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The widescale adoption of electronic health record (EHR) technology has led to an 

unprecedented accumulation of medical data, such that petabytes of patient information are 

now easily accessible to computer systems. Data have inherent value, as evidenced by the 

astounding success of technology companies that rely primarily on the exchange of data to 

generate profit.1 However, data science in health care has been stunted compared with other 

industries. This is due in no small part to limitations in accessing health data due to concerns 

regarding privacy, questions over data ownership, and uncertainties around applicability.

However, increasing interest from industry may be the key to leveraging patient-level data in 

ways that can improve care and advance science. A recent publication by Tomasev et al2 in 

Nature shows how a collaboration between experienced machine-learning researchers (in the 

form of DeepMind, a Google subsidiary) and clinicians can create impressive results. The 

objective of the study was rather straightforward: to develop a computational model that, fed 

data inputs from a given individual, would output their likelihood of developing acute kidney 

injury (AKI) in the near future. Studies have done this before, but none with so vast a data 

set or such accurate results.3,4

What Does This Important Study Show?

In terms of the sheer number of data points analyzed, this is one of largest studies of 

machine learning in medicine to date. Researchers leveraged the US Veterans Affairs (VA) 

clinical database, creating a data set of more than 700,000 individuals across 1,239 health 

care facilities. Each patient contributed multiple time-stamped datapoints—a total of more 

than 6 billion clinical-event entries.

At each timepoint during an inpatient stay, entries were classified as being within 24, 48, or 

72 hours before AKI. Instead of asking the question “Will this patient ever develop AKI in 

the future?” the researchers asked “Will this patient develop AKI in the near future?” The 

latter question is much more clinically relevant (because an AKI early-warning system could 

potentially lead to preventative action), though the choice complicates modeling 

substantially.

Using a recurrent neural network, a machine-learning algorithm that has some advantages 

with regard to longitudinal data, the researchers created a time-updated prognostic model.5 

Address for Correspondence: F. Perry Wilson, MD, MSCE, Program of Applied Translational Research, Yale School of Medicine, 
New Haven, CT 06410. francis.p.wilson@yale.edu. 

Financial Disclosure: The author declares that he has no relevant financial interests.

HHS Public Access
Author manuscript
Am J Kidney Dis. Author manuscript; available in PMC 2021 June 01.

Published in final edited form as:
Am J Kidney Dis. 2020 June ; 75(6): 965–967. doi:10.1053/j.ajkd.2019.08.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The area under the receiver operator characteristic curve, a standard metric for assessing the 

performance of prognostic models, was 0.92 for prediction of AKI within the next 48 hours. 

This performance indicates that given a patient who would develop AKI within 48 hours and 

one who would not, the model would give the patient who would develop AKI the higher 

score 92% of the time. Other studies, even those that leverage novel serum and urine 

biomarkers to predict AKI, have rarely exceeded 75% to 80% at this prediction task.6

However, in the real world, implementation of these models rests on determining a model 

cut point, or threshold at which some action could be taken. High-specificity cut points 

(enriching for patients very likely to develop AKI) may be appropriate for interventions that 

carry some risk (such as empirical volume resuscitation), while high-sensitivity cut points 

(ensuring that few patients with impending AKI are missed) might be appropriate for more 

benign interventions (such as serum creatinine [Scr] monitoring). The authors specify a cut 

point that would capture 55.8% of all AKI cases within a 48-hour window. At that threshold, 

there would be 2 false predictions for every 1 positive prediction and just <3% of 

hospitalized patients would alert on a daily basis, making it appropriate for certain low-cost 

but high-yield interventions (the authors suggest a “clinical assessment”).

Higher cut points would trigger less often and lead to fewer false-positive results but miss 

more patients who go on to develop AKI. These tradeoffs are inherent to prognostic 

modeling, and practical decisions about when to alert rest critically on the specific 

interventions the alerts are supposed to trigger. A less complex algorithm with poorer 

prognostic performance, it should be noted, would exacerbate this issue by firing more often 

and would lead to more false-positive results for the same AKI capture rate.

The impressive complexity of the algorithm is a double-edged sword. Although machine-

learning approaches with extensive data preprocessing and the integration of thousands of 

clinical variables can show impressive results in retrospective data sets, prospective 

implementation presents novel challenges. The study used 620,000 features (variables) as 

inputs to the model. Any prospective study would need to capture those hundreds of 

thousands of inputs to output an appropriate prediction at a given time point. In real time, 

any one of these inputs can “break,” leading to degradation or even failure of the predictive 

algorithm. As a simple example, a recent upgrade of our laboratory system led to a renaming 

of the Scr field in our EHR. Because this term is used for a variety of studies, including 

those of AKI alerts,7 until the new name was updated in the computer code, no Scrbased 

alerts fired. In this case, the cause was quickly identified and the fix was straightforward. 

With thousands of input variables, constant curation will be necessary to ensure that 

unrelated changes in data structures do not break the predictive model.

On an even more basic level, not all predictors are available in all data sets. While common 

features (such as serum potassium level) are well represented in diverse health systems, there 

are likely hundreds of features that can be captured in the VA, but not in other institutions. 

This is particularly true of outpatient data, a critical component of the predictive model that 

the authors present and one that may be the key to explaining the increased predictive power 

seen in this model versus prior efforts. It is worth noting that the study only included patients 
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with at least 1 year of outpatient data, limiting generalizability to health systems with less 

complete data capture than the VA.

Real-time application of these models also requires real-time computing power, and many 

institutions will want to perform these calculations on site to avoid sending potentially 

sensitive information to third parties. The impact on the day-to-day functioning of 

information technology systems (often strained under ordinary circumstances) is difficult to 

quantify.

A solution to all these issues involves feature selection: machine-learning approaches that 

create models that maximize predictive power with a sparse set of inputs. Assume that the 

team charged with EHR implementation of an AKI prognostic model believes that a 

maximum of 20 time-updated inputs can be coded and monitored in perpetuity. Given 

600,000 potential inputs, there are 1.5 × 1097 models that could be developed with 20 inputs. 

Obviously, a brute-force approach to evaluation of these models is infeasible in any 

conceivable timescale (barring breakthroughs in quantum computing), but powerful feature-

selection algorithms, such as evolutionary search functions and population-based 

incremental learning, can explore the space of possible models efficiently and deliver results 

on a timescale approaching days, instead of eons.8,9

Finally, we are not given details on the contribution of time-variant versus time-invariant 

features to the overall prediction. In other words, are individuals alerting because they are at 

high risk from the moment they enter the hospital (based on an elevated baseline Scr, the 

presence of diabetes, or other chronic conditions) or because of the dynamic changes that 

take place during hospitalization (an increasing potassium level, a decreasing bicarbonate 

level)? If the former, implementation will lead to “admission” alerts, which may be 

disregarded by providers amidst the slew of other tasks required to admit a patient to the 

hospital.

How Does This Study Compare With Prior Studies?

Prognostic modeling studies are often compared by the performance of the prognostic 

model, and by that metric, this study certainly outpaces those that have come before.3,4,10 

This is likely due more to the data availability than the particular algorithm used. Although 

the area under the curve for the primary model (a recurrent neural network) was 0.92, the 

authors report that a simple logistic regression with the same inputs yielded an area under 

the curve of 0.86, which still outclasses prior work. This indicates an emerging truism of 

prognostic modeling: the data matter more than the algorithm.

Rather than model performance, the main contribution of the study may surround 

identification of appropriate hyperparameters for machine learning in this space. In the 

context of machine learning, a “hyperparameter” represents a discrete value or choice made 

during the modeling process. For example, in creating a neural network, a data scientist may 

choose how many layers there should be, how many neurons in each layer, and how the 

neurons should connect. The machine-learning algorithm itself can be considered a 

hyperparameter: should we use a recurrent or convolutional neural network? A logistic 
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regression or a decision tree? Permuting these decisions “tunes” the model, but as these 

choices multiply, the space of possible tunings explodes and it rapidly becomes challenging 

to evaluate them all. The resources of DeepMind allowed evaluation of a vast number of 

hyperparameters, many more than could be considered by a typical university data science 

laboratory. These parameters can be used to inform the starting point for future efforts, 

bypassing the laborious process of hyperparameter selection. In effect, DeepMind has given 

researchers a standard tuning.

What Are the Implications for Nephrologists?

While prospective implementation of a complex model like this remains challenging, should 

it become feasible, the obvious question is “what do we do now?” The history of AKI 

clinical research is littered with failed therapies targeted to individuals after AKI has been 

diagnosed through Scr level.11,12 Although there is reason to hope that targeting therapies 

earlier, before Scr level even increases, may improve outcomes, we have few empirical data 

to prove this is the case. Nevertheless, the adoption of real-time prognostic models like this 

will form the basis of these research efforts in the future.

Nephrologists in the near future may receive “pre-AKI” consults, which present a unique 

clinical opportunity. The management of these patients will at first follow the principles we 

use in AKI consults now; management of hemodynamics and avoidance of nephrotoxins 

seem to be appropriate responses. Of course, the risk-benefit ratio of certain interventions is 

fundamentally changed when the patient does not yet have the condition for which we are 

consulted. Stopping treatment with an aminoglycoside may be reasonable in the throes of 

AKI, but can the same be said when kidney function is normal, particularly if the drug has 

some well-described benefit?

There is potential for overreaction as well. If a patient is ready for discharge but the pre-AKI 

alert fires, should they continue to be monitored? Given the frequency and usually self-

limited nature of AKI, a less-is-more approach should rule the day until such time as high-

quality data inform the management of pre-AKI patients. Trials randomizing pre-AKI 

alerting to usual care would seem particularly valuable at this point.

Due to the computationally simple definition of AKI (diagnosable with one easily measured 

clinical parameter), prognostic modeling is feasible and perhaps inevitable. As machine-

learning approaches become more sophisticated, parsimonious high-performing models will 

enter our daily practice. When they do, nephrologists must be prepared to answer the call, 

even if the telephone has not yet rung.
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