or 

greater than N, or the mean consistency of communities was equal to 0 (maximal 

inconsistency) or 1 (maximal consistency), we considered the corresponding point in 

parameter space to be “bad,”, as it would have failed to satisfy at least one of the four 

criteria. Parameter values that satisfy these criteria, on the other hand, are considered 

“good”.
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Next, we calculate the local homogeneity of parameter space by calculating the entropy of 

each sampled point’s 25 nearest neighbors. Points with non-zero values of entropy exhibit 

inhomoegeneities and correspond to regions of parameter space where at least one of the 

four criteria is sometimes not satisfied. We identified all such points and constructed around 

them the unique non-convex polygon. Intuitively, partitions corresponding to parameter pairs 

that fall within this polygon are likely to satisfy all four criteria; points located outside this 

polygon are unlikely to satisfy all four criteria. We repeated this procedure five times (a total 

of 5000 samples), each time refining our definition of the boundary between “good” and 

“bad” regions of parameter space.

At this point our procedure moved onto the second stage. In this stage, we sampled 40000 

partitions from within the “good” region. Values of γ were sampled uniformly, while values 

of ω were sampled from an exponential distribution, so that small values of ω are sampled 

more frequently than large values. For each pair of parameter values we optimized Q(γ, ω), 

resulting in 40000 multi-layer partitions. These partitions formed the basis for all subsequent 

analyses.

Consensus communities and community entropy

Optimizing the multi-layer, multi-scale modularity expression returns σ = {σis}, whose 

elements encode the community assignment of node i in subject s. From this two-

dimensional matrix we can calculate several useful statistics that would not have been 

accessible using the traditional single-layer approach. First, we can obtain a consensus 

partition, or a group-representative set of communities. Whereas past studies have relied on 

iterative clustering with an arbitrary threshold to obtain consensus communities [38], the 

multi-layer ensemble makes their estimation straightforward. The consensus assignment of 

node i is given as:

σic = modes(σis) . (4)

Next, we can also calculate the variability of community assignments across subjects for a 

given node. Let pi(k) equal the fraction of all subjects whose node i is assigned to 

community k. The variability of this node’s assignment can be characterized with the 

entropy:

ℎi = − ∑
k = 1

K
pi(k)log2(pi(k)) . (5)

We can standardize this entropy to the range [0, 1] by dividing by log2(K).

The measure hi reveals the extent to which a node’s community assignment was consistent 

or variable across a cohort of subjects. To extend this measure to the level of single subjects, 

we calculated a new measure, hir. Consider subject r and node i that is assigned to 

community σir. We can quantify the average dissimilarity of its community assignment to 

that of all other subjects by calculating:
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ℎir = 1
T − 1 ∑

s ≠ r
1 − δ(σirσis) (6)

where T is the total number of subjects in the cohort and δ(x, y) is the Kronecker delta 

function, which is equal to 1 when x = y and 0 otherwise. Effectively, this summation reveals 

the dissimilarity of the community assignment of subject r with respect to that of the rest of 

the cohort. Whereas hi measures the variability of node i’s assignment across the entire 

cohort of subjects, hir measures the variability of that node’s assignment from the 

perspective of subject r and with respect to the rest of the cohort.

Principal component analysis

The entropy vector describes the variability of each brain areas’ community assignment 

across subjects. These vectors, in general, may depend on where in the {γ, ω} parameter 

space those communities were sampled. We wished to assess whether certain patterns of 

inter-individual community variability appeared more frequently than others and whether 

these patterns were localized to specific regions of parameter space.

To address this question, we subjected the column-normalized (zero mean, unit variance) 

matrix of entropy scores to a principal component analysis via singular value decomposition 

(SVD). Let H ∈ [N × Nreps] be the matrix of nodes’ entropy scores across all repetitions of 

the Louvain algorithm. In the case of HCP and MSC data with the Gordon atlas, this matrix 

has dimensions [333 × 40000]. Singular value decomposition factorizes H into left and right 

singular vectors, U ∈ [N × N] and V ∈ [Nreps × N] and a set of singular values, Σ ∈ [N × 

Nreps], satisfying the relationship:

H = UΣV T . (7)

The principal component scores and coefficients are given by the columns of U, which are 

by definition orthogonal to one another, and the rows of V, respectively. The squared 

diagonal elements of Σ give the percent variance accounted for by principal components. We 

interpret the columns of U as modes of inter-individual community variation, or dominant 

brain-wide patterns of entropy scores.

In the case of the MSC dataset, we performed SVD on the inter-individual entropy matrix, 

which was calculated given communities estimated using a multi-layer network whose 

layers represented session-averaged FC for each of the 10 subjects. We then extracted the 

first three principal component scores, Uinter = [U(:,1)U(:,2), U(:,3)], which defined a low-

dimensional space of inter-subject community variability.

In addition to calculating inter-individual communities, we also applied modularity 

maximization to six different multi-layer networks where each layer represented FC for a 

given subject on a given scan session. Analogously to our calculation of inter-subject 

community variability, we computed inter-session community variability for each subject, 

and subsequently calculated each subject’s matrix of column normalized entropy scores, 
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Hsubject. These, along with the patterns of inter-subject variability, we included in a joint 

PCA and used to generate panels g, h, and i of Fig. 7.

DATA AVAILABILITY STATEMENT

Data were provided in part by the Human Connectome Project, WU-Minn Consortium 

(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by 

the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 

Research; and by the McDonnell Center for Systems Neuroscience at Washington 

University.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

RFB, MB, and DSB would like to acknowledge support from the John D. and Catherine T. MacArthur Foundation, 
the Alfred P. Sloan Foundation, the ISI Foundation, the Paul Allen Foundation, the Army Research Laboratory 
(W911NF-10-2-0022), the Army Research Office (Bassett-W911NF-14-1-0679, Grafton-W911NF-16-1-0474, 
DCIST-W911NF-17-2-0181), the Office of Naval Research, the National Institute of Mental Health (2-R01-
DC-009209-11, R01-MH112847, R01-MH107235, R21-M MH-106799), the National Institute of Child Health and 
Human Development (1R01HD086888-01), National Institute of Neurological Disorders and Stroke (R01 
NS099348), and the National Science Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and 
BCS-1631550). The content is solely the responsibility of the authors and does not necessarily represent the official 
views of any of the funding agencies.

References

[1]. Bullmore Ed and Sporns Olaf, “Complex brain networks: graph theoretical analysis of structural 
and functional systems,” Nature Reviews Neuroscience 10, 186 (2009). [PubMed: 19190637] 

[2]. Betzel Richard F and Bassett Danielle S, “Multi-scale brain networks,” Neuroimage 160, 73–83 
(2017). [PubMed: 27845257] 

[3]. Newman Mark EJ, “Communities, modules and large-scale structure in networks,” Nature physics 
8, 25 (2012).

[4]. Sporns Olaf and Betzel Richard F, “Modular brain networks,” Annual review of psychology 67, 
613–640 (2016).

[5]. Power Jonathan D, Cohen Alexander L, Nelson Steven M, Wig Gagan S, Barnes Kelly Anne, 
Church Jessica A, Vogel Alecia C, Laumann Timothy O, Miezin Fran M, Schlaggar Bradley L, et 
al., “Functional network organization of the human brain,” Neuron 72, 665–678 (2011). 
[PubMed: 22099467] 

[6]. Crossley Nicolas A, Mechelli Andrea, Vértes Petra E, Winton-Brown Toby T, Patel Ameera X, 
Ginestet Cedric E, McGuire Philip, and Bullmore Edward T, “Cognitive relevance of the 
community structure of the human brain functional coactivation network,” Proceedings of the 
National Academy of Sciences 110, 11583–11588 (2013).

[7]. de Haan Willem, van der Flier Wiesje M, Koene T, Smits Lieke L, Scheltens Philip, and Stam 
Cornelis J, “Disrupted modular brain dynamics reflect cognitive dysfunction in alzheimer’s 
disease,” Neuroimage 59, 3085–3093 (2012). [PubMed: 22154957] 

[8]. Alexander-Bloch Aaron F, Gogtay Nitin, Meunier David, Birn Rasmus, Clasen Liv, Lalonde 
Francois, Lenroot Rhoshel, Giedd Jay, and Bullmore Edward T, “Disrupted modularity and local 
connectivity of brain functional networks in childhood-onset schizophrenia,” Frontiers in systems 
neuroscience 4, 147 (2010). [PubMed: 21031030] 

Betzel et al. Page 24

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[9]. Gu Shi, Satterthwaite Theodore D, Medaglia John D, Yang Muzhi, Gur Raquel E, Gur Ruben C, 
and Bassett Danielle S, “Emergence of system roles in normative neurodevelopment,” 
Proceedings of the National Academy of Sciences 112, 13681–13686 (2015).

[10]. Chan Micaela Y, Park Denise C, Savalia Neil K, Petersen Steven E, and Wig Gagan S, 
“Decreased segregation of brain systems across the healthy adult lifespan,” Proceedings of the 
National Academy of Sciences 111, E4997–E5006 (2014).

[11]. Geerligs Linda, Renken Remco J, Saliasi Emi, Maurits Natasha M, and Lorist Monicque M, “A 
brainwide study of age-related changes in functional connectivity,” Cerebral Cortex 25, 1987–
1999 (2014). [PubMed: 24532319] 

[12]. Cole Michael W, Bassett Danielle S, Power Jonathan D, Braver Todd S, and Petersen Steven E, 
“Intrinsic and task-evoked network architectures of the human brain,” Neuron 83, 238–251 
(2014). [PubMed: 24991964] 

[13]. Fortunato Santo, “Community detection in graphs,” Physics reports 486, 75–174 (2010).

[14]. Yeo BT Thomas, Krienen Fenna M, Sepulcre Jorge, Sabuncu Mert R, Lashkari Danial, 
Hollinshead Marisa, Roffman Joshua L, Smoller Jordan W, Zöllei Lilla, Polimeni Jonathan R, et 
al., “The organization of the human cerebral cortex estimated by intrinsic functional 
connectivity,” Journal of neurophysiology 106, 1125–1165 (2011). [PubMed: 21653723] 

[15]. Gordon Evan M, Laumann Timothy O, Adeyemo Babatunde, and Petersen Steven E, “Individual 
variability of the system-level organization of the human brain,” Cerebral Cortex 27, 386–399 
(2017). [PubMed: 26464473] 

[16]. Newman Mark EJ and Girvan Michelle, “Finding and evaluating community structure in 
networks,” Physical review E 69, 026113 (2004).

[17]. Rosvall Martin and Bergstrom Carl T, “Maps of random walks on complex networks reveal 
community structure,” Proceedings of the National Academy of Sciences 105, 1118–1123 
(2008).

[18]. Bellec Pierre, Rosa-Neto Pedro, Lyttelton Oliver C, Benali Habib, and Evans Alan C, “Multi-
level bootstrap analysis of stable clusters in resting-state fmri,” Neuroimage 51, 1126–1139 
(2010). [PubMed: 20226257] 

[19]. Schaefer Alexander, Kong Ru, Gordon Evan M, Laumann Timothy O, Zuo Xi-Nian, Holmes 
Avram J, Eickhoff Simon B, and Yeo BT, “Local-global parcellation of the human cerebral cortex 
from intrinsic functional connectivity mri,” Cerebral Cortex, 1–20 (2017). [PubMed: 28365777] 

[20]. Mucha Peter J, Richardson Thomas, Macon Kevin, Porter Mason A, and Onnela Jukka-Pekka, 
“Community structure in time-dependent, multiscale, and multiplex networks,” science 328, 
876–878 (2010). [PubMed: 20466926] 

[21]. Bassett Danielle S, Wymbs Nicholas F, Porter Mason A, Mucha Peter J, Carlson Jean M, and 
Grafton Scott T, “Dynamic reconfiguration of human brain networks during learning,” 
Proceedings of the National Academy of Sciences 108, 7641–7646 (2011).

[22]. Braun Urs, Schäfer Axel, Walter Henrik, Erk Susanne, Romanczuk-Seiferth Nina, Haddad Leila, 
Schweiger Janina I, Grimm Oliver, Heinz Andreas, Tost Heike, et al., “Dynamic reconfiguration 
of frontal brain networks during executive cognition in humans,” Proceedings of the National 
Academy of Sciences 112, 11678–11683 (2015).

[23]. Betzel Richard F, Satterthwaite Theodore D, Gold Joshua I, and Bassett Danielle S, “Positive 
affect, surprise, and fatigue are correlates of network flexibility,” Scientific Reports 7, 520 
(2017). [PubMed: 28364117] 

[24]. Van Essen David C, Smith Stephen M, Barch Deanna M, Behrens Timothy EJ, Yacoub Essa, 
Ugurbil Kamil, Wu-Minn HCP Consortium, et al., “The wu-minn human connectome project: an 
overview,” Neuroimage 80, 62–79 (2013). [PubMed: 23684880] 

[25]. Gordon Evan M, Laumann Timothy O, Gilmore Adrian W, Newbold Dillan J, Greene Deanna J, 
Berg Jeffrey J, Ortega Mario, Hoyt-Drazen Catherine, Gratton Caterina, Sun Haoxin, et al., 
“Precision functional mapping of individual human brains,” Neuron 95, 791–807 (2017). 
[PubMed: 28757305] 

[26]. Gordon Evan M, Laumann Timothy O, Adeyemo Babatunde, Huckins Jeremy F, Kelley William 
M, and Petersen Steven E, “Generation and evaluation of a cortical area parcellation from 
resting-state correlations,” Cerebral cortex 26, 288–303 (2014). [PubMed: 25316338] 

Betzel et al. Page 25

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[27]. Reichardt Jörg and Bornholdt Stefan, “Statistical mechanics of community detection,” Physical 
Review E 74, 016110 (2006).

[28]. Kheirkhahzadeh Masoumeh, Lancichinetti Andrea, and Rosvall Martin, “Efficient community 
detection of network flows for varying markov times and bipartite networks,” Physical Review E 
93, 032309 (2016). [PubMed: 27078368] 

[29]. Bertolero Maxwell A, Yeo BT Thomas, and Mark D?Esposito, “The modular and integrative 
functional architecture of the human brain,” Proceedings of the National Academy of Sciences 
112, E6798–E6807 (2015).

[30]. Bertolero MA, Yeo BTT, and M D?Esposito, “The diverse club,” Nature communications 8, 1277 
(2017).

[31]. Laumann Timothy O, Gordon Evan M, Adeyemo Babatunde, Snyder Abraham Z, Joo Sung Jun, 
Chen Mei-Yen, Gilmore Adrian W, McDermott Kathleen B, Nelson Steven M, Dosenbach Nico 
UF, et al., “Functional system and areal organization of a highly sampled individual human 
brain,” Neuron 87, 657–670 (2015). [PubMed: 26212711] 

[32]. Poldrack Russell A, Laumann Timothy O, Koyejo Oluwasanmi, Gregory Brenda, Hover 
Ashleigh, Chen Mei-Yen, Gorgolewski Krzysztof J, Luci Jeffrey, Joo Sung Jun, Boyd Ryan L, et 
al., “Long-term neural and physiological phenotyping of a single human,” Nature 
communications 6, 8885 (2015).

[33]. Kong Ru, Li Jingwei, Orban Csaba, Mert R Sabuncu Hesheng Liu, Schaefer Alexander, Sun 
Nanbo, Zuo Xi-Nian, Holmes Avram J, Eickhoff Simon B, et al., “Spatial topography of 
individual-specific cortical networks predicts human cognition, personality, and emotion,” 
Cerebral Cortex (2018).

[34]. Gratton Caterina, Laumann Timothy O, Nielsen Ashley N, Greene Deanna J, Gordon Evan M, 
Gilmore Adrian W, Nelson Steven M, Coalson Rebecca S, Snyder Abraham Z, Schlaggar 
Bradley L, et al., “Functional brain networks are dominated by stable group and individual 
factors, not cognitive or daily variation,” Neuron 98, 439–452 (2018). [PubMed: 29673485] 

[35]. Shine James M, Koyejo Oluwasanmi, and Poldrack Russell A, “Temporal metastates are 
associated with differential patterns of time-resolved connectivity, network topology, and 
attention,” Proceedings of the National Academy of Sciences 113, 9888–9891 (2016).

[36]. Khambhati Ankit N, Sizemore Ann E, Betzel Richard F, and Bassett Danielle S, “Modeling and 
interpreting mesoscale network dynamics,” Neuroimage (2017).

[37]. Vaiana Michael and Muldoon Sarah Feldt, “Multilayer brain networks,” Journal of Nonlinear 
Science, 1–23 (2018).

[38]. Lancichinetti Andrea and Fortunato Santo, “Consensus clustering in complex networks,” 
Scientific reports 2, 336 (2012). [PubMed: 22468223] 

[39]. Sripada Chandra, Angstadt Mike, Rutherford Saige, Kessler Daniel, Kim Yura, Yee Mike, and 
Levina Liza, “Fundamental units of inter-individual variation in resting state connectomes,” 
bioRxiv, 326082 (2018).

[40]. Shine James M, Bissett Patrick G, Bell Peter T, Koyejo Oluwasanmi, Balsters Joshua H, 
Gorgolewski Krzysztof J, Moodie Craig A, and Poldrack Russell A, “The dynamics of functional 
brain networks: integrated network states during cognitive task performance,” Neuron 92, 544–
554 (2016). [PubMed: 27693256] 

[41]. Gerraty Raphael T, Davidow Juliet Y, Foerde Karin, Galvan Adriana, Bassett Danielle S, and 
Shohamy Daphna, “Dynamic flexibility in striatal-cortical circuits supports reinforcement 
learning,” Journal of Neuroscience, 2084–17 (2018).

[42]. Vatansever Deniz, Menon David K, Manktelow Anne E, Sahakian Barbara J, and Stamatakis 
Emmanuel A, “Default mode dynamics for global functional integration,” Journal of 
Neuroscience 35, 15254–15262 (2015). [PubMed: 26586814] 

[43]. Bola Michal and Sabel Bernhard A, “Dynamic reorganization of brain functional networks during 
cognition,” Neuroimage 114, 398–413 (2015). [PubMed: 25828884] 

[44]. Wymbs Nicholas F, Bassett Danielle S, Mucha Peter J, Porter Mason A, and Grafton Scott T, 
“Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor 
chunking in humans,” Neuron 74, 936–946 (2012). [PubMed: 22681696] 

Betzel et al. Page 26

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[45]. Battiston Federico, Guillon Jeremy, Chavez Mario, Latora Vito, and De Vico Fallani Fabrizio, 
“Multiplex core-periphery organization of the human connectome,” arXiv preprint 
arXiv:1801.01913 (2017).

[46]. Bentley Barry, Branicky Robyn, Barnes Christopher L, Lian Chew Yee, Yemini Eviatar, Bullmore 
Edward T, Vértes Petra E, and Schafer William R, “The multilayer connectome of caenorhabditis 
elegans,” PLoS computational biology 12, e1005283 (2016). [PubMed: 27984591] 

[47]. Golland Yulia, Golland Polina, Bentin Shlomo, and Malach Rafael, “Data-driven clustering 
reveals a fundamental subdivision of the human cortex into two global systems,” 
Neuropsychologia 46, 540–553 (2008). [PubMed: 18037453] 

[48]. Rosenthal Gideon, Sporns Olaf, and Avidan Galia, “Stimulus dependent dynamic reorganization 
of the human face processing network,” Cerebral Cortex 27, 4823–4834 (2016).

[49]. Pan Raj Kumar and Sinha Sitabhra, “Modularity produces small-world networks with dynamical 
timescale separation,” EPL (Europhysics Letters) 85, 68006 (2009).

[50]. Bassett Danielle S, Greenfield Daniel L, Meyer-Lindenberg Andreas, Weinberger Daniel R, 
Moore Simon W, and Bullmore Edward T, “Efficient physical embedding of topologically 
complex information processing networks in brains and computer circuits,” PLoS computational 
biology 6, e1000748 (2010). [PubMed: 20421990] 

[51]. Kirschner Marc and Gerhart John, “Evolvability,” Proceedings of the National Academy of 
Sciences 95, 8420–8427 (1998).

[52]. Simon Herbert A, “The architecture of complexity,” in Facets of systems science (Springer, 1991) 
pp. 457–476.

[53]. Meunier David, Lambiotte Renaud, and Bullmore Edward T, “Modular and hierarchically 
modular organization of brain networks,” Frontiers in neuroscience 4, 200 (2010). [PubMed: 
21151783] 

[54]. Doucet Gaëlle, Naveau Mikaël, Petit Laurent, Delcroix Nicolas, Zago Laure, Crivello Fabrice, 
Jobard Gael, Tzourio-Mazoyer Nathalie, Mazoyer Bernard, Mellet Emmanuel, et al., “Brain 
activity at rest: a multiscale hierarchical functional organization,” Journal of neurophysiology 
105, 2753–2763 (2011). [PubMed: 21430278] 

[55]. Ferrarini Luca, Veer Ilya M, Baerends Evelinda, van Tol Marie-José, Renken Remco J, van der 
Wee Nic JA, Veltman Dirk J, Aleman Andre, Zitman Frans G, Penninx Brenda WJH, et al., 
“Hierarchical functional modularity in the resting-state human brain,” Human brain mapping 30, 
2220–2231 (2009). [PubMed: 18830955] 

[56]. Kim DoHyun, Kay Kendrick, Shulman Gordon L, and Corbetta Maurizio, “A new modular brain 
organization of the bold signal during natural vision,” Cerebral Cortex 28, 3065–3081 (2017).

[57]. Smith Stephen M, Miller Karla L, Salimi-Khorshidi Gholamreza, Webster Matthew, Beckmann 
Christian F, Nichols Thomas E, Ramsey Joseph D, and Woolrich Mark W, “Network modelling 
methods for fmri,” Neuroimage 54, 875–891 (2011). [PubMed: 20817103] 

[58]. Traag Vincent A, Van Dooren Paul, and Nesterov Yurii, “Narrow scope for resolution-limit-free 
community detection,” Physical Review E 84, 016114 (2011).

[59]. Shen Kelly, Matthew Hutchison R, Bezgin Gleb, Everling Stefan, and McIntosh Anthony R, 
“Network structure shapes spontaneous functional connectivity dynamics,” Journal of 
Neuroscience 35, 5579–5588 (2015). [PubMed: 25855174] 

[60]. Betzel Richard F, Fukushima Makoto, He Ye, Zuo Xi-Nian, and Sporns Olaf, “Dynamic 
fluctuations coincide with periods of high and low modularity in resting-state functional brain 
networks,” NeuroImage 127, 287–297 (2016). [PubMed: 26687667] 

[61]. Thompson William H and Fransson Peter, “The mean–variance relationship reveals two possible 
strategies for dynamic brain connectivity analysis in fmri,” Frontiers in human neuroscience 9, 
398 (2015). [PubMed: 26236216] 

[62]. Lurie Daniel, Kessler Daniel, Bassett Danielle, Betzel Richard F, Breakspear Michael, Keilholz 
Shella, Kucyi Aaron, Liégeois Raphaël, Lindquist Martin A, McIntosh Anthony Randal, et al., 
“On the nature of resting fmri and time-varying functional connectivity,” (2018).

[63]. Akiki Teddy J and Abdallah Chadi G, “Determining the hierarchical architecture of the human 
brain using subject-level clustering of functional networks,” bioRxiv, 350462 (2018).

Betzel et al. Page 27

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[64]. Akiki Teddy J, Averill Christopher L, Wrocklage Kristen M, Scott J Cobb, Averill Lynnette A, 
Schweinsburg Brian, Alexander-Bloch Aaron, Martini Brenda, Southwick Steven M, Krystal 
John H, et al., “Default mode network abnormalities in posttraumatic stress disorder: A novel 
network-restricted topology approach,” NeuroImage 176, 489–498 (2018). [PubMed: 29730491] 

[65]. Poldrack Russell A, Barch Deanna M, Mitchell Jason, Wager Tor, Wagner Anthony D, Devlin 
Joseph T, Cumba Chad, Koyejo Oluwasanmi, and Milham Michael, “Toward open sharing of 
task-based fmri data: the openfmri project,” Frontiers in neuroinformatics 7, 12 (2013). 
[PubMed: 23847528] 

[66]. Gorgolewski Krzysztof J, Varoquaux Gael, Rivera Gabriel, Schwarz Yannick, Ghosh Satrajit S, 
Maumet Camille, Sochat Vanessa V, Nichols Thomas E, Poldrack Russell A, Poline Jean-
Baptiste, et al., “Neurovault. org: a web-based repository for collecting and sharing 
unthresholded statistical maps of the human brain,” Frontiers in neuroinformatics 9, 8 (2015). 
[PubMed: 25914639] 

[67]. Satterthwaite Theodore D, Elliott Mark A, Ruparel Kosha, Loughead James, Prabhakaran 
Karthik, Calkins Monica E, Hopson Ryan, Jackson Chad, Keefe Jack, Riley Marisa, et al., 
“Neuroimaging of the philadelphia neurodevelopmental cohort,” Neuroimage 86, 544–553 
(2014). [PubMed: 23921101] 

[68]. Baum Graham L, Ciric Rastko, Roalf David R, Betzel Richard F, Moore Tyler M, Shinohara 
Russell T, Kahn Ari E, Vandekar Simon N, Rupert Petra E, Quarmley Megan, et al., “Modular 
segregation of structural brain networks supports the development of executive function in 
youth,” Current Biology 27, 1561–1572 (2017). [PubMed: 28552358] 

[69]. Betzel Richard F, Medaglia John D, Papadopoulos Lia, Baum Graham L, Gur Ruben, Gur 
Raquel, Roalf David, Satterthwaite Theodore D, and Bassett Danielle S, “The modular 
organization of human anatomical brain networks: Accounting for the cost of wiring,” Network 
Neuroscience 1, 42–68 (2017). [PubMed: 30793069] 

[70]. Weir William, Emmons Scott, Gibson Ryan, Taylor Dane, and Mucha Peter, “Post-processing 
partitions to identify domains of modularity optimization,” Algorithms 10, 93 (2017). [PubMed: 
29046743] 

[71]. Kriegeskorte Nikolaus, Mur Marieke, and Bandettini Peter A, “Representational similarity 
analysisconnecting the branches of systems neuroscience,” Frontiers in systems neuroscience 2, 4 
(2008). [PubMed: 19104670] 

[72]. Betzel Richard F, Medaglia John D, Kahn Ari E, Soffer Jonathan, Schonhaut Daniel R, and 
Bassett Danielle S, “Inter-regional ecog correlations predicted by communication dynamics, 
geometry, and correlated gene expression,” arXiv preprint arXiv:1706.06088 (2017).

[73]. Hawrylycz Michael J, Lein Ed S, Guillozet-Bongaarts Angela L, Shen Elaine H, Ng Lydia, 
Miller Jeremy A, Van De Lagemaat Louie N, Smith Kimberly A, Ebbert Amanda, Riley Zackery 
L, et al., “An anatomically comprehensive atlas of the adult human brain transcriptome,” Nature 
489, 391 (2012). [PubMed: 22996553] 

[74]. Hagmann Patric, Cammoun Leila, Gigandet Xavier, Meuli Reto, Honey Christopher J, Van 
Wedeen J, and Sporns Olaf, “Mapping the structural core of human cerebral cortex,” PLoS 
biology 6, e159 (2008). [PubMed: 18597554] 

[75]. Yeatman Jason D, Dougherty Robert F, Myall Nathaniel J, Wandell Brian A, and Feldman Heidi 
M, “Tract profiles of white matter properties: automating fiber-tract quantification,” PloS one 7, 
e49790 (2012). [PubMed: 23166771] 

[76]. He Yong, Chen Zhang J, and Evans Alan C, “Small-world anatomical networks in the human 
brain revealed by cortical thickness from mri,” Cerebral cortex 17, 2407–2419 (2007). [PubMed: 
17204824] 

[77]. Jeub Lucas GS, Sporns Olaf, and Fortunato Santo, “Multiresolution consensus clustering in 
networks,” Scientific reports 8, 3259 (2018). [PubMed: 29459635] 

[78]. Aldecoa Rodrigo and Marín Ignacio, “Deciphering network community structure by surprise,” 
PloS one 6, e24195 (2011). [PubMed: 21909420] 

[79]. Peel Leto, Delvenne Jean-Charles, and Lambiotte Renaud, “Multiscale mixing patterns in 
networks,” Proceedings of the National Academy of Sciences 115, 4057–4062 (2018).

Betzel et al. Page 28

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[80]. Karrer Brian and Newman Mark EJ, “Stochastic block-models and community structure in 
networks,” Physical review E 83, 016107 (2011).

[81]. Betzel Richard F, Medaglia John D, and Bassett Danielle S, “Diversity of meso-scale architecture 
in human and non-human connectomes,” Nature Communications 9, 346 (2018).

[82]. Betzel Richard F, Bertolero Maxwell A, and Bassett Danielle S, “Non-assortative community 
structure in resting and task-evoked functional brain networks,” bioRxiv, 355016 (2018).

[83]. Stanley Natalie, Shai Saray, Taylor Dane, and Mucha Peter J, “Clustering network layers with the 
strata multilayer stochastic block model,” IEEE transactions on network science and engineering 
3, 95–105 (2016). [PubMed: 28435844] 

[84]. Paul Subhadeep, Chen Yuguo, et al., “Consistent community detection in multi-relational data 
through restricted multi-layer stochastic blockmodel,” Electronic Journal of Statistics 10, 3807–
3870 (2016).

[85]. Han Qiuyi, Xu Kevin, and Airoldi Edoardo, “Consistent estimation of dynamic and multi-layer 
block models,” in International Conference on Machine Learning (2015) pp. 1511–1520.

[86]. Vaiana Michael and Muldoon Sarah, “Resolution limits for detecting community changes in 
multilayer networks,” arXiv preprint arXiv:1803.03597 (2018).

[87]. Fortunato Santo and Barthelemy Marc, “Resolution limit in community detection,” Proceedings 
of the National Academy of Sciences 104, 36–41 (2007).

[88]. Bijsterbosch Janine Diane, Woolrich Mark W, Glasser Matthew F, Robinson Emma C, Beckmann 
Christian F, Van Essen David C, Harrison Samuel J, and Smith Stephen M, “The relationship 
between spatial configuration and functional connectivity of brain regions,” Elife 7, e32992 
(2018). [PubMed: 29451491] 

[89]. Clauset Aaron, Newman Mark EJ, and Moore Cristopher, “Finding community structure in very 
large networks,” Physical review E 70, 066111 (2004).

[90]. Capocci Andrea, Servedio Vito DP, Caldarelli Guido, and Colaiori Francesca, “Detecting 
communities in large networks,” Physica A: Statistical Mechanics and its Applications 352, 669–
676 (2005).

[91]. Glasser Matthew F, Sotiropoulos Stamatios N, Wilson J Anthony, Coalson Timothy S, Fischl 
Bruce, Andersson Jesper L, Xu Junqian, Jbabdi Saad, Webster Matthew, Polimeni Jonathan R, et 
al., “The minimal preprocessing pipelines for the human connectome project,” Neuroimage 80, 
105–124 (2013). [PubMed: 23668970] 

[92]. Power Jonathan D, Barnes Kelly A, Snyder Abraham Z, Schlaggar Bradley L, and Petersen 
Steven E, “Spurious but systematic correlations in functional connectivity mri networks arise 
from subject motion,” Neuroimage 59, 2142–2154 (2012). [PubMed: 22019881] 

[93]. Dale Anders M, Fischl Bruce, and Sereno Martin I, “Cortical surface-based analysis: I. 
segmentation and surface reconstruction,” Neuroimage 9, 179–194 (1999). [PubMed: 9931268] 

[94]. Talairach Jean and Tournoux Pierre, “Co-planar stereotaxic atlas of the human brain: 3-
dimensional proportional system: an approach to cerebral imaging,” (1988).

[95]. Smith Stephen M, Jenkinson Mark, Woolrich Mark W, Beckmann Christian F, Behrens Timothy 
EJ, Johansen-Berg Heidi, Bannister Peter R, De Luca Marilena, Drobnjak Ivana, Flitney David E, 
et al., “Advances in functional and structural mr image analysis and implementation as fsl,” 
Neuroimage 23, S208–S219 (2004). [PubMed: 15501092] 

[96]. Power Jonathan D, Mitra Anish, Laumann Timothy O, Snyder Abraham Z, Schlaggar Bradley L, 
and Petersen Steven E, “Methods to detect, characterize, and remove motion artifact in resting 
state fmri,” Neuroimage 84, 320–341 (2014). [PubMed: 23994314] 

[97]. Marcus Daniel, Harwell John, Olsen Timothy, Hodge Michael, Glasser Matthew, Prior Fred, 
Jenkinson Mark, Laumann Timothy, Curtiss Sandra, and Van Essen David, “Informatics and data 
mining tools and strategies for the human connectome project,” Frontiers in neuroinformatics 5, 
4 (2011). [PubMed: 21743807] 

[98]. De Domenico Manlio, Sasai Shuntaro, and Arenas Alex, “Mapping multiplex hubs in human 
functional brain networks,” Frontiers in neuroscience 10, 326 (2016). [PubMed: 27471443] 

[99]. Brookes Matthew J, Tewarie Prejaas K, Hunt Benjamin AE, Robson Sian E, Gascoyne Lauren E, 
Liddle Elizabeth B, Liddle Peter F, and Morris Peter G, “A multi-layer network approach to meg 
connectivity analysis,” Neuroimage 132, 425–438 (2016). [PubMed: 26908313] 

Betzel et al. Page 29

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[100]. Bazzi Marya, Porter Mason A, Williams Stacy, McDonald Mark, Fenn Daniel J, and Howison 
Sam D, “Community detection in temporal multilayer networks, with an application to 
correlation networks,” Multiscale Modeling & Simulation 14, 1–41 (2016).

[101]. MacMahon Mel and Garlaschelli Diego, “Community detection for correlation matrices,” arXiv 
preprint arXiv:1311.1924 (2013).

[102]. Betzel Richard F and Bassett Danielle S, “Specificity and robustness of long-distance 
connections in weighted, interareal connectomes,” Proceedings of the National Academy of 
Sciences, 201720186 (2018).

[103]. Jutla Inderjit S, Jeub Lucas GS, and Mucha Peter J, “A generalized louvain method for 
community detection implemented in matlab,” URL http://netwiki.amath.unc.edu/GenLouvain 
(2011).

[104]. Blondel Vincent D, Guillaume Jean-Loup, Lambiotte Renaud, and Lefebvre Etienne, “Fast 
unfolding of communities in large networks,” Journal of statistical mechanics: theory and 
experiment 2008, P10008 (2008).

Betzel et al. Page 30

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://netwiki.amath.unc.edu/GenLouvain


FIG. 1. Multi-subject modularity, communities, and areal entropy.
(a) Single-subject networks are represented as layers in a multi-layer network ensemble. 

Each node is linked to itself across layers, here illustrated by interlayer connections. Note 

that community labels are indicated by node color. (b) Maximizing a multi-layer modularity 

function returns a set of single-subject partitions. Importantly, community labels are 

preserved across layers; thus, if the label C1 appears in layers r and s, we assume that the 

same community has recurred. This property allows us to make several useful 

measurements. We can calculate, for each node, the mode of its community assignment 

across subjects to generate a consensus partition. We can also calculate the entropy of each 

node’s community assignments, which measures the variability of communities across 

subjects. (c) The preservation of community labels also allows for a direct comparison of 

any one subject to any other subject. Given partitions of subjects (or layers), denoted here 

with variables r and s, we can generate a bit vector whose values are {0, 1} depending on 

whether a given node has the same/different community assignment. Doing so for all pairs 

of subjects generates a three-dimensional entropy tensor. When averaged over nodes, this 

tensor generates a T ×T matrix whose elements indicate, in total, the number of non-

identical community assignments between pairs of subjects. When averaged over either of 

its other dimensions, the result is an N × T matrix, whose elements indicate, in total, the 

similarity of a node’s community assignment within a given subject to that of the remaining 

T − 1 subjects.
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FIG. 2. Examples of detected community structure.
(a) The composition of detected communities depends on the structural resolution parameter, 

γ, and on the inter-subject coupling parameter, ω. To generate a sample of possible 

partitions, we chose random combinations of γ and ω and estimate consensus community 

structure at those points. We show, here, the locations in parameter space where the resulting 

consensus partitions contained 2, 5, 8, 11, 14, and 17 non-singleton communities per subject. 

(b) We ordered all consensus partitions in ascending order according to their number of non-

singleton communities. Each community was colored by the weighted average of its 

constituent brain areas’ cognitive systems. For example, a community comprised of 

exclusively DMN brain areas would be assigned the DMN color (red, in this case), whereas 

a system composed of an equal number of DMN and visual brain areas would have a purple 

color (the average of the DMN’s red and the visual system’s blue). (c) We also show 

example consensus partitions as we vary the number of non-singleton communities to 2, 5, 

8, 11, 14, and 17.
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FIG. 3. Multi-scale analysis strategy and schematic.
Points are sampled in a two-dimensional constrained parameter space. The structural 

resolution parameter, γ, determines the number and size of communities while the inter-

layer coupling parameter, ω, tunes the consistency of communities across individuals. Here, 

we summarize the statistics of communities detected using this sampling approach applied 

to the HCP333 dataset. (a) The number of communities per layer. (b) The number of 

communities per layer after excluding singleton communities, which are communities 

composed of a single node. (c) The mean inter-subject entropy (variability). (d) We can 

query particular subsets of partitions based on the number of communities, their average 

entropy, or other statistics, allowing us not only to probe different organizational scales of 

the network, but also to accommodate varying degrees of heterogeneity across subjects. (e) 

An example of the detected partitions and their consistency across T = 80 subjects. (f) The 

variability (inter-subject entropy) of community assignments across individuals. Brighter 

(yellow) coloring indicates greater levels of variability.
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FIG. 4. Modes of inter-subject community variability.
Principal component coefficients and scores for the first four components. (a) PC 

coefficients for the first component projected into {γ, ω} parameter space. (b) PC scores for 

the same component projected onto the cortical surface. The community assignments of 

bright orange brain areas are highly variable across subjects at orange points in the 

parameter space. Conversely, the community assignments of blue brain areas are highly 

consistent across subjects at those same points. (c) Areal values of principal component 

scores averaged across thirteen previously-defined cognitive/functional systems [26]. This 

panel helps shift focus away area-level community variability and onto system level patterns 

of variation. The remaining panels show corresponding plots for PC2, PC3, and PC4. Note: 

we present principal components in the order in which they are expressed along the γ axis. 

This choice results in the following ordering: PC1, PC3, PC2, and PC4.
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FIG. 5. Community structure changes as a function of γ.
We restricted our analysis to the region of parameter space with ω < 10−2. Within this space, 

virtually all variation in community structure occurs as a function of γ. We then calculated 

the average PC coefficient for each of the four PCs as a function of γ and z-scored these 

values for each PC independently. (a) This procedure enabled us to partition γ values into 

four segments according to which PC is dominant at that point in parameter space. (b-e) For 

each segment, which corresponded to a different PC’s dominance, we calculated the co-

assignment probability for all pairs of nodes. (f - i) We also derived each segments’ 

consensus communities. (j-m) We also assessed how brain systems described in [26] are 

distributed across detected communities. In these panels, each column corresponds to one of 

the thirteen systems and each row corresponds to a detected community. Columns were 
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normalized so that they sum to unity. Within a column the values of cells indicate the 

fraction of that system’s regions that were assigned to each of the detected communities. (n-

q) We break down the PC scores by detected communities.

Betzel et al. Page 36

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 6. Correlation of community structure with measures of task performance.
(a) For each PC, we studied the sub-sample of partitions corresponding to the 1% largest PC 

coefficients. (b) For each subsample, we calculated the Pearson correlation coefficient 

between subjects’ community entropy scores and four measures of in-scanner performance 

on cognitively demanding tasks: working memory (WM), relational (REL), social (SOC), 

and language (LANG), in the HCP terminology. In panels (c,e,g,i), we show the brain-

behavior z-scored correlation coefficients for the first four PCs associated with performance 

on the WM task, plotted on the cortical surface (permutation test in which behavioral 

measures were randomly and uniformly shuffled). In panels (d,f,h,j), we show the mean 

brain-behavior correlation coefficients for the first four PCs, z-scored within each cognitive 

system. Larger z-scores indicate that the average correlation over all brain areas in a given 

system is greater than expected in random systems of the same size. Here, as an example, we 

show correlations for the WM task. Results for other tasks are included in the 

Supplementary Materials. Note that the dotted lines in panels (d), (f), (h), and (j) correspond 

to z = ±2.
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FIG. 7. Summary and analysis of the midnight scan club dataset.
In panels (a)-(c), we show surface maps depicting the first three components generated from 

PCA analysis of the midnight scan club (MSC) dataset. These principal components 

correspond, broadly, to the components detected in the HCP dataset. We compare the two 

datasets by averaging principal components within brain systems and computing system-

average correlations. The results are shown in panels (d)-(f). The size of dots is proportional 

to the number of nodes assigned to each system. We perform a similar analysis of intra-

subject variability, in which we characterize variation in community structure within 

subjects across scan sessions. To visualize these results, we project within- and between-

subject community entropy scores into the two-dimensional space defined using the first two 

dimensions of a joint PCA. In panel g, we show the distribution of inter-subject patterns. 
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Panel h shows the same for intra-subject patterns, and i shows the difference between the 

two.
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